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Introduction

Substitutions everywhere
A substitution is a rule that replaces letters by words. A famous example is the Fibonacci
substitution defined by a 7→ ab and b 7→ a. It can be iterated to produce an infinite word:

a
ab
aba
abaab
abaababa
abaababaabaab
abaababaabaababaababa
abaababaabaababaababaabaababaabaab . . .

Several other notions of substitutions can be considered, where geometrical shapes or
multidimensional words are substituted instead of letters. Four examples are given on
page 10, and many more can be found on the Tilings Encyclopedia website [HFd], in the
survey [Fra08] or in the book [GS87]. Substitutions give rise to highly ordered, self-similar
objects which appear in several different domains, both as tools and objects of study.
We first briefly survey some of the various areas in which substitutions show up, and

then we focus on our main point of interest: one-dimensional Pisot substitutions and some
higher-dimensional combinatorial tools that arise in their study.

Substitutions in combinatorics on words Substitutions provide a way to construct words
with very specific properties. For example, the Thue-Morse substitution 1 7→ 12, 2 7→ 21
generates the infinite word 12212112 . . . which has the property that it does not contain
any cube (a word of the form www with nonempty w), as proved by Thue [Thu77]. Many
other properties and historical facts about this sequence are summarized in [AS99].
Another example is the class of Sturmian sequences, whose language can be obtained

by iterating the substitutions 1 7→ 1, 2 7→ 21 and 1 7→ 12, 2 7→ 2. These sequences can
be characterized in many other ways. They are the infinite sequences of two letters with
complexity n+ 1 (i.e., they have exactly n+ 1 factors of length n). They also correspond
to the codings of irrational rotations on the circle [MH40], or equivalently, the codings of
discrete lines with irrational slope. See [PF02, Chapter 6] and [Lot97, Chapter 2] for a
survey of their numerous properties.
Substitutions also give rise to interesting language-theoretic decision problems; see for

example [KL03], or the class of “HD0L” problems, concerning periodicity properties of
infinite substitutive words (discussed more in detail in Remark 1.1.4).

Substitutions of constant length are linked by Cobham’s theorem [Cob69] to automatic
sequences [AS03]. A number-theoretical applications of this connection is that every real
number whose expansion is automatic is either rational or transcendental [AB07].
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 7→

7→

(a) This kind of substitutions is used in higher-
dimensional symbolic dynamics, in order to provide
suitable “computation zones” for Turing machine
simulations. This example is taken from [AS13b].


7→

7→

7→

(b) Ammann-Beenker tilings are examples of substi-
tutive, aperiodic, cut-and-project tilings for which
simple local matching rules exist, see [GS87]. Pic-
ture taken from [HFb].

7→ 7→

(c) This two-dimensional substitution, due to J.
Haferman, is an example of a two-dimensional au-
tomatic sequence [AS03].


7→
7→
7→

7→ 7→ 7→ 7→ 7→

7→ 7→

(d) Iterating the dual map associated with the
substitution σ : 1 7→ 12, 2 7→ 3, 3 7→ 13. The
obtained patterns cover arbitrarily large regions of
a discrete plane, and they can be renormalized so
that their limit converges to the Rauzy fractal of σ.
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Aperiodic tile sets, theory of computation Substitutions have been a key ingredient to
prove the undecidability of the tiling problem, stated by Wang in [Wan61]: “does a given
set of tiles admits a tiling of the plane?” Most of the currently known undecidability proofs
follow the initial strategy used to solve this problem in [Ber66, Rob71], by simulating
Turing machines with tilings. In these simulations, some higher-dimensional substitutions
are needed for technical reasons, in order to provide suitable “computation space” for the
Turing machines. These constructions also gave rise to the first examples of aperiodic tile
sets, that is, set of tiles which can tile the plane, but only in a non-periodic way. All the
known constructions of aperiodic tile sets use substitutive hierarchical structures, with a
few exceptions only [Kar08, Mon13].

These techniques are also often used to perform diverse computational tasks in symbolic
dynamics, using variants of the Robinson tile set [Rob71], for example in the study
of simulations between subshifts [Hoc09, DRS12, AS13b], or to prove that the tilings
induced by an irrational discrete plane can be enforced by local rules if and only if the
slope of the plane is computable [FS12].

An “inverse question” to the above considerations is asking whether for every substitution,
the set of tilings it generates can be realized as the set of the valid tilings of a finite
set of tiles. It turns out that the answer is positive, in the case of non-deterministic
rectangle substitutions in Z2 [Moz89], and in more abstract geometrical settings as
well [GS98, FO10].

One-dimensional substitutions and symbolic dynamics Substitutions have been used as
a tool in dynamics to understand the behaviour of some complicated systems. For example,
Morse [Mor21] successfully used the Thue-Morse substitution 1 7→ 12, 2 7→ 21 to prove
the existence of some non-periodic recurrent geodesics on a surface of constant negative
curvature. Another example is the use of the Fibonacci substitution 1 7→ 12, 2 7→ 1, which
gives a coding of the dynamics of the translation x 7→ x+(1+

√
5)/2 in the one-dimensional

torus R/Z [MH40]. A natural question arises:

What kind of dynamics occurs in one-dimensional substitutive systems?

These systems are minimal and have zero entropy, so their dynamics are very constrained
among the vast class of symbolic dynamical systems. However, various answers to the
above question have been given in terms of geometrical interpretations of the dynamics,
as shown by the (non-exhaustive) list of examples below.

• The Tribonacci substitution 1 7→ 12, 2 7→ 13, 3 7→ 1 is the translation Rβ : T2 → T2

on the two-dimensional torus, defined by Rβ(x) = x+ (1/β, 1/β2), where β ≈ 1.839
is the dominant root of x3 − x2 − x− 1, which is a cubic Pisot number [PF02].

• The Thue-Morse substitution 1 7→ 12, 2 7→ 21 and the Rudin-Shapiro 1 7→ 12, 2 7→
13, 3 7→ 42, 4 7→ 43 factors onto the dyadic rotation (i.e., the dynamics of x 7→ x+ 1
on the group of 2-adic integers) and the Chacon substitution 1 7→ 1121, 2 7→ 2 is an
exduction of a triadic rotation [Fer95, PF02].

• Arnoux-Rauzy sequences are systems generated by arbitrary infinite products of
three particular 3-letter substitutions (which are given in Section 1.5). The symbolic
dynamics of each product can be realized as an exchange of six intervals on the
circle [AR91]. In the case of periodic products, they have been proved to be
semi-conjugate to two-dimensional toral translations [AI01, BJS12]. Some infinite
products have been proved to be weak mixing [CFM08].
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• Some classes of substitutive systems have been proved to be measurable factors of
interval exchange maps [BJ12].

• Every substitution of constant length ` (the images all have the same size `) fac-
tors onto a translation on the direct product of the `-adic group Z` with a finite
group [CK71, Mar71, Dek78].

More details about the above statements can be found in [Que10, PF02] and in Section 1.4.
A whole class of substitutions which are believed to be semi-conjugate to toral translations
are the substitutions satisfying an algebraic restriction, being Pisot, which we discuss next.

Pisot substitutions
Rauzy fractals The Pisot condition is an algebraic condition on a substitution σ which
ensures that its action has a unique expanding direction. (This can be stated in terms of
spectral properties of the incidence matrix of σ, see Section 1.1.) Thanks to this property,
an infinite broken line can be constructed from σ, with the very special property that it
can be projected onto a plane in such a way that the projection is bounded. This allows
us to define the Rauzy fractal of σ, by taking the closure of this projection. Rauzy fractals
can naturally be decomposed into n tiles, where n is the size of the alphabet of σ.
These fractals owe their name to Gérard Rauzy, who introduced them in order to

study properties of the Tribonacci substitution 1 7→ 12, 2 7→ 13, 3 7→ 1 [Rau82]. They are
formally defined in Section 1.3, and an example is pictured in Figure 0.1.

Using Rauzy fractals in dynamics Let us illustrate our main point on the particular
3-letter substitution σ : 1 7→ 12, 2 7→ 1312, 3 7→ 112, which is an ordinary example a Pisot
substitution. It can be iterated to produce an infinite word u satisfying σ(u) = u, a fixed
point of σ:

u = 121312121121213121213121212131212131212 . . .

The most natural way to associate a dynamical system with σ is to define the set
Xσ ⊆ {1, 2, 3}Z of all the bi-infinite sequences that have the same language as the
fixed point u, and the symbolic shift S which shifts a sequence x ∈ Xσ by one step:
S(x) = (xn+1)n∈Z. In the cases we will consider, Xσ is an uncountable set and it does
not depend on the chosen fixed point u (see Section 1.4 for more details). This symbolic
dynamical system is minimal, has zero entropy and does not contain any shift-periodic
point.
Now we want to express (Xσ, S) as a translation on the two-dimensional torus T2.

The classical approach from symbolic dynamics is to find a 3-set partition of T2 and a
translation R : T2 → T2 such that every orbit in (T2, R) can be encoded by a sequence in
Xσ, by recording the history of the orbit with respect to the 3-set partition. Hence there
is correspondence between the orbits of the shift S in Xσ and the orbits of R in the torus.

There are many possible ways to build such a partition a priori, but one fruitful approach
can be made via Rauzy fractals, as initiated by Rauzy [Rau82]. In the case of our example
σ, the Rauzy fractal admits a periodic tiling of the plane, so its three tiles yield a natural
partition of the torus T2. Using this partition, it is possible to find a translation R such
that the systems (Xσ, S) and (T2, R) have the same dynamics, by using the three tiles
1, 2, 3 to code the orbits of R in T2. This is illustrated in Figure 0.1.
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Figure 0.1: Using the Rauzy fractal of σ to give a geometrical interpretation of the
dynamics of (Xσ, S). Four iterations of the translation R : T2 → T2 are shown above,
whose corresponding coding is 21312. On the left it represented in the periodic tiling of
the plane, and on the right it is represented within the fundamental domain.

The construction described above can be carried out for any Pisot substitution [AI01,
CS01b]. However, in general, it could happen that the resulting geometrical realization
is only a factor of the original system (Xσ, S). Proving that the two systems are always
equivalent (semi-conjugate) is one of the most famous open problems in this area, known
as the Pisot conjecture. More detailed statements can be found in Sections 1.3 and 1.4.

Dual substitutions, combinatorial substitutions A powerful tool for the study of one-
dimensional Pisot substitutions has been provided by Arnoux and Ito in [AI01], where a one-
dimensional substitution σ is expressed as a higher-dimensional substitution (called dual
substitution, illustrated in Figure (d) page 10). Many properties of σ can be reformulated
in terms of geometric combinatorial properties of its dual substitution, as we will see later.

This viewpoint is the main guideline of the work done in this thesis: we establish some
properties of one-dimensional substitutions using this tool, and then we study the general
class of higher-dimensional combinatorial substitutions stemming from the examples
provided by dual substitutions.

Contributions of this thesis
In the first five chapters, we establish several new properties of one-dimensional Pisot
substitutions. Most of the results that currently exist concern a single substitution, but
we obtain results about some infinite families of substitutions defined by taking products
over a given finite set.

In the last two chapters, we “step back” from the Pisot assumption to study some more
general objects arising from the combinatorial tools used in the previous chapters, focusing
on some computational (un)decidability questions.
We will start by introducing some background notions in Chapter 1, which will be

needed in the first five chapters.
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Infinite families of substitutions Our first object of study is the infinite family of
substitutions obtained by taking arbitrary finite products σi1 · · ·σin over a given finite set
of substitutions {σ1, . . . , σk}. Given such a family we tackle the following questions:

• Do the substitutions obtained in this way have good dynamical properties?
In particular, are they semi-conjugate to toral translations?
• What properties of products σi1 · · ·σin can be “translated” into a language-theoretical
characterization of words i1 · · · in?

In Chapter 2 we will introduce some combinatorial tools that will allow us to give some
answers to the above questions in Chapter 3.
Since we are dealing with Pisot substitutions, we must make sure that the products

σi1 · · ·σin we consider are Pisot. However, even if each σi is Pisot, it is not guaranteed
that their products are also Pisot, because spectral properties of matrix products behave
in non-predictable ways (see Remark 1.1.3).

We will hence restrict ourselves to three specific families of substitutions, all acting on
3-letter words {1, 2, 3}?, which have nice properties under composition: the Arnoux-Rauzy
substitutions, the Brun substitutions and the Jacobi-Perron substitutions. These families
of substitutions (defined in Section 1.5) provide interesting objects of study. Arnoux-
Rauzy sequences are well-studied in dynamics and combinatorics on words (some of their
properties are surveyed in Section 1.5), and the Brun and Jacobi-Perron are substitutions
associated with some classical multidimensional continued fraction algorithms.

We answer the above questions in the following way for the three families of substitutions
described above.

• For every admissible finite product σ, the symbolic dynamical system (Xσ, S) is
semi-conjugate to a translation on a two-dimensional torus (Theorem 3.1.1).

• The language of the words i1 · · · in such that the origin is an interior point of the
Rauzy fractal of σi1 · · ·σin can be characterized in a simple language-theoretic way
(Theorem 3.2.3). For example in the Brun case, the characterization is given by a
rational language (more precisely, the set of edge labellings of the cycles in a finite
directed graph of four vertices).

We will also prove that all the Rauzy fractals considered above are connected (Theo-
rem 3.2.1). Note that there are many works devoted to decide such properties for a single
substitution σ (many algorithms exist, see for example [BR10, Chapter 5]), but that
only a few works are devoted to the study of some infinite classes. Such works include
a study of the Rauzy fractals of the class 1 7→ 1a2, 2 7→ 1b3, 3 7→ 1 parametrized by
integers a, b [LMST13], and the use of some homological methods [BŠW13], which gives
an alternative of Theorem 3.2.3 for Arnoux-Rauzy substitutions.

Combinatorial tools, dual substitutions The goal of Chapter 2 is to develop combina-
torial tools in order to prove the results stated above. We take an approach initiated
in [IO93, IO94, AI01]: every unimodular substitution σ : {1, 2, 3}? → {1, 2, 3}? can
be associated with a dual substitution E?

1(σ), which does not act on {1, 2, 3}?, but on
two-dimensional patterns consisting of a union of unit cube faces in R3. (This is illustrated
in Figure (d) page 10, and more details are given in Section 1.2.)
The main advantage of working with dual substitutions is that some of the properties

of σ we are interested in can be reformulated in terms of qualitative properties of the
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growth of the patterns E?
1(σ)n(U), obtained by iterating E?

1(σ) from a “seed” U = .
For instance, these patterns cover discs of arbitrarily large radius if and only if (Xσ, S) is
semi-conjugate to a toral translation [IR06].

Our main result is that for any sequence (σin)n∈N, the patterns E?
1(σi1) · · ·E?

1(σin)(U)
cover discs of arbitrarily large radius (Theorem 2.5.5), in the case of Arnoux-Rauzy, Brun
and Jacobi-Perron substitutions. This not only proves the desired result for arbitrary finite
products σi1 · · ·σin (by considering the periodic sequence (i1 · · · in)∞), but also opens new
grounds for the study of systems generated by arbitrary infinite products (also known
as S-adic systems, see [BST13]). We will prove similar results in Theorems 2.5.1, 2.5.2
and 2.5.4, which will be needed for the other applications in Chapter 3.

Our approach to prove the “arbitrarily large radius” property mentioned above is based
on the radically innovative work initiated by Ito and Ohtsuki in [IO94], whose strategy
is proving that more and more “thick annuli” are generated (and preserved) around U
by iterating dual substitutions (more details are given in Section 2.1). This strategy is
used in [IO94] to the study the Jacobi-Perron substitutions. However, several difficulties
(which are not considered in [IO94]) have to be dealt with for this approach to work in
practice. We address these difficulties by introducing several new combinatorial tools, as
we describe below.

• It can happen that the image of a connected pattern by a dual substitution is
disconnected, which is a problem if we want the image of an annulus to remain an
annulus. One way around this is the notion of L-covering (introduced in [IO94]),
which intuitively means that a pattern is “path connected” by paths of contiguous
connected patterns (the elements of L). We have needed to extend this notion by
considering patterns in L of more than two faces to be able to find suitable sets L
for the substitutions we study. (In particular, the set of 7 patterns given in [IO94]
for Jacobi-Perron substitutions is not sufficient.) See Section 2.2.

• Contrary as stated in [IO94], L-coverings alone are not sufficient to ensure that the
image of an annulus remains an annulus. We thus introduce a stronger condition
(strong L-coverings) under which the desired annulus property holds. Checking that
such a condition holds for our particular families of substitutions involves some
rather heavy computations, for which computer algebra is needed. See Sections 2.2
and 2.3.

• Finally, we must prove that some annuli are eventually generated around the seed
we start with. This was originally done in [IO94] by studying a large graph whose
vertices are patterns, which tracks all the possible surroundings of the seeds. The
problem with this approach is that the obtained graphs are too large and difficult to
analyse in some particular cases like the Brun substitutions. We thus introduce a
new tool, generation graphs, which yield much smaller graphs (the vertices are single
faces and not patterns), which can be constructed algorithmically, and which contain
the information that we need about the annulus generation properties around seeds.
See Section 2.4.

This strategy is powerful, as witnessed by the many applications that we will give in
Chapter 3, and by the fact that we are able to adapt it easily to another family of
substitutions to answer a question from discrete geometry in Section 3.4. This approach
is also used in [FIY13] to study the substitutions associated with another (multiplicative)
continued fraction algorithm.
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Discrete plane generation The fact that the Brun (or the Jacobi-Perron) substitutions
are associated with a continued fraction algorithm allows us to get a general strategy to
generate a discrete plane using dual substitutions, given any normal vector: it suffices to
expand the vector using the continued fraction algorithm, and to apply successively the
corresponding dual substitutions starting from U (a key property of dual substitutions is
that they generate patterns belonging to discrete planes).

In the case of the Brun or Jacobi-Perron substitutions, we will see that the seed U is not
always enough: sometimes only an infinite strict subset of the discrete plane is obtained.
However, our results (Theorem 2.5.1) imply that there exist some finite seeds starting
from which this strategy generates a full discrete plane. It is important to note that the
seeds do not depend on the choice of the initial vector, and that the existence of such
finite seeds was not guaranteed a priori.
Fernique [Fer07b] gave a strategy to generate discrete planes with a rational normal

vectors using similar tools. Our results extend his results in the case where the normal
vector is totally irrational. This result can also be interpreted as a two-dimensional
generalization of the fact that the language of Sturmian sequences (codings of discrete
lines in {1, 2}Z) is the language generated by the two substitutions 1 7→ 1, 2 7→ 21 and
1 7→ 12, 2 7→ 2. We can then claim the following:

The language of two-dimensional Sturmian sequences (codings of discrete
planes in {1, 2, 3}Z2) is the language generated by the three dual substitutions
ΣBrun

1 ,ΣBrun
2 ,ΣBrun

3 associated with the Brun algorithm (defined in Section 1.5).

Other applications In Chapter 3 we will give some other applications of the results
established in the second chapter. The first three are of number-theoretical nature.
(1) Thanks to some properties of the Jacobi-Perron algorithm, we are able to associate
Rauzy fractal dynamics with every cubic real field in Theorem 3.3.1. (2) We prove
some convergence results about some of the considered continued fraction algorithms
in Theorem 3.3.2. (3) The language-theoretical characterization of the Rauzy fractals
with zero interior point can be reinterpreted in the context of β-numeration, in terms of
finiteness properties of digital expansions in non-integer bases. We obtain in Section 3.2 a
characterization of the products of substitutions for which the “extended (F) property”
holds (which is a generalization of the classical (F) property in β-numeration). More
detailed statements of the above results and more references are given in Chapter 3.

A last application of our discrete plane generation results will be given in Theorem 3.4.8,
where we answer a question from discrete geometry, about the “thickness” used to define
a discrete approximation of a two-dimensional plane. This application is joint work with
Valérie Berthé, Damien Jamet and Xavier Provençal [BJJP13].

The results of Chapters 2 and 3 (and their applications to products of Pisot substitutions)
have been obtained in collaboration with Valérie Berthé, Jérémie Bourdon and Anne Siegel
in [BJS13, BJS12, BBJS13].

Fundamental groups of Rauzy fractals One of the many topics in Rauzy fractal topology
is the study of their fundamental group, which intuitively measures how many “holes”
a fractal has. All the currently known examples of Rauzy fractals either have a trivial
fundamental group (the fractal is simply connected), or have a non-free uncountable
fundamental group (the fractal has infinitely many holes at arbitrarily small scales). Several
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criteria to determine if a given Rauzy fractal has a trivial or uncountable fundamental
group have been given in [ST09].
The above facts suggest that there is a “dichotomy” between trivial and uncountable

fundamental groups. A Rauzy fractal with nontrivial but countable fundamental group
would correspond to Rauzy fractal with “finitely many holes”. It is then natural to ask:

What kind of groups arise as the fundamental group of a Rauzy fractal?
In particular, can such groups be nontrivial but countable?

In Chapter 4 we answer the second question above completely: we prove that every free
group of finite rank can be realized as the fundamental group of a planar Rauzy fractal
(Theorem 4.5.3). This answer is complete in the countable case because such groups are
the only ones that can appear in this case (Proposition 4.2.5). These results are obtained
by defining some symbolic operations on substitutions (symbol splittings and conjugacy
by free group automorphisms), which naturally translate into topological manipulations
of the subtiles of Rauzy fractals. This is work done in collaboration with Jun Luo and
Benoît Loridant, published in [JLL13].

Results about topological properties of Rauzy fractal are interesting in their own right,
but they also have implications in several other domains, for example in number theory
where some particular topological properties can be interpreted in terms of properties
about a number system. More details about this connection are given in Section 3.3.

Chapter 5 is devoted to some examples of Rauzy fractals with diverse properties. This
short chapter will serve as a transition from the previous chapters to the last two chapters,
in which the focus will not be directly on one-dimensional Pisot substitutions anymore.

General notions of multidimensional substitutions The idea behind the notion of L-
covering used in Chapter 2 is to express dual E?

1 substitutions using “concatenation rules”:
instead of directly computing the image of a pattern by computing the position of the
image of each face (using Definition 1.2.3), we compute the image by concatenating the
images one after the other (this procedure is described more in details in Section 6.1).

The aim of Chapter 6 is to study the more general class of combinatorial substitutions,
which are defined by specifying how patterns must be concatenated in the images. The
motivating examples are the substitutions obtained from E?

1 substitutions, as described
above. We will see that many problems arise when defining such substitutions in full
generality: we must make sure that the resulting maps are consistent, and that the
images of the cells of a pattern do not overlap. It will be proved that checking these
properties is algorithmically undecidable for two-dimensional combinatorial substitutions
(Theorems 6.3.1 and 6.3.3). We use classical tools from computability theory, by reducing
some undecidable problems about tilings to our decision problems.

On the other hand, we will prove that consistency and non-overlapping can be algorith-
mically verified in some cases (Theorems 6.4.1, 6.4.2 and 6.4.4). These decidability results
will allow us to answer some questions raised in [ABS04], asking for generic ways to prove
the consistency and non-overlapping of some combinatorial substitutions obtained from
dual substitutions, without using the tools inherent to the theory of dual substitutions.
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Decidability questions for self-affine sets When considering all the algorithmic tools
that exist for the study of Rauzy fractals [ST09], one can wonder whether the same can
be achieved for a broader class of fractals: self-affine sets.
Iterated function systems are a classical way to define fractals: for every finite family of

contracting mappings f1, . . . , fn : Rd → Rd there exists a unique compact set X ⊆ Rd such
that X =

⋃n
i=1 fi(X) [Hut81]. “Fractal sets” can be defined as the sets X thus obtained.

When all the fi are affine mappings, we say that X is a self-affine set. In particular, every
Rauzy fractal is the solution of an affine (graph-directed) iterated function system (see
Section 4.2). A large body of the literature on fractals is devoted to the study of self-affine
sets; see the references given in Section 7.1.

In Chapter 7 we will prove that some properties which are decidable for Rauzy fractals
(for example, the disjointness of the interior of their subtiles) are undecidable for self-affine
sets specified by maps with rational coefficients (Theorem 7.4.3). Other properties, such as
having nonempty interior, are also proved to be undecidable (Theorems 7.4.1 and 7.4.2).

These results are obtained by studying a particular class of self-affine sets associated with
multitape automata (defined in Section 7.2). Using standard reduction techniques from
computability theory, we first establish the undecidability of some language-theoretical
properties of such automata, which can then be translated to undecidability results about
their associated self-affine sets.

The class of fractals for which our undecidability results hold falls into the category of
“box-like” self-affine sets, which is a widely studied class of fractals. (See Section 7.1 for
more details.) This is joint work with Jarkko Kari [JK13].
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Computer experiments and computer assisted proofs
Many of the results presented in this thesis orginate from computer experiments, and
several proofs are computer assisted, in the sense that they rely on systematic enumeration
of finitely many (but many) cases using a computer. All have been performed using the
Sage mathematics software [Sag].

Computer experiments This thesis contains many examples of Rauzy fractals with
various properties, for example in Chapter 5. They have been produced using the
WordMorphism.rauzy_fractal_plot method, which has been integrated into Sage. Al-
most all of the results proved in this thesis have been intuited by performing explicit
computations, also using Sage. We have tried to provide explicit examples arising from
these experiments along the statements and proofs.

Computer assisted proofs Most of the results of Section 2.6 have been proved using
computer algebra. The E1Star class (a Sage implementation of dual substitutions) has
been used to perform exhaustive enumerations of small patterns, in order to prove some
properties of the families of substitutions under study: enumerating minimal annuli in
Section 2.6.1, proving some (strong) covering properties in Section 2.6.2 and proving the
Property A for some families of substitution in Section 2.6.3.
Another type of results for which computer algebra was used are the construction

of generation graphs, which make use of the directed graphs implementations found in
Sage (the DiGraph class). This is done in Section 2.6.5 for Brun substitutions and in
Section 2.6.6 for Jacobi-Perron substitutions. We also mention that the directed graph
used in Section 2.6.7 in the proof of Lemma 2.6.18 has not been obtained algorithmically
(it was constructed by hand), but doing so required many computations which have also
been performed using the E1Star class.
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Chapter 1

Preliminaries
We introduce the main objects studied in the first chapters, that is, Pisot substitutions and
related notions such as dual substitutions, Rauzy fractals or multidimensional continued
fraction algorithms.

Contents
1.1 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Dual substitutions and discrete planes . . . . . . . . . . . . . . 23
1.3 Rauzy fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Projection and renormalization . . . . . . . . . . . . . . . . . 26
Definition as an orbit closure . . . . . . . . . . . . . . . . . . 27
Definition as a Hausdorff limit of polygons . . . . . . . . . . 27
Properties of Rauzy fractals . . . . . . . . . . . . . . . . . . . 28

1.4 Dynamics of substitutions . . . . . . . . . . . . . . . . . . . . . 30
Subshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Substitutive dynamical systems . . . . . . . . . . . . . . . . . 30
Substitutions, subshifts of finite type and Markov partitions 31

1.5 Substitutions and continued fraction algorithms . . . . . . . . . 33
Arnoux-Rauzy substitutions . . . . . . . . . . . . . . . . . . 33
Brun substitutions . . . . . . . . . . . . . . . . . . . . . . . . 34
Jacobi-Perron substitutions . . . . . . . . . . . . . . . . . . . 35
Additive version of Jacobi-Perron substitutions . . . . . . . . 36

1.1 Substitutions
Let A be a finite alphabet and A? be the set of finite words over A. Elements of A will
be referred to as letters or symbols. The ith letter of a word w ∈ A? is denoted by wi.

Definition 1.1.1. Let A = {1, . . . , n} be a finite alphabet. A substitution is a function
σ : A? → A? such that σ(uv) = σ(u)σ(v) for all words u, v ∈ A?, and such that σ(a) is
nonempty for every a ∈ A. Equivalently, σ is a non-erasing morphism of the free monoid
generated by A.

The domain of definition of a substitution can naturally be extended to infinite sequences.
If x ∈ AN then σ(x) is defined as the infinite word σ(x1)σ(x2) . . . obtained by concatenation,
and if x ∈ AZ then σ(x) is defined as the infinite word σ(x−2)σ(x−1) . σ(x0)σ(x1) . . . where
the dot stands for the position between indices −1 and 0.
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Let P : A? → Zn be the Abelianization map defined by P(w) = (|w|1, . . . , |w|n),
where |w|i denotes the number of occurrences of i in w. The incidence matrix Mσ of σ
is the matrix of size n× n whose ith column is equal to P(σ(i)) for every i ∈ A. It can be
verified that the relation MσMτ = Mστ holds for every substitutions σ, τ .

All the substitutions that we will encounter will be assumed to be primitive: there
exists k such that the entries of Mk

σ are all positive. The classical Perron-Frobenius
theory [Per07, Fro12, Wik] then guarantees the existence of a unique largest eigenvalue
of Mσ and a corresponding eigenvector with strictly positive entries.

Algebraic assumptions A primitive substitution σ is:

• unimodular if det Mσ = ±1;
• irreducible if the algebraic degree of the dominant eigenvalue of σ is equal to the
size of the alphabet of σ;

• Pisot if the dominant eigenvalue of σ is a Pisot number, that is, an algebraic integer
larger than 1 whose other conjugates are smaller than 1 in modulus.

Note that every Pisot irreducible substitution is primitive. This can be proved using
classical positive matrix theory [CS01b].
Most of the Pisot substitutions we will consider in this thesis will be unimodular

and irreducible, for example in Chapters 2 and 3. Some reducible substitutions will
be encountered in Chapters 4 and 5. These algebraic assumptions will be exploited in
Section 1.3 in order to define Rauzy fractals.

Example 1.1.2. A famous example is the Tribonacci substitution σ : 1 7→ 12, 2 7→ 13,
3 7→ 1. Its incidence matrix

Mσ =

1 1 1
1 0 0
0 1 0


is unimodular and admits a dominant cubic eigenvalue β ≈ 1.839 which is a Pisot
number (with its two conjugates β′, β′′ ≈ −0.42i± 0.61i), so σ is a unimodular irreducible
substitution. Another example the substitution 1 7→ 12, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 1, whose
incidence matrix has a dominant cubic Pisot eigenvalue β ≈ 1.325. This substitution is
unimodular and Pisot but it is not irreducible.

Remark 1.1.3. The Pisot property does not behave well under products of substitutions.
For example, let σ : 1 7→ 12, 2 7→ 13, 3 7→ 1 and τ : 1 7→ 2, 2 7→ 3, 3 7→ 13. These two
substitutions are both irreducible and Pisot (with cubic dominant eigenvalues), and the
product τσ is irreducible Pisot as well. However the product τ2σ : 1 7→ 313, 2 7→ 3213, 3 7→
3 is not Pisot because the characteristic polynomial of Mτ2σ is (x− 1)3.

Fixed points of substitutions A fixed point of σ is an infinite word x ∈ AN such that
σ(x) = x. A periodic point of σ is an infinite word x ∈ AN such that σk(x) = x for some
k > 0. It can be proved that every substitution admits a periodic point [Que10].
For example, the substitution σ : 1 7→ 12, 2 7→ 1 admits the infinite fixed point

1211212112112 . . . obtained by iterating σ on 1. The substitution σ : 1 7→ 212, 2 7→ 11
does not admit any fixed point, but admits the infinite periodic point 11212111121211 . . .
of period 2.
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Remark 1.1.4 (Periodicity of substitutive fixed points). One can wonder whether an
infinite fixed point u of a given substitution is (ultimately) shift-periodic, that is, if
there exist k > 1 and m > 0 such that un = un+k for all n > m. This is an important
question because substitutive fixed points are used to define symbolic dynamical systems
(see Section 1.4). This problem has been proved to be decidable ([HL86, Pan86], see
also [Hon08]), and more general versions have also been proved to be decidable [Dur12,
Dur13, Mit11]. Such problems are also known as D0L or HD0L periodicity problem.
Note that a result by Holton and Zamboni [HZ98] states that if σ is a primitive

substitution such that Mσ has a nonzero eigenvalue of modulus less than one, then σ does
not admit any shift-periodic fixed point. This result has been improved by Adamczewski
in [Ada03].

1.2 Dual substitutions and discrete planes
We now define dual substitutions, which will be our main tool for Chapters 2 and 3. We
must first define the objects on which dual substitutions act: faces and discrete planes.
The definitions in this section can be given in arbitrary dimension, but we restrict to the
case of 3-letter substitutions, since the below tools will be only applied to study 3-letter
substitutions.
We denote by e1, e2, e3 the canonical basis of R3. A face [x, i]? is defined by

[x, 1]? = {x + λe2 + µe3 : λ, µ ∈ [0, 1]} =
[x, 2]? = {x + λe1 + µe3 : λ, µ ∈ [0, 1]} =
[x, 3]? = {x + λe1 + µe2 : λ, µ ∈ [0, 1]} =

where i ∈ {1, 2, 3} is the type of [x, i]?, and x ∈ Z3 is the vector of [x, i]?. Two examples
of faces are plotted below.

e1 e2

e3

[(−1, 1, 0), 1]? [(−3, 0,−1), 3]?

The translation of a face by a vector will be denoted by x + [y, i]? = [x + y, i]?. We will
refer to collections of faces as unions of faces. By abuse of language we will say that a
face f belongs to a union of faces even if f is in fact included in it. We now define discrete
planes, introduced in [Rev91]. Denote by 〈·, ·〉 the usual scalar product.

Definition 1.2.1. Let v ∈ R3
>0. The discrete plane of normal vector v is defined by

Γv = {[x, i]? : i ∈ {1, 2, 3},x ∈ Z3 such that 0 6 〈x,v〉 < 〈ei,v〉}.

More intuitively, Γv can be seen as the boundary of the union of the unit cubes with
integer coordinates that intersect the lower half-space {x ∈ R3 : 〈x,v〉 < 0}. The set of
the vertices of Γv in Z3 corresponds to the classical notion of standard arithmetic discrete
plane in discrete geometry. See Section 3.4, where some other definitions of discrete planes
are introduced. An illustration is given in Figure 1.1.
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Figure 1.1: A portion of the discrete plane Γ(1,
√

2,
√

17).

Remark 1.2.2. The pattern U = [0, 1]? ∪ [0, 2]? ∪ [0, 3]? = is included in every discrete
plane, because the coordinates of the normal vector v of a discrete plane Γv are always
assumed to be positive in Definition 1.2.1.

Definition 1.2.3 ([AI01]). Let σ be a unimodular substitution. The dual substitution
E?

1(σ) is defined for any face [x, i]? as

E?
1(σ)([x, i]?) =

⋃
(p,j,s)∈A?×A×A? : σ(j)=pis

[M−1
σ (x + P(s)), j]?.

We extend this definition to unions of faces: E?
1(σ)(P ∪ Q) = E?

1(σ)(P ) ∪ E?
1(σ)(Q).

Basic properties of dual substitutions are summarized in the proposition below. The
first statement ensures that composition behaves well under products (note that the
product is reversed). The second statement can be interpreted as a form of “linearity”
of E?

1, and allows us to specify a mapping E?
1 simply by giving Mσ and the images of

[0, 1]?, [0, 2]?, [3, 1]?. The last two statements establish fundamental links between discrete
planes and dual substitutions. The proof of this proposition relies on scalar product
inequalities using the definition of discrete planes and dual substitutions.

Proposition 1.2.4 ([AI01, Fer06]). Let σ be a unimodular substitution. We have:

(1) E?
1(σ ◦ σ′) = E?

1(σ′) ◦E?
1(σ) for every unimodular substitution σ′.

(2) E?
1(σ)([x, i]?) = M−1

σ x + E?
1([0, i]?) for every face [x, i]?.

(3) E?
1(σ)(Γv) = ΓtMσv for every discrete plane Γv.

(4) If f and g are distinct faces in a common discrete plane Γv, then E?
1(σ)(f)∩E?

1(σ)(g)
does not contain any face.

Example 1.2.5. Let σ : 1 7→ 12, 2 7→ 13, 3 7→ 1 be the Tribonacci substitution of
Example 1.1.2. The action of E?

1(σ) on unit faces is given by

E?
1(σ)([x, 1]?) = M−1

σ x + [(1, 0,−1), 1]? ∪ [(0, 1,−1), 2]? ∪ [0, 3]?
E?

1(σ)([x, 2]?) = M−1
σ x + [0, 1]?

E?
1(σ)([x, 3]?) = M−1

σ x + [0, 2]?,

which can also be represented as follows, where each black dot in the preimage stands for
x and each black dot in the image stands for M−1

σ x.

7−→ 7−→ 7−→
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Example 1.2.6. Let σ : 1 7→ 12, 2 7→ 13, 3 7→ 1 be the substitution defined in the previous
example and let σ : 1 7→ 12, 2 7→ 31, 3 7→ 1. Iterating E?

1(σ) and E?
1(τ) on the pattern U

yields unions of faces of increasing size, which are shown in Figure 1.2. The fact that these
patterns seem to be contained in discrete planes is confirmed by Proposition 1.2.4, (3)
because the pattern U is contained in a discrete plane (see Remark 1.2.2), so all its forward
images must also be.

Figure 1.2: The patterns E?
1(σ)10(U) and E?

1(τ)10(U), where σ and τ are the two substi-
tutions defined in Example 1.2.6. These two patterns contains 1201 faces. (They have the
same number of faces because the incidence matrices of σ and τ are equal.)

About the E?
k terminology The term “dual” comes from the fact that E?

1(σ) was
originally introduced in [AI01] as the dual of a geometric realization of σ as a linear map
in an n-dimensional vector space (where n is the size of the alphabet of σ). This is where
the formula given in Definition 1.2.3 comes from. Stating and proving this rigorously can
be done, but we will not do it here because using Definition 1.2.3 directly will be sufficient
for our needs in Chapter 2.

An even more general setting is introduced in [SAI01], where the linear maps Ek and E?
k

are introduced for every k ∈ {0, . . . , n}. Intuitively, Ek(σ) acts on k-dimensional objects,
and E?

k(σ), which is the dual of Ek(σ), acts on (n− k)-dimensional objects. For instance
E0(σ) corresponds to the action of Mσ on Z (0-dimensional points), and E1(σ) acts on
unions on the 1-dimensional analogues of faces defined above. This is also consistent with
our E?

1(σ) maps acting on faces of dimension 2 = 3− 1 for 3-letter substitutions.
Remark 1.2.7. We can observe that Definition 1.2.3 gives “suffix” version of dual sub-
stitutions, because P(s) is used to compute the position of the images, and the words s
are the suffixes of the σ(j). Several variants of this definition are found in the literature
(sometimes a “prefix” version is used), but all of them are equivalent in the sense that
using another variant essentially affects the resulting patterns up to an isometry only.
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1.3 Rauzy fractals
Rauzy fractals were first introduced by Rauzy in [Rau82] to study a domain exchange
map associated with the Tribonacci substitution. Similar objects were also considered
in [BT87, Thu89] and a general definition for Pisot substitutions was given in [AI01]
and [CS01b]. We will give two different definitions of Rauzy fractals:

• Definition 1.3.2, introduced in [CS01b], where the existence of the fractal follows
from the fact that a well chosen projection of an infinite broken line stays within a
bounded set, where the broken line is a geometrical version of a fixed point of the
substitution. This can also be viewed as a “definition as an orbit closure”: iterating
σ to produce an infinite broken line can be viewed as iterating the dynamics of σ
introduced in Section 1.4 (hence producing an infinite orbit).

• Definition 1.3.5, introduced in [AI01], where the existence of the fractal follows by
Hausdorff convergence of a renormalized sequence of “polygonal approximations” of
the fractal, which are obtained by iterating dual substitutions on a pattern.

The first definition will be mostly used in Chapter 4, where some Rauzy fractals of some
reducible substitutions will be used. The second will be mostly used in Chapter 2, where
we use we use combinatorial tools and dual substitutions to prove some properties of
Rauzy fractals in Chapter 3.

Projection and renormalization
Before defining Rauzy fractals we must set up some notation for the various algebraic
objects that will be used.

Projection Let σ be a primitive unimodular Pisot substitution on alphabet A =
{1, . . . , n}, such that the dominant eigenvalue β of Mσ is a real Pisot number of algebraic
degree d. Denote by β1, . . . , βr the r real conjugates of β, and βr+1, βr+1, . . . , βr+s, βr+s
the 2s complex conjugates of β (we have r+ 2s = d− 1). Let vβ be a left β-eigenvector of
Mσ. The projection map we will use is given by

πσ : Rn → Rr × Cs ∼= Rd−1

ei 7→ (〈vβ1 , ei〉, . . . , 〈vβr+s , ei〉)

where each eigenvector vβj is obtained by replacing β by βj in the coordinates of vβ . Note
that the conjugates βr+1, . . . , βr+s are not taken into account in the definition of πσ. The
projection πσ will be used in Definitions 1.3.2 and 1.3.5 to define Rauzy fractals as the
projections of some discrete objects in Rn.

Renormalization The renormalization map hσ : Rr × Cs → Rr × Cs is defined by
hσ(x) = Mx, where M is the diagonal matrix whose diagonal entries are β1, . . . , βr+s. The
mapping hσ is contracting on Rr × Cs because |βi| < 1 for 1 6 i 6 r + s. It corresponds
to the action of Mσ before projecting by πσ, i.e., πσMσ = hσπσ.

This map will be in Definition 1.3.5 where Rauzy fractals will be defined as the Hausdorff
limit of an infinite sequence of renormalized projections of polygonal sets. We will also use
in Chapter 4 when dealing with the iterated function systems related with Rauzy fractals.
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Remark 1.3.1. The definitions of Rauzy fractals we are going to give will use the projection
πσ : Rn → Rr × Cs, so our Rauzy fractals will be subsets of Rr × Cs. Many authors
choose to define Rauzy fractals as a subset of the contracting plane of the matrix Mσ,
but this is equivalent to our definition because the action of Mσ on the contracting plane
is equivalent to the action of hβ on Rr × Cs (see [Sie00] for more details). In particular,
Rr × Cs and the contracting plane have the same dimension.

We have chosen the representation in Rr ×Cs because it will be more convenient to use
in the proofs of Chapter 4.

Definition as an orbit closure
Definition 1.3.2. Let σ be a primitive unimodular Pisot substitution on alphabet A and
let u be a periodic point of σ. The Rauzy fractal of σ (with respect to vβ) is the set
Tσ =

⋃
i∈A Tσ(i), where for each i ∈ {1, . . . , n}, Tσ(i) is the subtile of type i given by

Tσ(i) = {πσP(u1 . . . un) : n > 1 and un+1 = i}.

Remark 1.3.3. The sets Tσ and Tσ(i) do depend on the choice of vβ : the norm of vβ
affects πσ, so it affects the tiles up to an inflation factor. We insist on this point because
specific choices of eigenvectors vβ will allow us to relate different Rauzy fractals in
Propositions 4.3.2 and 4.4.1, without having to bother about which representation space
is used. Also note that the choice of the periodic point u of σ does not affect the Rauzy
fractal because σ is assumed to be primitive.

Example 1.3.4. Below are plotted the Rauzy fractals of σ : 1 7→ 12, 2 7→ 13, 3 7→ 1 (left)
and τ : 1 7→ 2, 2 7→ 3, 3 7→ 12 (right).

These fractals look strikingly different, but both have nonempty-interior, both are con-
nected, and both admit tilings of the plane. Such properties are reviewed later in this
section.

Definition as a Hausdorff limit of polygons
We now give another definitions of Rauzy fractals, using dual substitutions. We will
assume that the substitutions are irreducible, because it is not known how to give such a
definition of Rauzy fractals in the general reducible case. Moreover, we will restrict to
the 3-letter case because the below definitions will be only used for 3-letter substitutions.
Note however that it is possible to define Rauzy fractals of irreducible Pisot substitutions
in any dimension [AI01].
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Let U = [0, 1]? ∪ [0, 2]? ∪ [0, 3]? be the “seed” from which we will start iterating E?
1(σ).

Thanks to Proposition 1.2.4, the patterns we obtain are increasing patterns that are
included in a discrete plane. We can then project and renormalize this sequence to get an
infinite sequence of planar sets P1, P2, . . . defined by

Pn = hnσπσ(E?
1(σ)n(U))

for n > 0, where hσ and πσ are the renormalization and projection maps previously
defined. It can be proved that P0, P1, . . . is a Hausdorff-convergent sequence in the metric
space of compact subsets of the plane. See [AI01] for more details. This allows us to state
the following definition.

Definition 1.3.5. Let σ be a unimodular Pisot irreducible substitution on alphabet {1, 2, 3}.
The Rauzy fractal of σ is the Hausdorff limit of the sequence (Pn)n>0. The subtiles of
Tσ can be defined in a similar way: the subtile Tσ(i) is the Hausdorff limit of the sequence
of the sets hnσπσ(E?

1(σ)n([0, i]?)) as n→∞.

The convergence of P0, P1, . . . is illustrated below in the case of the Tribonacci substitu-
tion σ : 1 7→ 12, 2 7→ 13, 3 7→ 1.

· · ·

Properties of Rauzy fractals
Topological properties Rauzy fractals and their subtiles are always compact, locally
connected and they are the closure of its interior. This was proved in the irreducible case
in [SW02] and generalized to the reducible case in [BBK06, EIR06].

The tiles of a Rauzy fractals are also known to be the solution of graph-directed iterated
function systems [SW02, BS05], which are classical objects used to represent fractal sets.
More details are given in Section 4.2 for Rauzy fractals, and a general definition is given
in Section 7.1, where we consider iterated functions in a more general context.

The box-counting and the Hausdorff dimension of the boundary of a Rauzy fractal always
lie in the interval ]d− 1, d[, where d is the degree of the associated Pisot eigenvalue. An
explicit formula for the box-counting dimension (in terms of spectral radii and eigenvalues)
is given in [Thu06] in the case of irreducible substitutions. If, furthermore, all the
eigenvalues of β have the same modulus, then the box-counting dimension and the
Hausdorff dimension coincide. This latter assumption is an important one, which reflects
the contrast between self-similar and self-affine fractals (which are notoriously more difficult
to handle): if the eigenvalues have non-equal moduli, then the contraction factors are not
uniform so the corresponding fractal is not self-similar (but self-affine). See Section 7.1
for more details about self-similar and self-affine fractals. The dimension formulas above
have been generalized to the reducible case in [ST09]. See [Fal03] for some background
on fractal dimensions.

Topological properties which are not always satisfied The zoology of Rauzy fractals
is very rich from a topological point of view. Not all fractals are connected, some are
homeomorphic to a disc, and some have nontrivial fundamental group (countable or not).



1.3 Rauzy fractals 29

Also, the origin is not always an interior point of the fractal. These properties are
extensively reviewed in [ST09], where many (semi-)algorithms are given. They are based
on graph-theoretical constructions detecting boundary intersections, and tools from plane
topology. See [Hat02] for background about the associated notions from algebraic topology
such as the fundamental group.
The topological variety of Rauzy fractals is illustrated by the following three pictures,

representing the respective Rauzy fractals of σ1 : 1 7→ 2132, 2 7→ 1, 3 7→ 2, σ2 : 1 7→ 12233,
2 7→ 123, 3 7→ 223 and σ3 : 1 7→ 34, 2 7→ 543, 3 7→ 53, 4 7→ 64, 5 7→ 1, 6 7→ 2.

Tiling properties Rauzy fractals associated with a Pisot eigenvalue of degree d admit
self-affine aperiodic tilings of the (d− 1)-dimensional hyperplane, as stated in the next
proposition, whose proof can be found in [ST09] or [BR10].
Proposition 1.3.6. Let σ be a primitive unimodular Pisot substitution on alphabet A (of
size n), whose dominant eigenvalue has degree d. There exists a positive integer p such
that the family

{Tσ(i) + πσ(x) : x ∈ Zn, 0 6 〈x,vβ〉 < 〈ei,vβ〉}
is a p-multiple tiling of a (d − 1)-dimensional hyperplane, that is, almost every point
belongs to exactly p subtiles in the tiling. If, moreover, σ satisfies a condition called the
super coincidence condition (defined in Section 1.4), then the multiple tiling is a tiling.

The self-affine aperiodic tiling is illustrated below left. When σ is irreducible, it is also
possible to define a periodic tiling (as well as many other tilings), which is shown below
right. Periodic tilings can also associated with some reducible substitutions in some case.
See [ST09] for more details.

The tiling properties stated above have important consequences in dynamics, as will be
stated in Section 1.4. Also, these properties are algorithmically decidable; see [ST09]
and [BR10]. In Section 5.6 we give an explicit example of a reducible substitution where
the tiles do overlap, and for which the multiple tiling of Proposition 1.3.6 is not a tiling.
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Equivalence of the two definitions The two definitions of Rauzy fractals we have given
(Definitions 1.3.2 and 1.3.5) are equivalent. This can be proved by showing that two fractals
verify the same GIFS equation, which implies that they are equal because every GIFS has
a unique solution. This uniqueness result is classical in fractal geometry; see [Fal03, Fal97]
for a proof. GIFS will be discussed more in details in Sections 4.2 and 7.1.

1.4 Dynamics of substitutions
In this section we define the symbolic dynamical system (Xσ, S) of a substitution σ and
we state the classical results about the various geometrical interpretations of (Xσ, S).

Subshifts
Let A be a finite alphabet. We endow the space AZ with the topology induced from
the distance function d(x, y) = 2−min{|n|:xn 6=yn}. Two configurations are close if they
agree on a large neighborhood of the origin. The shift map S : AZ → AZ is defined by
S(x) = (xi+1)i∈Z for any x = (xi)i∈Z ∈ AZ.

A subshift is the symbolic dynamical system given by (X,S), where S is the shift map
and X ⊆ AZ is topologically closed and invariant by S. Equivalently, we can require that
there exists a set of words F ⊆ A? such that X is equal to the set of sequences in which
no word of F appears. Background notions on symbolic dynamics can be found in [LM95]
or [Kit98]. In this section we will only deal with two-sided subshifts (sequences indexed
by Z) and not one-sided subshifts (indexed by N). This removes the difficulty of having to
deal with the fact that the shift map is not bijective in the one-sided case (where shifting
a sequence deletes its first symbol).
Two dynamical systems (X,S) and (Y, T ) are topologically conjugate if there exist

a bijective continuous map ϕ : X → Y such that ϕ ◦ S = T ◦ ϕ. We say that (X,S)
and (Y, T ) are semi-conjugate if there exist two countable sets X0 ⊆ X and Y0 ⊆ Y
and a continuous map ϕ : X → Y such that ϕ ◦ S = T ◦ ϕ, and the induced map
ϕ : X \X0 → Y \ Y0 is bijective. If ϕ is only surjective, then (Y, T ) is a factor of (X,S).

Substitutive dynamical systems
Let σ be a primitive substitution on alphabet A, and let x ∈ AZ be a periodic point
of σ (there exists k > 0 such that σk(x) = x). The substitutive subshift associated
with σ is the subshift (Xσ, S) where Xσ is the topological closure in AZ of the orbit set
{Sk(x) : k ∈ Z}. Since σ is primitive, the definition of Xσ does not depend on the choice
of x. Many facts about substitutive dynamical systems can be found in [Que10] or [PF02].

The Pisot case, coincidences conditions The case of Pisot substitutions has gained a
lot of attention since the pioneering work of Rauzy [Rau82], who proved that (Xσ, S) is
semi-conjugate to a toral translation in the case of the Tribonacci substitution. This has
been generalized by [AI01, CS01b] to all Pisot substitutions, under the assumption of
some combinatorial conditions known as coincidence conditions.

Such combinatorial conditions were first introduced by Dekking [Dek78], for the study
of constant length substitutions. Later, a variant was introduced by Arnoux and Ito [AI01]:
a substitution σ on alphabet A satisfies the strong coincidence condition if for every
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(j1, j2) ∈ A2, there exists k ∈ N and i ∈ A such that σk(j1) = p1is1 and σk(j2) = p2is2
with P(p1) = P(p2) or P(s1) = P(s2). This condition ensures that (Xσ, S) is semi-
conjugate to the dynamics induced by the domain exchange in the Rauzy fractal of σ
(see [AI01] for more details).

A stronger condition, the super coincidence condition was then introduced inde-
pendently in [IR06] and [BK06]. It ensures that (Xσ, S) is semi-conjugate to a toral
translation. We do not define this condition in detail here. See [BR10, Chapter 5] for a
survey about the various notions of coincidences. Note that super coincidence also implies
that the (Xσ, S) has pure discrete spectrum, which is a spectral reformulation of the
fact that (Xσ, S) is semi-conjugate to a toral translation [Wal82, Que10].

The notion of coincidences that we will use for the dynamical applications in Chapter 3
is stated in the following proposition. It is expressed in terms of dual substitutions and
was established in [IR06]; see also [BR10, Theorem 5.4.14].

Proposition 1.4.1 ([IR06]). Let σ be a unimodular Pisot irreducible substitution. The
system (Xσ, S) is semi-conjugate to a toral translation if and only if the patterns E?

1(σ)n(U)
cover balls of arbitrarily large radius when n→∞.

The Pisot conjecture states that the above properties are always true, provided σ is
unimodular, Pisot and irreducible. Counterexamples exist if the irreducibility assumption
is dropped (see for example Section 5.6). The Pisot conjecture has been proved in the
2-letter case, by the combination of two results: (1) the strong coincidence condition
alone is sufficient to ensure pure discrete spectrum in the two-letter case [HS03], (2) the
strong coincidence condition holds in the two-letter case [BD02]. The conjecture is still
open in the case of three letters or more. Also note that some similar conjectures have
been formulated in the context of more geometrical substitution tiling spaces; see for
example [AL11, BG13].

Substitutions, subshifts of finite type and Markov partitions
A nonempty subshift (X,S) is a subshift of finite type (SFT) if there exists a finite
set of words F ⊆ A? such that X is equal to the set of sequences in which no word of F
appears. Equivalently, we can require that X is the set of bi-infinite paths of edges in a
finite graph (without labellings). SFTs are among the most studied symbolic dynamical
systems (see for example [LM95]) and their first use in dynamics dates back at least to
1898 in the works of Hadamard on geodesics of surfaces with negative curvature [Had98].
SFTs have positive entropy and they always contain periodic points.
So far, we have seen that the dynamics of a Pisot substitution σ can be interpreted in

three different ways: a symbolic shift (Xσ, S), a toral translation or a domain exchange
on the Rauzy fractal Tσ. A fourth equivalent interpretation can be given in terms of
the action of an “adic transformation” on the infinite paths in a finite graph (called the
prefix-suffix automaton of σ, see [CS01a]), or equivalently as an adic transformation on
the infinite paths of a Bratteli diagram [DHS99] (the prefix-suffix automaton can be seen
as a “folded up” Bratteli diagram in this case). Also, these four dynamics are very far
from being SFTs: they are minimal and have entropy zero.
However, for each of the four dynamics above, there exists another corresponding

dynamics on the same base set which is semi-conjugate to an SFT. In each of the four
cases, this fundamentally different dynamics can be seen as another interpretation of
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the base set in question. For example, in the case of Xσ, the zero entropy dynamics
corresponds to the action of the symbolic shift and the SFT dynamics corresponds to the
action of σ itself on Xσ (more precisely, the action of “σ-desubstitution” on Xσ). This is
summarized in the table below; more details can be found in [Sie00, CS01a].

Base set Zero entropy dynamics Positive entropy dynamics
Substitutive sequences Xσ Shift σ-desubstitution
Prefix-suffix sequences Σ Adic transformation Shift (SFT)
Rauzy fractal Tσ Domain exchange Zoom in GIFS
Geometrical torus Translation on Td−1 Automorphism Mσ of Td

Markov partitions for toral automorphisms A classical result in symbolic dynamics
is the existence of Markov partitions for automorphisms of the torus (the action of
x 7→Mx of a d× d matrix M on the d-dimensional torus Td), when M is hyperbolic (no
eigenvalues lie on the unit circle) [Bow08]. (See [LM95, Section 6.5] for a definition of
Markov partitions.) In the case of 2× 2 matrices, the Markov partitions can be explicitly
constructed [AW70, Adl98], and the partition can be chosen to be very nice: two rectangles
are enough. In dimension d > 3, we know that Markov partitions exist, but no general
construction similar to the 2× 2 has been given. A result of Bowen [Bow78] states that
such partitions must have fractal boundary if d > 3, which reduces the hopes of finding
nice explicit Markov partitions.
In the particular case where the hyperbolic matrix is the incidence matrix of a Pisot

substitution, Rauzy fractals provide a way to construct explicit Markov partitions of the
automorphism induced by Mσ. Indeed, if such a Markov partition exists, then it induces
a periodic tiling of the space. Intersecting the contracting space of the matrix with this
tiling induces a self-similar tiling of the contracting plane. A first approach is then to try
to construct a domain of the contracting space which is self-similar with respect to the
action of Mσ, and this is precisely what is achieved when good tiling properties of Rauzy
fractals hold. Such an approach was initiated in [IO93, KV98, Pra99] and was proved to
be successful in the Pisot case [IR06, Sie00], provided that the associated Rauzy fractal
satisfies good tiling properties. An example is shown in Figure 1.3.

Figure 1.3: A fundamental domain (left), which admits a periodic tiling of the space
(right). The corresponding partition of T3 by the three parts of the fundamental domain
is a Markov partition for the toral automorphism (T3,Mσ), where Mσ is the incidence
matrix associated with the Tribonacci substitution 1 7→ 12, 2 7→ 13, 3 7→ 1.
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1.5 Substitutions and continued fraction algorithms
We now define the families of substitutions that will be studied in the next chapters. These
families are naturally associated with the multidimensional continued fraction algorithms
of the same name. We will give some specific properties of these algorithms for the Brun
and Jacobi-Perron substitutions, which will be needed in Section 2.4.
Note that a fourth family of substitutions is considered in Section 3.4, which are

associated with the so-called fully subtractive algorithm. We do not define it here because
it will be only used as a tool in the concerned section. Links between the Arnoux-Rauzy
substitutions and the fully subtractive algorithm, as well as some convergence results, are
given in Section 3.3.

Arnoux-Rauzy substitutions
Arnoux-Rauzy sequences have been introduced in [AR91] in order to generalize the
properties of Sturmian sequences to systems over a 3-letter alphabet. They are defined as
the infinite sequences generated by iteration of the substitutions σAR

1 , σAR
2 , σAR

3 defined
below, where each σAR

i occurs infinitely often in the iteration. These sequences have
minimal factor complexity 2n + 1, providing an analogue of the fact that Sturmian
sequences have minimal complexity n+ 1 on 2-letter alphabets.
It was conjectured that Arnoux-Rauzy sequences correspond to natural codings of

translations on the two-dimensional torus (as in the Sturmian case with rotations on the
circle), but this conjecture has been disproved in [CFZ00]: counterexamples arise if the
distribution of the σAR

i is too “unbalanced”. More properties of Arnoux-Rauzy sequences
can be found in [BFZ05, CC06, CFM08, BCS13].

The Arnoux-Rauzy substitutions can be naturally associated with a continued fraction
algorithm. However, we will not need any specific properties of this continued fraction
algorithm for the results of Chapters 2 and 3, because everything will be proved in a
combinatorial way directly from the definition of σAR

1 , σAR
2 and σAR

3 . Note, however, that
the continued fraction algorithm associated with Arnoux-Rauzy substitutions has been
proved convergent [Sch00, AD13], and that our results will allow us to deduce another
proof of convergence in Section 3.3.
Let σAR

1 , σAR
2 , σAR

3 be the Arnoux-Rauzy substitutions defined by

σAR
1 :


1 7→ 1
2 7→ 21
3 7→ 31

σAR
2 :


1 7→ 12
2 7→ 2
3 7→ 32

σAR
3 :


1 7→ 13
2 7→ 23
3 7→ 3

and denote their associated dual substitutions by ΣAR
i = E?

1(σAR
i ). These dual substitutions

will be exploited in Chapter 2 (where we also describe them in more details). The following
property ensures that admissible finite products of Arnoux-Rauzy substitutions are Pisot.

Proposition 1.5.1 ([AI01]). Let σ be a product of σAR
1 , σAR

2 and σAR
3 in which each

substitution appears at least once. Then, σ is a Pisot irreducible substitution.

We will restrict to the study of infinite sequences (σAR
in

)n∈N in which each σAR
i occurs

infinitely often. Such sequences will be called Arnoux-Rauzy admissible sequences.
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Brun substitutions
Let v ∈ R3

>0 such that 0 6 v1 6 v2 6 v3. The Brun algorithm [Bru58] is one of
the possible natural generalizations of Euclid’s algorithm: subtract the second largest
component of v to the largest and reorder the result:

v 7→


(v1, v2, v3 − v2) if v1 6 v2 6 v3 − v2

(v1, v3 − v2, v2) if v1 6 v3 − v2 < v2

(v3 − v2, v1, v2) if v3 − v2 < v1 6 v2.

Iterating this map starting from v(0) = v yields an infinite sequence of vectors v(1),v(2), . . .
and the algorithm can be rewritten in matrix form: v(n) = M−1

in
v(n−1), where

M−1
1 =

1 0 0
0 1 0
0 −1 1

 M−1
2 =

1 0 0
0 −1 1
0 1 0

 M−1
3 =

0 −1 1
1 0 0
0 1 0

 .

The Brun expansion of a vector v ∈ R3
>0 is the infinite sequence i1, i2, . . . obtained

above. In this document, the overscript notation v(n) will be only used to denote sequences
of vectors produced by a continued fraction algorithm.

Example 1.5.2.

• If v = (1, 2, 5) then (in) = 12132111 . . . is an eventually constant sequence containing
infinitely many 1’s but finitely many 2’s and 3’s.

• If v = (1, 2,
√

5) then (in) = 313 1112 1112 . . . is an eventually periodic sequence
containing infinitely many 1’s and 2’s but finitely many 3’s.

• If v = (1, 2, e) then (in) = 313212221112 . . . is an aperiodic sequence containing
infinitely many 1’s and 2’s but finitely many 3’s.

• If v = (1, β, β2) then (in) = 1131 132 132 . . . is an eventually periodic sequence
containing infinitely many 1’s, 2’s and 3’s, where β ≈ 3.21 is the dominant Pisot
cubic root of x3 − 3x2 − x+ 1.

• If v = (1, e, π) then (in) = 31232331211113 . . . contains infinitely many 1’s, 2’s and
3’s (provided e and π are linearly independent).

As suggested by Example 1.5.2, the Brun algorithm is able to “detect” totally irrational
vectors by producing an expansion with infinitely many 3’s. Moreover, it can be proved
that the algorithm is convergent, i.e., that such an expansion determines a unique vector.

Proposition 1.5.3 ([Bru58]). The Brun expansion of v ∈ R3
>0 contains infinitely many

3’s if and only if v is totally irrational. Moreover, the Brun algorithm is convergent: for
every such expansion (in)n∈N, there is a unique vector v whose expansion is (in)n∈N.

We now define the Brun substitutions by

σBrun
1 :


1 7→ 1
2 7→ 2
3 7→ 32

σBrun
2 :


1 7→ 1
2 7→ 3
3 7→ 23

σBrun
3 :


1 7→ 2
2 7→ 3
3 7→ 13

and we denote their associated dual substitutions by ΣBrun
i = E?

1(σBrun
i ) for i ∈ {1, 2, 3}.
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These substitutions are chosen in such a way that Mi = tMσBrun
i

for i ∈ {1, 2, 3}, where
the Mi are the matrices associated with the Brun algorithm above. Hence, thanks to
Proposition 1.2.4, we have ΣBrun

i (Γv) = ΓMiv, so if (in)n>1 is the Brun-expansion of v, we
have

ΣBrun
in (Γv(n)) = ΓMinv(n) = Γv(n−1) ,

for all n > 1 and in particular ΣBrun
i1
· · ·ΣBrun

in
(Γv(n)) = Γv. This fact, together with the

convergence of the algorithm, will be used in Section 2.4. The following proposition
guarantees that products of Brun substitutions enjoy nice algebraic properties.
Proposition 1.5.4 ([AD13]). For every (i1, . . . , in) ∈ {1, 2, 3}n, the product σBrun

i1
· · ·σBrun

in
is irreducible Pisot if and only if ik = 3 at least once.

Since we are interested in the Pisot case only (for example to be able to define Rauzy
fractals), we will restrict to the sequences characterized by Proposition 1.5.4: a sequence
(in)n ∈ {1, 2, 3}N is Brun-admissible if it contains infinitely many 3’s.

Jacobi-Perron substitutions
Let v ∈ R3

>0 be such that v1 6 v3 and v2 6 v3. The Jacobi-Perron algorithm [Jac68,
Per07, Sch00] consists in iterating the map v 7→ (v2 − av1, v3 − bv1, v1), where
a = bv2/v1c and b = bv3/v1c. Like with the Brun algorithm, we obtain an infinite
sequence of vectors v(0) = v,v(1),v(2), . . . such that v(n) = M−1

an,bn
v(n−1) where Ma,b

is a matrix with non-negative integer entries, and we can define the Jacobi-Perron
expansion of v as the infinite sequence (an, bn)n>1. It can be proved that (an, bn)n>1
is the Jacobi-Perron expansion of some vector v if and only if for every n > 1 we have
0 6 an 6 bn, bn 6= 0, and an = bn implies an+1 6= 0 (see [Sch73, Sch00, Bre81]). We
refer to such a sequence (an, bn)n>1 as a Jacobi-Perron-admissible sequence.
Proposition 1.5.5 ([Per07]). A sequence (an, bn)n>1 is a Jacobi-Perron-admissible se-
quence if and only if it is the Jacobi-Perron expansion of totally irrational vector v ∈
R3

>0. Moreover, the Jacobi-Perron algorithm is convergent: for every such expansion
(an, bn)n∈N, there is a unique vector v whose expansion is (an, bn)n∈N.

Let the Jacobi-Perron substitutions be defined by

σJP
a,b :


1 7→ 3
2 7→ 13a

3 7→ 23b

for all a, b > 0, and set ΣJP
a,b = E?

1(σJP
a,b). These substitutions are chosen in such a way

that Ma,b = tMσJP
a,b

for every a, b > 0, so the correspondence with dual substitutions and
discrete planes is analogous as described above for the Brun substitutions. We also have:
Proposition 1.5.6 ([DFP04]). Every product σJP

a1,b1
· · ·σJP

an,bn
is irreducible Pisot if 0 6

an 6 bn and bn 6= 0 for all n > 1.
Note that, unlike in the Arnoux-Rauzy and Brun cases, Jacobi-Perron substitutions

do not consist of a finite number of substitutions, but of infinitely many substitutions
parametrized by a, b ∈ N. In essence this reflects the fact that the associated continued
fraction algorithm is multiplicative, in opposition with the additive algorithms of Arnoux-
Rauzy or Brun. Such notions are defined formally in [Sch00].
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Additive version of Jacobi-Perron substitutions
When dealing with Jacobi-Perron substitutions in Chapter 2, we will work directly on the
substitutions ΣJP

a,b, except in Section 2.4 when we will construct generation graphs, because
our construction only applies for finitely many substitutions (and there are infinitely many
substitutions σJP

a,b).
Hence we will need to decompose σJP

a,b in products using finitely many different substitu-
tions. A first natural additive substitutive realization of Jacobi-Perron algorithm is given
by

τ1 :


1 7→ 1
2 7→ 21
3 7→ 3

τ2 :


1 7→ 1
2 7→ 2
3 7→ 31

τ3 :


1 7→ 3
2 7→ 1
3 7→ 2

with σJP
a,b = τ3τ

a
1 τ

b
2 . (Note that τ1τ2 = τ2τ1.) The problem with this decomposition is that

it is not restrictive enough, which makes the generation graphs associated with this family
too difficult to handle.
So we choose another additive decomposition, which enforces the constraint 0 6 a 6 b

and b > 1 to be satisfied in the additive products. Let

θ1 = τ2 θ2 = τ1τ2 θ3 = τ3τ2 θ4 = τ3τ1τ2.

We have

σJP
a,b =


θ3θ

b−1
1 if a = 0

θ3θ
b−a−1
1 θa2 = θ4θ

b−a
1 θa−1

2 if 0 < a < b

θ4θ
a−1
2 if a = b.

Finally, we define Θi = E?
1(θi) for i ∈ {1, 2, 3, 4}, the substitutions that we will use in

Section 2.4 to construct generation graphs for the Jacobi-Perron substitutions.
Note that the “rhythm” is provided by θ3 and θ4, in the sense that every product

θi1 · · · θin starting with θ3 or θ4 can be uniquely decomposed into a product of σJP
ak,bk

,
thanks to the fact that in the above product decomposition, each possibility contains
exactly one θ3 or θ4.
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Chapter 2

Generating discrete planes with
substitutions

In this chapter we prove some results about discrete plane generation with the dual
substitutions associated with the Arnoux-Rauzy, Brun and Jacobi-Perron algorithms. We
will exploit these results in Chapter 3 to deduce some other results about these families
of substitutions. This is joint work with Valérie Berthé, Jérémie Bourdon and Anne
Siegel [BJS13, BJS12, BBJS13]. The content of Section 2.6.8 is joint work with Valérie
Berthé, Damien Jamet and Xavier Provençal [BJJP13].
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2.1 General strategy
Our aim in this chapter is to establish the following discrete plane generation results
for the dual substitutions associated with the Arnoux-Rauzy, Brun and Jacobi-Perron
algorithms (which are defined in Section 1.5).

• There exist finite “seeds” V (patterns) such that iterating any sequence of substitu-
tions from V yields patterns covering arbitrarily large discs centered at the origin.
This is proved in Theorem 2.5.1 for our three families of substitutions. (Such seeds
were known to exist only in the case of a single substitution [BR10].)
• An effective characterization of the sequences for which the seed U satisfies the above

property is given in Theorem 2.5.2 for the Brun substitutions and in Theorem 2.5.4
for the Jacobi-Perron substitutions, where U is the seed = [0, 1]? ∪ [0, 2]? ∪ [0, 3]?.

• Iterating any sequence of substitutions from U yields patterns covering arbitrarily
large discs, which are not necessarily centered at the origin. This is proved in
Theorem 2.5.5 for our three families of substitutions.

This is illustrated by the following example. Let

(in) = 232 232 232 · · · and (jn) = 2311 2311 2311 · · ·

be two infinite (periodic) sequences. Figure 2.1 (left) suggests that ΣBrun
i1
· · ·ΣBrun

in
(U)

covers arbitrarily large discs centered at the origin as n → ∞, but Figure 2.1 (right)
suggests that ΣBrun

j1
· · ·ΣBrun

jn
(U) does not cover arbitrarily large discs centered at the origin

as n→∞. This can be proved rigorously thanks to Theorem 2.5.4.

Figure 2.1: On the left, the pattern (ΣBrun
2 ΣBrun

3 ΣBrun
2 )5(U). On the right, the pattern

(ΣBrun
2 ΣBrun

3 ΣBrun
1 ΣBrun

1 )4(U). The origin is marked by a black dot in both pictures. The
Rauzy fractals associated with these two infinite periodic products are plotted in Figure 3.1.
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The annulus property The patterns generated by iterating dual substitutions can have
complicated shapes, so there is no obvious way of proving that such a sequence covers
arbitrarily large discs. (In contrast, such a property is obvious for square 2×2 substitutions
of the plane, because the generated patterns are simply squares of size 2n.)
One approach for proving this property in the context of dual substitutions has been

initiated by Ito and Ohtsuki [IO94]. The idea is to make sure that the generated patterns
contain an increasing number of annuli of positive width, and hence cover arbitrarily large
discs. This requires that the annulus property holds, i.e., that the image of an annulus by
a dual substitution remains an annulus. However, the annulus property is wrong if no
additional assumptions are made on the annuli, as shown in Figure 2.2. This is why we
must introduce covering properties in Section 2.2, which are some combinatorial restrictions
on the annuli. These restrictions allow us to prove the annulus property in Section 2.3.
The proofs require many verifications which are specific to the set of substitutions under
study. Hence the results given in Sections 2.2 and 2.3 are stated in a generic way (they do
not depend on the choice of substitutions), and proving that they hold for our families of
substitutions is reduced to technical verifications, which are carried out in Section 2.6.

ΣAR
1 ΣAR

3
7−→

Figure 2.2: On the left, the faces in light gray do not form a suitable annulus around the
faces in dark gray, because the annulus is broken in the image by ΣAR

1 ΣAR
3 . This problem

is fixed by adding the faces in white to the annulus. The covering conditions introduced
in Section 2.2 ensure that such problems do not happen. Similar examples with the Brun
and Jacobi-Perron substitutions are given in Example 2.3.3.

Generation graphs For our strategy to work, establishing the annulus property is neces-
sary but not sufficient: we must also make sure that, starting from a seed, at least one
annulus is eventually generated by iterating sufficiently many substitutions.

In the case of Arnoux-Rauzy substitutions, such a verification can be made by explicitly
tracking all the possible patterns “growing” around the seed U , and checking that an
annulus is eventually generated in all cases. This is done thanks to graph shown in
Figure 2.4 used in the proof of Lemma 2.6.13, and this proves that the seed U is always
enough for Arnoux-Rauzy substitutions.

However, the situation is quite different with the Brun or the Jacobi-Perron substitutions,
because there are some sequences of substitutions which do not generate annuli around
the seed, as we have seen in the example of Figure 2.1. Therefore, the reasoning described
above for the Arnoux-Rauzy substitutions becomes unsuitable. Trying to build a graph
similar to the one used for the Arnoux-Rauzy substitutions in Lemma 2.6.13 produces
graphs which are too complicated to handle. Moreover, trying to use this approach to prove
that annuli are always generated when starting from a seed larger than U considerably
increases the number of cases to check.
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This leads us to introduce another kind of generation graphs in Section 2.4 where we do
not track all the possible patterns around a seed, but rather all the possible sequences of
preimages of each face of the annuli we want to generate. This yields much smaller graphs,
whose vertices are faces (and not patterns), and which can be constructed algorithmically.
Again, these constructions (stated in Section 2.4) are generic, and the specific constructions
are carried out in Sections 2.6.5 and 2.6.6 for the Brun and Jacobi-Perron substitutions.

2.2 Covering properties
We now introduce L-coverings and strong L-coverings, which are the combinatorial tools
that will be used in order to prove the annulus property in Section 2.3.
We call a pattern any finite union of faces. A pattern is said to be edge-connected

if any two faces are connected by a path of faces f1, . . . , fn such that fk and fk+1 share
an edge, for all k ∈ {1, . . . , n− 1}. In the definitions below, L will always denote a set of
patterns which is closed by translation of Z3, so we will define such sets by giving only
one element of each translation class.

Definition 2.2.1. Let L be a set of patterns. A pattern P is L-covered if for all faces
e, f ∈ P , there exist patterns Q1, . . . , Qn ∈ L such that

(1) e ∈ Q1 and f ∈ Qn;
(2) Qk ∩Qk+1 contains at least one face, for all k ∈ {1, . . . , n− 1};
(3) Qk ⊆ P for all k ∈ {1, . . . , n}.

The next proposition, due to [IO94], gives a sufficient combinatorial criterion to prove
that a dual substitution preserves L-covering.

Proposition 2.2.2. Let L be a set of patterns, P be an L-covered pattern and Σ be a dual
substitution. If Σ(Q) is L-covered for every Q ∈ L, then Σ(P ) is L-covered.

Proof. Let us call an L-chain from a face e to a face f a sequence of patterns Q1, . . . , Qn ∈
L that satisfies Properties (1), (2) and (3) of Definition 2.2.1.
Let f and f ′ be two faces of Σ(P ). To prove that Σ(P ) is L-covered, we need to

construct an L-chain from f to f ′. Let e and e′ be two faces of P such that f ∈ Σ(e) and
f ′ ∈ Σ(e′). Since byP is L-covered, there exists an L-chain (p1, . . . , pn) from e to e′. For
all k ∈ {2, . . . , n− 1}, let fk be a face of Σ(pk ∩ pk+1), and let f1 = f , fn = f ′. Such a
face fk exists because (p1, . . . , pn) is an L-chain.

For all k ∈ {1, . . . , n− 1}, there exists an L-chain from fk to fk+1, because fk and fk+1
are in Σ(pk+1) and L is stable under Σ; see below.

ek ek+1pk−1 pk pk+1P :

fk fk+1Σ(pk−1) Σ(pk) Σ(pk+1)Σ(P ) :

The concatenation of the L-chains from fk to fk+1 yields an L-chain from f to f ′, so the
proposition is proved. D
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We will see in Example 2.3.3 that L-coverings are not sufficient for our purposes, so we
introduce strong L-coverings below.

Definition 2.2.3. A pattern P is strongly L-covered if P is L-covered and if for every
pattern X ⊆ P that is edge-connected and consists of two faces, there exists a pattern
Y ∈ L such that X ⊆ Y ⊆ P .

Example 2.2.4. Consider the following two sets of patterns (which will later be used with
the Brun and Jacobi-Perron substitutions in Section 2.6):

LBrun =
{

, , , , , , ,
}
,

LJP =
{

, , , , , , , , ,
}
,

and let P1 = , P2 = , P3 = , P4 = . We have:

• P1 is neither LBrun- nor LJP-covered;
• P2 is not LBrun-covered, but it is strongly LJP-covered;
• P3 is LBrun- and LJP-covered, but not strongly covered.;
• P4 is strongly LBrun- and LJP-covered.

2.3 The annulus property
In this section we define L-annuli and we introduce Property A, which is a sufficient
condition under which we can prove that a dual substitution Σ verifies the annulus
property: if A is an L-annulus of P , then Σ(A) is an L-annulus of Σ(P ) (Proposition 2.3.5).
The boundary ∂P of a pattern P is the union of the edges e of the faces of f such that e
is contained in one face only. We recall that U = = [0, 1]? ∪ [0, 2]? ∪ [0, 3]?.

Definition 2.3.1. An L-annulus of a simply connected pattern P is a pattern A such
that A is strongly L-covered, A and P have no face in common, and P ∩ ∂(P ∪A) = ∅.

Note that the condition P ∩ ∂(P ∪A) = ∅ in the above definition is a concise way to
express the fact that the L-covered setA is a “good surrounding” of U .

Example 2.3.2. Let A1, A2, A3 and A4 be defined by

A1 ∪ U = A2 ∪ U = A3 ∪ U = A4 ∪ U = ,

where U is depicted in dark gray. We have:

• A1 is not an annulus of U because U ∩ ∂(U ∪A1) is nonempty (it contains an edge).
• A2 is not an annulus of U because U ∩ ∂(U ∪A2) is nonempty (it contains a point).
• A3 is not an LBrun-annulus of U because it is not strongly LBrun-covered. Indeed, if
X = ⊆ A3 is the pattern depicted in white in the picture, there does not exist a
pattern Y ∈ LBrun such that X ⊆ Y ⊆ A3.

• A4 is an LBrun-annulus of U .
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Example 2.3.3. Let P be a pattern that consists of the single face [0, 3]? (shown in dark
gray below) and let A be the set of faces surrounding P defined in the picture below.

A ∪ P = ΣBrun
1 ΣBrun

3 (A ∪ P ) = ΣJP
0,2(A ∪ P ) =

The pattern A is both LBrun- and LJP-covered, but not strongly (so it is not a valid
annulus). Its images by Brun or Jacobi-Perron substitutions fail to be topological annuli
(as shown above), which illustrates the necessity of strong coverings if we want the image
of an annulus to remain an annulus. The faulty two-face pattern and its images are shown
in white.

Definition 2.3.4. Let Σ be a dual substitution, and let L a set of edge-connected patterns.
We say that Property A holds for Σ with respect to L if for every connected two-face
pattern f ∪ g and for every disconnected two-face pattern f0 ∪ g0 such that f ∈ Σ(f0) and
g ∈ Σ(g0), the following holds: there do not exist a pattern P and an L-annulus A of P
both included in a common discrete plane Γ such that f0 ∈ P and g0 ∈ Γ \ (A ∪ P ).

Thanks to the following proposition, Property A (together with strong L-covering
assumptions) implies the annulus property. The main interest of Property A is that it
can be checked by treating finitely many cases, by enumerating all the two-face connected
patterns f ∪ g that admit a disconnected preimage. This is done for the Arnoux-Rauzy,
Brun and Jacobi-Perron substitutions in Propositions 2.6.5, 2.6.7 and 2.6.8.

Proposition 2.3.5. Let Σ be a dual substitution and L be a set of edge-connected patterns
such that Property A holds for Σ with respect to L. Assume that the image by Σ of every
strongly L-covered pattern is strongly L-covered. Let P be a pattern and A be an L-annulus
of P , both included in a common discrete plane. Then Σ(A) is an L-annulus of Σ(P ).

Proof. The pattern A is strongly L-covered because it is an L-annulus, so Σ(A) is also
strongly L-covered, by assumption. It remains to show that Σ(P ) ∩ ∂(Σ(P ) ∪ Σ(A)) = ∅.
Suppose the contrary. This means that there exist faces f, g, f0, g0 such that f ∈ Σ(f0),
g ∈ Σ(g0), f ∪ g is connected, and f0 ∪ g0 is disconnected as shown below.

f0

g0

P

A
Σ7−→

fg

Σ(P ) Σ(A)

These are precisely the conditions stated in Property A, so such a situation cannot occur
and the proposition holds. D

The annulus property will be crucially used in the proof of Theorem 2.5.1: it ensures
that a quantity called the minimal combinatorial radius (defined in Section 2.5) is strictly
increasing under iteration of dual substitutions.
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2.4 Generation graphs
Let Σ1, . . . ,Σ` be dual substitutions and let V1, . . . ,Vm be seeds from which we want to
iterate the Σi. The aim of this section is to characterize the sequences (in)n∈N ∈ {1, . . . , `}N
such that for n large enough and for every Vi, the patterns Σi1 · · ·Σin(Vi) eventually
contain an L-covered annulus of some Vj (where L is a set of patterns associated with the
substitutions Σi). In practice, the annuli Vi will often consist of an annulus of U = or
of a slightly larger pattern.
This characterization is achieved thanks to the algorithmic construction of generation

graphs below. We start with a set X that contains the faces of all the possible L-annuli of
the seeds Vi, and we recursively backtrack their preimages, encoding all the information
in the graph. Intuitively, if Vi is such that every “backward” path of preimages from X
eventually comes back to Vi, then the seeds Vi always generates an L-annulus of another
Vj . This observation is formalized in Proposition 2.4.4 below, which provides us with
the desired characterizations of sequences (in)n∈N ∈ {1, . . . , `}N. We need two technical
assumptions for the above method to work in practice.

• We use a filter set F , by restricting the allowed preimages to F only. This makes
generation graphs more manageable by eliminating some useless faces. For example,
the set FBrun that will be used with the Brun substitutions is the set of all the faces
that belong to a discrete plane Γv with 0 < v1 < v2 < v3.

• Moreover, we assume that Σ1, . . . ,Σ` are substitutions associated with a convergent
continued fraction algorithm, in the same sense as described for the Brun and
Jacobi-Perron substitutions in Propositions 1.5.3 and 1.5.5, namely:

– To every admissible sequence (in)n∈N ∈ {1, . . . , `}N corresponds a unique
vector v with positive coordinates.

– To this vector are associated the vectors v(1),v(2), . . ., which are such that
Γv = Σi1 · · ·Σin(Γv(n)) for all n > 1.

Definition 2.4.1. Let Σ1, . . . ,Σ` be dual substitutions, F be a family of faces (the “filter
set”) and X be a finite set of faces (the “initial set”). The generation graph associated
with Σ1, . . . ,Σ`, F and X is defined as the graph G =

⋃
n>0 Gn where (Gn)n>0 is the

sequence of directed graphs (whose vertices are faces), defined by induction as follows.

(1) Initialization. G0 has no edges and its set of vertices is X .
(2) Iteration. Suppose that Gn is constructed for some n > 0. Start with Gn+1 equal to
Gn. Then, for each vertex f of Gn, for each i ∈ {1, . . . , `}, and for each g ∈ F such
that f ∈ Σi(g), add the vertex g and the edge g i→ f to Gn+1.

Remark 2.4.2. The non-decreasing union G =
⋃
n∈N Gn considered in Definition 2.4.1 is

not necessarily finite. In fact, G is finite if and only if Gn = Gn+1 for some n ∈ N. This is
the case for the set of Brun substitutions, as we will see in Section 2.6.5. However, even if
Gn = Gn+1 never occurs, the infinite graph G can still be successfully exploited, as will be
done in Section 2.6.6 for the Jacobi-Perron substitutions.

Remark 2.4.3. The orientation of edges in generation graphs has been chosen in such a
way that it agrees with the usual arrow notation for composition of functions. In particular,
for every path fn

in→ · · · i2→ f1
i1→ f0, we have f0 ∈ Σi1 · · ·Σin(fn).
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Proposition 2.4.4. Let

• Σ1, . . . ,Σ` be substitutions associated with a convergent continued fraction algorithm;
• F be a set of faces such that F ⊂

⋃
v>0 Γv and such that if Γv ⊆ F , then Γv(n) ⊆ F

for all n > 1;
• X ⊆ F be a finite set of faces;
• G be the generation graph constructed with substitutions Σ1, . . . ,Σ`, filter set F and
initial set X .

For every admissible sequence (in)n∈N ∈ {1, . . . , `}N (which determines a unique vector v),
for every finite pattern V, and for every f0 ∈ X ∩ Γv, we have:

(1) If f0 /∈ Σi1 · · ·Σin(V), then there exists a path fn
in→ · · · f1

i1→ f0 in G with fn /∈ V.
(2) For every path fn

in→ · · · f1
i1→ f0 in G such that fn /∈ U , we have f0 /∈ Σi1 · · ·Σin(U).

Proof. (1). Let n be such that f0 /∈ Σi1 · · ·Σin(V). We have Γv = Σi1 · · ·Σin(Γv(n)) for
all n > 1, so Statement (3) of Proposition 1.2.4 implies that there exist faces f1, . . . , fn
such that fk ∈ Γv(k) and fk−1 ∈ Σik(fk) for every k ∈ {1, . . . , n}. By assumption on F
we have Γv(k) ⊆ F for all k > 0, so f1, . . . , fn are all in the vertices of G. By assumption
on f0 we cannot have fn ∈ V, so the faces f0, f1, . . . , fn yield the required path in G.

(2). Let fn
in→ · · · f1

i1→ f0 be a path in G such that fn /∈ U . The patterns U and fn are
disjoint patterns included in a common discrete plane (because U is included in every
discrete plane). Hence, Statement (4) of Proposition 1.2.4 implies that Σi1 · · ·Σin(U)
and Σi1 · · ·Σin(fn) do not have any face in common for all n > 1, which implies that
f0 /∈ Σi1 · · ·Σin(U) because f0 ∈ Σi1 · · ·Σin(fn). D

Remark 2.4.5. Statement (1) of Proposition 2.4.4 will be used to obtain “positive” results,
such as the fact that a given seed V always generates a full discrete plane (see Theorem 2.5.1).
Conversely, Statement (2) will be used in Theorems 2.5.2 and 2.5.4 to characterize the
sequences (in)n∈N for which iterating the corresponding sequence of dual substitutions
fails to generate an entire discrete plane when starting from U .

2.5 Main results
We now state our main results relative to discrete plane generation. In order to express the
fact that some patterns grow by iterating substitutions, we need to define the minimal
combinatorial radius rad(P ) of a pattern P containing the seed U = . It is equal
to the length of the shortest sequence of faces f1, . . . , fn in P such that f1 ∈ U , fi and
fi+1 share an edge, and fn shares an edge with the boundary of P . Intuitively, rad(P )
measures the minimal distance between 0 and the boundary of P .
The proofs of the results of this section depend on some “technical” results, which are

proved separately in Section 2.6 in order to improve the readability of the proofs. These
technical results depend on some enumerations performed with the Sage software [Sag],
see p. 20.

Existence of finite seeds
We start by stating the existence of finite seeds such that iterating any admissible sequence
of substitutions generates patterns with arbitrarily large minimal combinatorial radius. In
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the Arnoux-Rauzy case, the seed U is enough, but in the Brun and Jacobi-Perron cases,
we need the (slightly larger) seeds VBrun

1 ,VBrun
2 and VJP

1 ,VJP
2 ,VJP

3 ,VJP
4 . These finite seeds

are defined in Proposition 2.6.3 and 2.6.4.

Theorem 2.5.1. For every R > 0 there exists N > 0 such that

(1) rad(ΣAR
i1
· · ·ΣAR

in
(U)) > R for every (i1 · · · in) ∈ {1, 2, 3}n that contains more than N

occurrences of 1, 2 and 3;
(2) rad(ΣBrun

i1
· · ·ΣBrun

in
(V)) > R for every (i1 · · · in) ∈ {1, 2, 3}n that contains more than

N occurrences of 3, and for every V ∈ {VBrun
1 ,VBrun

2 };
(3) rad(ΣJP

a1,b1
· · ·ΣJP

an,bn
(V)) > R for every admissible Jacobi-Perron expansion (a1, b1),

. . . , (an, bn) such that n > N , and for every V ∈ {VJP
1 ,VJP

2 ,VJP
3 ,VJP

4 }.

Proof. The intuitive idea behind this proof is simple: if we are given n disjoint concentric
annuli around a seed V, then applying sufficiently many substitutions will:

• preserve the n concentric annuli (thanks to the annulus property),
• generate a new annulus around the seed V (thanks to generation graphs),

so we have n+ 1 disjoint concentric annuli, and repeating this reasoning yields the result.
Note that by “disjoint”, we mean “which do not have any faces in common”. We now
formalize the above reasoning to prove (2). By virtue of Lemma 2.6.15, there exists M > 1
such that for every (i1, . . . , in) ∈ {1, 2, 3}n containing more than M occurrences of 3, the
pattern ΣBrun

i1
· · ·ΣBrun

in
(V) contains an LBrun-annulus of VBrun

1 or VBrun
2 .

Let R > 0. We prove that taking N = R×M satisfies (2). Let (i1, . . . , in) ∈ {1, 2, 3}n
containing more than N occurrences of 3. We write ΣBrun

i1
· · ·ΣBrun

in
= Σ1 · · ·ΣR, where

each Σk is a product of ΣBrun
i containing ΣBrun

3 at least M times. To prove that that
rad(Σ1 · · ·ΣR(V)) > R, we prove that Σ1 · · ·ΣR(V) contains R disjoint concentric annuli
A1, . . . , AR such that A1 is an LBrun-annulus of VBrun

j , and for all k ∈ {1, . . . , R− 1}, Ak
is an LBrun-annulus of Ak−1 ∪ · · · ∪A1 ∪ VBrun

j for some j ∈ {1, 2}.
The reasoning goes by induction. First, ΣBrun

1 (V) contains an LBrun-annulus of VBrun
j

for some j ∈ {1, 2}, because ΣR contains at least M occurrences ΣBrun
3 . Now suppose

that for some k ∈ {1, . . . , R− 1}, the pattern ΣR−k+1 · · ·ΣR(V) contains k disjoint annuli
A1, . . . , Ak around VBrun

j , like above (with j ∈ {1, 2}). We use the annulus property
for Brun substitutions: thanks to Proposition 2.3.5 (the annulus property), Proposi-
tion 2.6.7 (strong covering conditions) and Proposition 2.6.10 (Property A), the patterns
ΣR−k(A1), . . . ,ΣR−k(Ak) are k concentric LBrun annuli. Moreover, ΣR−k(VBrun

j ) con-
tains an LBrun-annulus of VBrun

1 or VBrun
2 . In total this makes k + 1 annuli contained in

ΣR−kΣR−k+1 · · ·ΣR(V). They are all disjoint thanks to Proposition 1.2.4, so the induction
step holds and (2) is proved.
Statements (1) and (3) can be proved by the same reasoning. For Arnoux-Rauzy

substitutions, we use Lemma 2.6.13 (to generate an annulus around the seed), Propo-
sition 2.3.5 (the annulus property), Proposition 2.6.5 (strong covering conditions), and
Proposition 2.6.9 with Lemma 2.6.6 (Property A). For Jacobi-Perron substitutions we
use Lemma 2.6.15 (to generate an annulus around the seed), Proposition 2.3.5 (the an-
nulus property), Proposition 2.6.8 (strong covering conditions), and Proposition 2.6.12
(Property A). Note that in the proofs of (2) and (3), we have implicitly used the fact
that if a pattern contains U and an LBrun- or LJP-annulus of U , then it contains one of
the seeds VBrun

i or VJP
i . This is proved in Proposition 2.6.3 for Brun substitutions and in

Proposition 2.6.4 for Jacobi-Perron substitutions. D
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Characterizing sequences for which U is not a seed
We now give characterizations of the “bad” sequences of substitutions, that is, the
sequences of substitutions such that the seed U does not generate patterns with arbitrarily
large combinatorial radius. These results are only stated for Brun and Jacobi-Perron
substitutions because Theorem 2.5.1 implies that there are no such sequences for Arnoux-
Rauzy substitutions.

Theorem 2.5.2. Let (in)n∈N ∈ {1, 2, 3}N be such that in = 3 infinitely often, and let v
be the vector whose Brun expansion is (in)n∈N. Then

⋃
n>0 ΣBrun

i1
· · ·ΣBrun

in
(U) is a strict

subset of Γv if and only if there exists N such that (in)n>N is the labelling of an infinite
backward path · · · iN+2→ • iN+1→ • iN→ • in the following graph.

1

1 1
2

2
2

3

33

Proof. First, note that the 4-vertex graph given in the statement of Theorem 2.5.2 and
the graph GBrun given in Section 2.6.5, admit the same sets of infinite path labellings
containing infinitely many 3’s. (The 4-vertex graph above is a “reduced” version of GBrun.)
Also note that the inclusion ΣBrun

i1
· · ·ΣBrun

in
(U) ⊆ Γv is true for all n > 1, because (in)n∈N

is the Brun-expansion of v and because U is included in every discrete plane.
Now, if

⋃
n>1 ΣBrun

i1
· · ·ΣBrun

in
(U) is a strict subset of Γv, then, thanks to Proposition 2.6.3,

there must exist f0 ∈ (Γv ∩ (VBrun
1 ∪ VBrun

2 )) such that f0 /∈
⋃
n>1 ΣBrun

i1
· · ·ΣBrun

in
(U) is

strictly contained in Γv (otherwise Theorem 2.5.1 would imply equality). Hence, Proposi-
tion 2.4.4 (1) applied to the graph GBrun (computed in Section 2.6.5) proves that such an
infinite path must appear in GBrun. Conversely, the existence of such a path proves that
the corresponding face f0 ∈ (Γv ∩ (VBrun

1 ∪ VBrun
2 )) will be missing from ΣBrun

i1
· · ·ΣBrun

in
(U)

for all n > 1, thanks to Proposition 2.4.4 (2). D

Example 2.5.3. For a finite product of Brun substitutions σ = σBrun
i1
· · ·σBrun

im
, Theo-

rem 2.5.2 implies that the patterns E?
1(σ)n(U) generate a full discrete plane if and only if

there is a loop labelled by a power of the word im . . . i1 in the graph. This is the case for
example with i4i3i2i1 = 3332, but not with i3i2i1 = 332 (it is easy to check that there is
no loop labelled by a power of 332). Note that in some cases we must take a power of
im . . . i1 for such a loop to exist, which is the case for example with i2i1 = 32, because
there is a loop labelled by 3232 but no loop labelled by 32.

It is also interesting to note that many “language-theoretical” corollaries can be derived
from Theorem 2.5.2. For example, if σ = σBrun

i1
· · ·σBrun

im
and i1 · · · im = 3332k, then⋃

n>1 E?
1(σ)n(U) is a strict subset of Γv if and only if k is odd.

Theorem 2.5.4. Let (an, bn)n∈N be an admissible Jacobi-Perron expansion and let v be a
vector whose Jacobi-Perron expansion is (an, bn)n∈N. Then

⋃
n>1 ΣJP

a1,b1
· · ·ΣJP

an,bn
(U)) is

a strict subset of Γv if and only if there exists ` > 1 such that for every k > 0, we have

a`+3k = 0, a`+3k+1 = b`+3k+1, 0 < a`+3k+2 < b`+3k+2.



2.6 Technical proofs 47

Proof. Let (in)n∈N be the additive Jacobi-Perron expansion corresponding to (an, bn)n∈N.
Because this additive expansion is admissible, it must contain infinitely many 3’s or 4’s.
Like in the proof of Theorem 2.5.4, the infinite labelling sequences of the graph GJP defined
in Section 2.6.6 give us the desired characterization, thanks to Proposition 2.4.4.

Indeed, in the graph GJP, following an infinite path containing infinitely many 3’s or 4’s
forces us to turn clockwise, visiting fc, fe and fd cyclically and in this order. The result
then follows from the definition of the additive decomposition of ΣJP

a,b by Θ1,Θ2,Θ3,Θ4,
and by the following facts, which can easily be checked:

• any path from fc to fe in GJP corresponds to an = 0,
• any path from fd to fc in GJP corresponds to an = bn,
• any path from fe to fd in GJP corresponds to 0 < an < bn. D

We have recovered in Theorem 2.5.4 the same characterization as the one obtained
in [IO94], by using a different notion of generation graphs, which does not require the
same succession of lemmas as found in [IO94].

Translates of seeds always occur
The next theorem states that the seed U is always sufficient to generate translates of
patterns with arbitrarily large radius (even though U is not always sufficient to generate
patterns of arbitrarily large radius centered at the origin). As mentioned previously, we
do not state this result for Arnoux-Rauzy substitutions because it is directly implied by
Theorem 2.5.1.

Theorem 2.5.5. For every R > 0 there exists N > 0 such that

(1) ΣBrun
i1
· · ·ΣBrun

in
(U) contains a translate of a pattern P with rad(P ) > R for every

(i1 · · · in) ∈ {1, 2, 3}n that contains more than N occurrences of 3;
(2) ΣJP

a1,b1
· · ·ΣJP

an,bn
(U) contains a translate of a pattern P with rad(P ) > R for every

admissible Jacobi-Perron expansion (a1, b1), . . . , (an, bn) such that n > N .

Proof. Since we are dealing with translates of seeds, we cannot use generation graphs
like in the previous theorems. We must track “by hand” all the possible sequences of
iterations starting from U , and explicitly check that a translate of one of the seeds of
Theorem 2.5.1 is eventually generated. This is done in details in Lemma 2.6.18 for (1)
and in Lemma 2.6.19 for (2). Then, the result follows directly from Theorem 2.5.1: once
a translate of a seed occurs, its images will be translates of patterns with arbitrarily
large combinatorial radius. (Note that by “linearity” of E?

1 substitutions, the image of a
translate of a pattern is always a translate of its image.) D

2.6 Technical proofs
The following sets of patterns will be used throughout this section:

LAR =
{ }

,

LBrun =
{ }

,

LJP =
{ }

.
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Remark 2.6.1. We will often use the arithmetic restrictions of the definition of discrete
planes (Definition 1.2.1) in order to simplify the combinatorics of the patterns that occur
in a discrete plane. For example, if v1 6 v3 and v2 6 v3, then Γv cannot contain any
translate of the two-face pattern [0, 1]? ∪ [(0, 1, 0), 1]? = or [0, 2]? ∪ [(0, 0, 1), 2]? = . If
moreover v1 6 v2, then the pattern [0, 1]? ∪ [(0, 1, 0), 1]? = also never occurs.

We give below a visual representation of the dual substitutions that will be manipulated
in this section. The black dot stands for x on the left hand sides and for M−1

σ x on the
right-hand sides.

ΣAR
1 :


7→
7→
7→

ΣAR
2 :


7→
7→
7→

ΣAR
3 :


7→
7→
7→

ΣBrun
1 :


7→
7→
7→

ΣBrun
2 :


7→
7→
7→

ΣBrun
3 :


7→
7→
7→

ΣJP
a,b :


[0, 1]? 7→ [(a, 0, 0), 2]?
[0, 2]? 7→ [(b, 0, 0), 3]?
[0, 3]? 7→ [(0, 0, 0), 1]? ∪

⋃a−1
k=0[(k, 0, 0), 2]? ∪

⋃b−1
k=0[(k, 0, 0), 3]?.

Preimages by dual substitutions In the proofs of this chapter, we will often have to
compute preimages of faces by dual substitutions. By abuse of notation we will write
Σ−1
k ([x, i]?) for the union of faces [y, j]? such that Σk([y, j]?) contains the face [x, i]?. This

notation is also extended to finite unions of faces.
Lemma 2.6.2 describes the preimages by Arnoux-Rauzy substitutions. It can be proved

by an easy enumeration of cases. We will not give such lemmas for the Brun and Jacobi-
Perron substitutions, even though they will be implicitly used in the proofs of this section
when enumerating preimages.

Lemma 2.6.2. Let x =
( x
y
z

)
∈ Z3. We have

(ΣAR
1 )−1([x, i]?) =

{ [( x+y+z
y
z

)
, 1
]? if i = 1[( x+y+z

y
z

)
, 1
]? ∪ [( x+y+z−1

y
z

)
, i
]? if i = 2, 3

,

(ΣAR
2 )−1([x, i]?) =

{ [( x
x+y+z
z

)
, 2
]? if i = 2[( x

x+y+z
z

)
, 2
]? ∪ [( x

x+y+z−1
z

)
, i
]? if i = 1, 3

,

(ΣAR
3 )−1([x, i]?) =


[( x

y
x+y+z

)
, 3
]? if i = 3[( x

y
x+y+z

)
, 3
]? ∪ [( x

y
x+y+z−1

)
, i
]? if i = 2, 3

.
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2.6.1 Minimal annuli and seeds
Proposition 2.6.3 (Brun minimal annuli). Let P be a pattern contained in a discrete Γv
with 0 < v1 < v2 < v3. If P contains U and an LBrun-annulus of U , then P must contain
one of the following two patterns, each of which contains an LBrun-annuli (shown in light
gray) of U (shown in dark gray):

VBrun
1 = VBrun

2 = .

Proof. According to Remark 2.6.1, the algebraic restriction 0 < v1 < v2 < v3 implies that
Γv must contain one of the following patterns surrounding U :

, , , or .

The first two possibilities correspond to the LBrun-annuli given in the statement of the
proposition. The three other patterns can be ruled out since they contain , or ,
which is forbidden by Remark 2.6.1 because v1 < v2 < v3. Lastly, we check that these
two patterns do contain LBrun-annuli of U . D

Similarly we can prove the following.

Proposition 2.6.4 (Jacobi-Perron minimal annuli). Let P be a pattern contained in a
discrete plane Γv with 0 < v1 < v3 and 0 < v2 < v3. If P contains U and an LJP-annulus
of U , then P must contain one of the following four patterns, each of which contains and
LJP-annuli (shown in light gray) of U (shown in dark gray):

VJP
1 = VJP

2 = VJP
3 = VJP

4 = .

2.6.2 Covering properties
Proposition 2.6.5 (Strong LAR-covering). Let P be a strongly LAR-covered pattern that
does not contain any translate of one of the three patterns = [0, 1]? ∪ [(0, 1, 1), 1]?,

= [0, 2]? ∪ [(1, 0, 1), 2]?, or = [0, 3]? ∪ [(1, 1, 0), 3]?. Then ΣAR
i (P ) is strongly

LAR-covered for each i ∈ {1, 2, 3}.

Proof. First, ΣAR
i (P ) is LAR-covered thanks to Proposition 2.2.2, because ΣAR

i (Q) is
LAR-covered for every Q ∈ LAR. This makes a total of 36 patterns to check:

ΣAR
1 (LAR) =

{ }
;

ΣAR
2 (LAR) =

{ }
;
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ΣAR
3 (LAR) =

{ }
.

This can easily be checked for each of these patterns, as for the following pattern:

: .

Now we prove the strong covering part. Let Σ = ΣAR
i for some i ∈ {1, 2, 3}. Let

X ⊆ Σ(P ) be a two-face connected pattern. If X is a translate of , , , , or
, then the strong covering condition is trivially verified because X is itself in LAR.
It remains to treat the case of the six remaining possibilities for X up to translation.

We have X ⊆ Σ(P ), so it is sufficient to check that for every pattern X0 ⊆ P such that
X ⊆ Σ(X0), there exists Y ∈ LAR such that X ⊆ Y ⊆ Σ(X0). Moreover, since X is a
two-face pattern, we can restrict to the case where X0 consists of two faces only, which
leaves a finite number of cases to check for X0. Suppose that X = . The following table
displays all the possibilities for X0.

i 2 2 3 3
X0 such that X ⊆ ΣAR

i (X0)
ΣAR
i (X0)

In the first and third columns, there is indeed a pattern Y ∈ LAR such thatX ⊆ Y ⊆ Σ(X0),
namely Y = , which settles the case of these two columns. The case of the fourth
column is settled directly because we have assumed that P does not contain the pattern

. For the second column, since P is itself strongly LAR-covered, X0 is contained in some
Y0 ∈ LAR (here, ). Hence, ΣAR

2 (Y0) ⊆ ΣAR
2 (P ), with ΣAR

2 (Y0) ∈ LAR, so the property
holds.

The five remaining cases for X can be dealt with in exactly the same way as above: in
each of the five cases, there are four preimages to check, which are symmetrical copies of
the ones in the table above. D

The following lemma will be needed for Arnoux-Rauzy substitutions, to handle the
three patterns forbidden in Proposition 2.6.5.

Lemma 2.6.6. Let Σ be an arbitrary product of ΣAR
1 , ΣAR

2 and ΣAR
3 . The discrete plane

Σ(Γ(1,1,1)) contains no translate of any of the three patterns , , .

Proof. We prove the result by induction on the size of the product Σ. First, thanks to
Remark 2.6.1, Γ(1,1,1) does not contain any of the three patterns in question. Now, in
the table below, we have listed all the preimages of the three patterns (in light gray),
together with their only possible “completion” within a discrete plane (in dark gray).
This completion is deduced from the arithmetic description of discrete planes provided by
Remark 2.6.1.
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i Σ−1
i ( )

2

2

3

3

i Σ−1
i ( )

1

1

3

3

i Σ−1
i ( )

1

1

2

2

Let us work by contradiction and assume that a translate of one of the three patterns
occurs in Σ(Γ(1,1,1)) but not in Σ′(Γ(1,1,1)), where Σ = ΣAR

i ◦ Σ′, for some i ∈ {1, 2, 3}.
The above table, together with the injectivity of ΣAR

i (see Proposition 1.2.4), implies that
a translate of one of the three patterns must occur in Σ′(Γ(1,1,1)), which yields the desired
contradiction. D

Proposition 2.6.7 (Strong LBrun-covering). Let P be an LBrun-covered pattern such that
the patterns , and do not occur in P . Then ΣBrun

i (P ) is strongly LBrun-covered for
each i ∈ {1, 2, 3}.

Proof. First, ΣBrun
i (P ) is LBrun-covered thanks to Proposition 2.2.2, because ΣBrun

i (Q) is
LBrun-covered for every Q ∈ LBrun, as can be verified from the equalities below:

ΣBrun
1 (LBrun) =

{
, , , , , , ,

}
ΣBrun

2 (LBrun) =
{

, , , , , , ,
}

ΣBrun
3 (LBrun) =

{
, , , , , , ,

}
.

It remains to prove that ΣBrun
i (P ) is strongly LBrun-covered. Let X ⊆ ΣBrun

i (P ) be an
edge-connected two-face pattern. If X is a translate of one of the first 6 patterns of LBrun,
then the result trivially holds (take Y = X in Definition 2.2.3).
If X is a translate of f ∪ g = , then there must exist f0, g0 ∈ P with f0 6= g0

such that f ∈ ΣBrun
i (f0) and g ∈ ΣBrun

i (g0). Indeed, we can check that X cannot be
contained in the image of single face, by definition of the ΣBrun

i (see their definition in
Section 1.5). Enumerating all the possible such preimages f0, g0 gives f0 ∪ g0 = (for
ΣBrun

1 ), f0 ∪ g0 = (for ΣBrun
2 ), or f0 ∪ g0 = (for ΣBrun

3 ). For i ∈ {1, 2, 3} we have
ΣBrun
i (f0 ∪ g0) = so X ⊆ ⊆ ΣBrun

i (P ), which enables us to take Y = ∈ LBrun.
The cases X = or can be settled exactly in the same way. We have treated 9 cases
over 12 possible cases for X, so the proof is complete because we have ruled out the 3
remaining patterns in the statement of the proposition. D

Proposition 2.6.8 (Strong LJP-covering). Let P be an LJP-covered pattern avoiding the
patterns and . Then ΣJP

a,b(P ) is strongly LJP-covered for all 0 6 a 6 b, with b 6= 0.

Proof. First we must prove that ΣJP
a,b(P ) is LJP-covered. Thanks to Proposition 2.2.2 it is

enough to prove that ΣJP
a,b(Q) is LJP-covered for every Q ∈ LJP. Suppose that Q = .

The pattern ΣJP
a,b(Q) is of the form

︸ ︷︷ ︸b︸ ︷︷ ︸b

︸︷︷︸a ︸︷︷︸a
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(in this example a = 3 and b = 5). If a = 0, ΣJP
a,b(Q) can be LJP-covered using the patterns

, and . If a 6= 0, ΣJP
a,b(Q) can be LJP-covered using the patterns , , ,

and . A similar reasonning can be carried out for each of the other 9 patterns
Q ∈ LJP, which proves that P is LJP-covered.
It remains to prove the strong LJP-covering. Let X ⊆ ΣJP

a,b(P ) be an edge-connected
two-face pattern. If X is a translate of one of the first 7 patterns of LJP, then the result
is obvious, because X is itself in LJP. If X is a translate of , then we must have
X = ⊆ ⊆ ΣJP

a,b(P ), because in an image by ΣJP
a,b, a face of type 1 must come from a

face of type 3, so there must also be a face of type 3 at the same position (because b 6= 0).
If X is a translate of , a similar reasoning yields X = ⊆ ⊆ ΣJP

a,b(P ). If X is a
translate of , then X is in the image of a face of type 3, or has one face in the image of
a face of type 2, and the other face in the image of a face of type 3. In both cases, we
must have X = ⊆ ⊆ ΣJP

a,b(P ) (since b > a).
We have treated 10 cases over 12 possible cases for X, and the two remaining patterns

have been ruled out in the statement of the proposition. D

2.6.3 Property A
Proposition 2.6.9 (Property A for Arnoux-Rauzy). Property A holds for Arnoux-Rauzy
substitutions with LAR, when restricted to planes Γv avoiding , , or .

Proof. We enumerate all the faces f, g, f0, g0 such that f ∈ ΣAR
i (f0), g ∈ ΣAR

i (g0), f ∪ g
is connected and f0 ∪ g0 is disconnected, for some i ∈ {1, 2, 3}. All the possibilities are
given in Figure 2.3, where the faces plotted in dark gray correspond to the only possible
of f0 ∪ g0 within an admissible discrete plane, with respect to Remark 2.6.1. The first
such case is the following:

f ∪ g ∪X = ,

where X = [0, 2]? ∪ [(0, 0, 1), 2]? is shown in dark gray. We must have X ⊆ A because
otherwise A would not be an annulus of P . However, this situation is impossible: there
does not exist any pattern Y ∈ LAR such that X ⊆ Y ⊆ A because Y would then overlap
with f0 or g0, which both are not in A by assumption. This implies that A is not strongly
LAR-covered, a contradiction.

The same reasoning applies to all the other possible cases for f0∪ g0, and by assumption
we have not considered the (problematic) patterns , , . D

Proposition 2.6.10 (Property A for Brun). Property A holds for Brun substitutions with
LBrun, when restricted to planes Γv with 0 6 v1 6 v2 6 v3.

Proof. There are finitely many two-face connected patterns f ∪ g, so we can enumerate
all the faces f, g, f0, g0 that satisfy f ∈ Σ(f0), g ∈ Σ(g0), f ∪ g is connected and f0 ∪ g0
is disconnected (see Definition 2.3.4), for Σ = ΣBrun

1 , ΣBrun
2 and ΣBrun

3 . It turns out that
there are 9 such possibilities, where the corresponding values for f0 ∪ g0 are shown in the
table below.

ΣBrun
1 ΣBrun

2 ΣBrun
3

[0, 2]? ∪ [(0, 1, 0), 1]? [0, 3]? ∪ [(1, 0,−1), 3]? [0, 3]? ∪ [(0, 1,−1), 3]?
[0, 2]? ∪ [(1,−1, 0), 2]? [0, 3]? ∪ [(0, 1, 1), 1]? [0, 3]? ∪ [(0, 0, 1), 2]?
[0, 2]? ∪ [(0, 1, 1), 1]? [0, 3]? ∪ [(0, 0, 1), 1]? [0, 3]? ∪ [(1, 0, 1), 2]?



2.6 Technical proofs 53

f0 ∪ g0 f ∪ g f0 ∪ g0 f ∪ g f0 ∪ g0 f ∪ g

Figure 2.3: Disconnected preimages of connected two-face patterns by ΣAR
1 (left), ΣAR

2
(middle) and ΣAR

3 (right). The only possible completion of f0 ∪ g0 within an admissible
discrete plane are shown in dark gray.

Let us treat the case f0 ∪ g0 = [0, 2]? ∪ [(1,−1, 0), 2]?. Suppose that there exists a pattern
P and an LBrun-annulus A of P that is included in a discrete plane such that f0 ∈ P and
g0 /∈ A. Because A is an annulus of P , every extension of f0 ∪ g0 within a discrete plane
must be of the form or , where f0 ∪ g0 is shown in light gray and the dark gray
faces are in A.

The first case cannot happen because it contains an occurrence of , which is forbidden
since we are restricted to discrete planes Γv with 0 6 v1 6 v2 6 v3 (see Remark 2.6.1).
The second case also cannot happen, because A is strongly LBrun-covered. Indeed, ⊆ A,
so there must exist a translate of a pattern of LBrun that is included in A and that contains

. The only such pattern in LBrun is (note that /∈ LBrun). This is impossible
because then and f0 ∪ g0 overlap, which is a contradiction because f0, g0 /∈ A and
⊆ A. The same reasoning applies to the eight other cases. D

In order to prove Property A for Jacobi-Perron substitutions (Proposition 2.6.12 below),
we first need to prove Lemma 2.6.11 below, which describes all the possible disconnected
preimages by ΣJP

a,b of a two-face connected pattern. A striking fact is that there are only
three possible such preimages, despite the fact that a and b can take infinitely many values.

Lemma 2.6.11. Let f and g be two faces such that

(1) f ∪ g is included in a discrete plane Γv with 0 < v1 6 v3 and 0 < v2 6 v3;
(2) f ∪ g is disconnected;
(3) ΣJP

a,b(f ∪ g) is connected for some 0 6 a 6 b, b 6= 0.
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Then f ∪ g is a translate of one of the three patterns

P1 = = [0, 3]? ∪ [(1, 0,−1), 3]?,

P2 = = [0, 3]? ∪ [(1,−1,−1), 3]?,

P3 = = [0, 3]? ∪ [(−1, 1,−1), 3]?.

Proof. We first need the following easy preliminary fact (Equation 2.1 below), which can
be checked by inspection of finitely many cases. A two-face pattern P = [x, i]? ∪ [y, j]? is
edge-connected if and only y− x ∈ Vij , where

V11 = {±(0, 1, 0),±(0, 0, 1),±(0, 1,−1),±(0, 1, 1)},
V22 = {±(1, 0, 0),±(0, 0, 1),±(1, 0,−1),±(1, 0, 1)},
V33 = {±(1, 0, 0),±(0, 1, 0),±(1,−1, 0),±(1, 1, 0)},
V12 = {(0, 0, 0), (−1, 1, 0),±(0, 0, 1), (0, 1,−1), (−1, 1,−1), (−1, 1, 1), (−1, 0, 1)},
V13 = {(0, 0, 0), (−1, 0, 1),±(0, 1, 0), (−1, 1, 0), (−1, 1, 1), (−1,−1, 1), (0,−1, 1)},
V23 = {(0, 0, 0), (0,−1, 1),±(1, 0, 0), (−1, 0, 1), (−1,−1, 1), (1,−1, 1), (1,−1, 0)},
V21 = −V12, V31 = −V13, V32 = −V22.

(2.1)

In contrast with the Brun substitutions, we cannot prove Lemma 2.6.11 by enumerating all
the possibilities because a and b can take infinitely many values. However, the problem can
be reduced to solving a simple family of linear equations, which then allows a systematic
study of the disconnected preimages of f ∪ g.

We will show that if Condition (3) holds, then Condition (1) or (2) fails, unless f ∪ g is
a translate of P1, P2 or P3. We will only treat the cases (i, j) = (1, 1) and (i, j) = (3, 3),
where i is the type of f and j is the type of g. These two cases correspond to the simplest
and the most complicated cases, respectively. The other cases can be treated similarly.
Let Ma,b = MσJP

a,b
.

Case (i, j) = (1, 1) Let f = [x, 1]? and g = [y, 1]? be two faces contained in a same
discrete plane, and assume that Condition (3) holds. There exist 0 6 a 6 b with b 6= 0
such that the pattern

ΣJP
a,b(f ∪ g) = [M−1

a,bx + (a, 0, 0), 2]? ∪ [M−1
a,by + (a, 0, 0), 2]?

is connected. Consequently, we have M−1
a,b(y − x) ∈ V22 thanks to Equation (2.1). It

follows that

y− x ∈ {Ma,bv : v ∈ V22} =
{
±
( 0

0
1

)
,±
( 0

1
b−1

)
,±
( 0

1
b

)
,±
( 0

1
b+1

)}
.

Since a and b can take all possible values with 0 6 a 6 b and b 6= 0, this gives

y− x ∈
{
±
( 0

0
1

)
,±
( 0

1
t

)
: t > 0

}
.

Now, if y−x = ±(0, 0, 1) or ±(0, 1, 0), then y−x ∈ V11, so f ∪g is connected (by Equation
(2.1)), which contradicts Condition (2). If y− x = (0, 1, t) with t > 1 then Condition (1)
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is violated by the fact that there exists no discrete plane Γv with 0 < v1 < v3 and
0 < v2 < v3 which contains both f and g. Indeed, if it were the case, Definition 1.2.1
would imply that −v1 < v2 + tv3 < v1, which is impossible for 0 < v1 < v3 and
0 < v2 < v3. The same reasoning applies to the remaining case y− x = (0,−1,−t), with
t > 1.

Case (i, j) = (3, 3) Let f = [x, 3]? and g = [y, 3]? be two faces contained in a same
discrete plane, and assume that Condition (3) holds. According to Equation (2.1), the
fact that ΣJP

a,b(f ∪ g) is connected implies that one of the following six relations:

M−1
a,b(y− x) ∈ V11,

M−1
a,b(y− x) + (k, 0, 0) ∈ V12 (0 6 k 6 a− 1),

M−1
a,b(y− x) + (`, 0, 0) ∈ V13 (0 6 ` 6 b− 1),

M−1
a,b(y− x) + (k − k′, 0, 0) ∈ V22 (0 6 k, k′ 6 a− 1),

M−1
a,b(y− x) + (`− k, 0, 0) ∈ V23 (0 6 k 6 a− 1, 0 6 ` 6 b− 1),

M−1
a,b(y− x) + (`− `′, 0, 0) ∈ V33 (0 6 `, `′ 6 b− 1),

for some 0 6 a 6 b with b 6= 0. This is equivalent to

y− x ∈
{( 0

0
s

)
,±
( 1

0
s

)
,
(−1

1
s

)
,±
( 0

1
t

)
,±
( 1

1
t

)
,
( 1
−1
−t

)
: s ∈ Z, t > 0

}
.

This either contradicts Condition (1) or (2), or else implies that f ∪ g is equal to P1,
P2 or P3. Indeed, let Γv be a discrete plane that contains both f and g. Thanks to
Definition 1.2.1, we can restrict the possible values of x− y even further. The remaining
valid solutions are shown in the following table, where s ∈ Z, t > 0, 0 < v1 < v3 and
0 < v2 < v3. We then observe that either y−x ∈ V33 (so Condition (2) is violated because
f ∪ g is connected thanks to Equation (2.1)), or that f ∪ g is equal to P1, P2 or P3.

Inequalities Solutions
−v3 < sv3 < v3 s = 0: y− x ∈ V33
−v3 < v1 + sv3 < v3 s = 0: y− x ∈ V33; s = 1: P1
−v3 < −v1 + v2 + sv3 < v3 s = 0: y− x ∈ V33; s = −1: P3; s = 1: P2
−v3 < v2 + tv3 < v3 t = 0: y− x ∈ V33
−v3 < v1 + v2 + tv3 < v3 t = 0: y− x ∈ V33
−v3 < v1 − v2 − tv3 < v3 t = 0: y− x ∈ V33; t = 1: P3 D

Proposition 2.6.12 (Property A for Jacobi-Perron). Property A holds for Jacobi-Perron
substitutions with LJP, when restricted to discrete planes Γv with 0 6 v1 6 v3 and
0 6 v2 6 v3.

Proof. Thanks to Lemma 2.6.11, if f, g, f0, g0 satisfy the conditions required in Defini-
tion 2.3.4 for some Jacobi-Perron substitution, then f0 ∪ g0 must be equal to a translate
of one of the three patterns P1, P2, P3 of the statement of Lemma 2.6.11.
Suppose that there exists a pattern P and an LJP-annulus A of P that is included in

a discrete plane such that f0 ∈ P and g0 /∈ A ∪ P . Because A is an annulus of P , every
extension of f0 ∪ g0 within a discrete plane must be of the form

,
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where f0 ∪ g0 is shown in light gray and the dark gray faces are in A. Now, similarly as in
the proof of Proposition 2.6.10, a contradiction must occur in each case, thanks to the
strong LJP-covering of A and the precise choice of patterns in LJP. D

2.6.4 Generation graph for the Arnoux-Rauzy substitutions
We now give a direct proof of the fact that iterating an admissible Arnoux-Rauzy sequence
of substitutions starting from U always yields an LAR-annulus of U . This will be done
thanks to the graph used in the proof of Lemma 2.6.13 which tracks all the possible
forward images of U by Arnoux-Rauzy substitutions.
Let us note that the existence of a finite graph such as the one in Figure 2.4 which

provides the description of the possible annuli surrounding the unit cube is the key
ingredient of the proof. There is no reason a priori for such a finite graph to exist for a
given set of substitutions.

Lemma 2.6.13. Let Σ and Σ′ be two products of ΣAR
1 , ΣAR

2 and ΣAR
3 in which each

substitution appears at least once. Then, ΣΣ′(U) \ U contains an LAR-annulus of U .

Proof. Let w,w′ ∈ {1, 2, 3}n be such that w = i1 · · · in, w′ = i′1 · · · i′m, Σ = ΣAR
i1
· · ·ΣAR

in
,

and Σ = ΣAR
i′1
· · ·ΣAR

i′m
. This proof is a case study, which we formalize as the study of the

directed graph in Figure 2.4. The vertices of this finite graph are patterns. For every edge
P

i−→ Q we have Q ⊆ ΣAR
i (P ), and every vertex has three outgoing edges with distinct

labels 1, 2 and 3 (for the sake of clarity, loops are not drawn in Figure 2.4). The six
extremal patterns are valid LAR-annuli.

It can be checked that one of the six extremal vertices is always reached when following
the path of labelled edges given by ww′ starting at the top vertex U . Indeed, we can
assume without loss of generality (by symmetry) that w = 1m2n3x, where m,n > 1 and
x ∈ {1, 2, 3}?. If we follow the path described by w starting from U in the graph, then
just after having read the first 3 in w, we can only be at pattern P123 or P213, where
Pj1···jk denotes the pattern reached by following j1 · · · jk in the graph. Hence after having
read the first w we are either in P123 or P213, or we have reach an LAR-annulus. So, after
reading ww′, an LAR-annulus is necessarily reached because w′ contains at least a 1. D
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Figure 2.4: The graph used in the proof of Lemma 2.6.13 for Arnoux-Rauzy substitutions.
Each vertex has three outgoing edges with distinct labels 1, 2 or 3. (The 9 loops and the
18 outgoing edges of the extremal vertices are not drawn.) Note that this not a generation
graph in the sense of Definition 2.4.1, it was not constructed like a generation graph, and
the vertices are not faces but patterns.
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2.6.5 Generation graphs for the Brun substitutions
Graph GBrun for the seed U We now construct generation graphs for the substitutions
ΣBrun

1 ,ΣBrun
2 ,ΣBrun

3 . To construct the graphs below we use the filter FBrun equal to the set
of all the faces f that belong to a discrete plane Γv with 0 < v1 < v2 < v3.

Let GBrun be the generation graph (see Definition 2.4.1) associated with ΣBrun
1 ,ΣBrun

2 ,ΣBrun
3 ,

the filter FBrun and the initial set of faces X = VBrun
1 ∪VBrun

2 \ U (the union of the minimal
annuli given in Proposition 2.6.3). Its computation stops after two iterations of the
algorithm, that is, G = G2. It has 19 vertices and 47 edges.
Since we are interested only in Brun expansions containing infinitely many 3’s, we

remove from GBrun all the vertices which are not contained in an infinite path containing
infinitely many 3’s. Doing so yields the following graph, whose properties we will exploit
in the proof of Theorem 2.5.2.

fa fb fc

fd fe ff

fg

fh

fi

1

1
1

1

2

2

3

33

2

3

2

1

3

1

2

3

The faces corresponding to the vertices of the graph are

fa = [(1, 1,−1), 1]? fd = [(−1, 1, 0), 2]? fg = [(−1, 0, 1), 2]?

fb = [(1,−1, 1), 3]? fe = [(−1, 0, 1), 3]? fh = [(−1,−1, 1), 3]?

fc = [(1, 1,−1), 2]? ff = [(−1, 1, 0), 3]? fi = [(1, 1,−1), 3]?.

Example 2.6.14. The vertex fe is at the end of the following infinite backward path
consisting of the following cycle: · · · fe

2→ fd
3→ fa

3→ fb
3→ fe. So Proposition 2.4.4 (2)

implies that fe /∈ (ΣBrun
3 ΣBrun

3 ΣBrun
3 ΣBrun

2 )n(U) for every n > 0.
On the other hand we also know that for every sequence (in)n∈N such that iterating

the ΣBrun
in

from U fails to generate an LBrun-annulus U , then the faulty sequence (in)n∈N
must appear in GBrun as the label of an infinite backward path avoiding U , thanks to
Proposition 2.4.4 (1). This allows us to detect such faulty sequences.

Graph HBrun for the seeds VBrun
i We now construct another generation graph for the

Brun substitutions, with the seeds VBrun
1 and VBrun

2 instead of U . This time, every Brun-
admissible sequence allows the generation of some LBrun-annuli around VBrun

1 or VBrun
2 .

Before we compute HBrun we must enumerate all the possible LBrun-annuli of VBrun
1 or

VBrun
2 . This can be done similarly as in the proof of Proposition 2.6.3, and yields the
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following four possible annuli.

B1 = B2 = B3 = B4 =

Let HBrun be the generation graph (according to Definition 2.4.1) constructed with substi-
tutions ΣBrun

1 ,ΣBrun
2 ,ΣBrun

3 , filter FBrun and initial set X = B1 ∪B2 ∪B3 ∪B4 (a total of
60 faces). Its computation stops after six iterations of the algorithm (G = G6). It has 101
vertices and 240 edges. We use the structure of HBrun to prove the following lemma.

Lemma 2.6.15. Let V ∈ {VBrun
1 ,VBrun

2 }. There exists N such that for every (i1, . . . , in) ∈
{1, 2, 3}n containing more than N occurrences of 3, the pattern ΣBrun

i1
· · ·ΣBrun

in
(V) contains

an LBrun-annulus of VBrun
1 or VBrun

2 .

Proof. Suppose that such an N does not exist. Then, by a compactness argument, we
can prove that there exists an infinite sequence (in)n∈N ∈ {1, 2, 3}N containing infinitely
many 3’s such that for every n > 0, the pattern ΣBrun

i1
· · ·ΣBrun

in
(V) does not contain an

LBrun-annulus of VBrun
1 or VBrun

2 .
Because B1, B2, B3, B4 are all the possible LBrun-annuli of VBrun

1 and VBrun
2 , this means

that there exists a face f0 ∈ Γv ∩ (B1 ∪B2 ∪B3 ∪B4) such that f0 /∈ ΣBrun
i1
· · ·ΣBrun

in
(V) for

all n > 0, where v is the unique vector determined by the Brun-admissible sequence (in).
Since the generation graph HBrun constructed above is finite, we can check that there

exists M > 1 such that if fn
jn→ · · · f1

j1→ f0 is a directed path in HBrun with jk = 3 more
than M times, then we have fn ∈ V. One possible way to check this property is to verify
that every cycle of HBrun that contains an edges labelled by 3 consists only of faces in V.

However, Statement (1) of Proposition 2.4.4 implies that for every n > 0 there exists a
path fn

in→ · · · f1
i1→ f0 with fn /∈ V in HBrun. This is a contradiction because the sequence

(in) contains infinitely manys 3’s, so the proposition is proved. D

2.6.6 Generation graphs for the Jacobi-Perron substitutions
In this section we take the filter FJP to be the set of faces f that belong to a discrete
plane Γv such that and 0 < v1 < v3 and 0 < v2 < v3.

The graph GJP Let GJP be the generation graph (see Definition 2.4.1) associated with
the additive Jacobi-Perron substitutions Θ1,Θ2,Θ3,Θ4, and the Jacobi-Perron minimal
annuli X = VJP

1 ∪ VJP
2 ∪ VJP

3 ∪ VJP
4 (defined in Proposition 2.6.4). Unlike the graph GBrun,

the graph GJP is infinite (we never have GJP
n = GJP

n+1). However, the structure of GJP is
simple enough, so we can describe it in detail. In order to do so we need the following
lemma, which can be proved easily by studying the preimages of the additive Jacobi-Perron
substitutions Θ1,Θ2,Θ3 and Θ4.

Lemma 2.6.16. For n > 0, let

en = [(−n, 1, 0), 3]? gn = [(−n,−1, 1), 3]?
fn = [(−n, 1, 0), 1]? hn = [(−n,−1, 1), 1]?.
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For every integer n > 1, the only preimages of en, fn, gn, hn by one of the additive
Jacobi-Perron substitutions Θ1,Θ2,Θ3 or Θ4 are given by

en ∈ Θ1(en+1) fn ∈ Θ1(fn) gn ∈ Θ1(gn) hn ∈ Θ1(hn−1)
en ∈ Θ1(fn) fn ∈ Θ2(hn−1) gn ∈ Θ1(hn−1) hn ∈ Θ2(hn).
en ∈ Θ2(en) gn ∈ Θ2(hn)
en ∈ Θ2(fn−1) gn ∈ Θ2(hn+1)

We can now describe the infinite graph GJP defined above. Let GJP
3 be the graph obtained

at the third step in the computation of the generation graph in Definition 2.4.1. This
graph has 33 vertices and 93 edges. The only faces of GJP

3 that admit preimages allowed
by the filter set FJP which are not vertices of the graph GJP

3 are e4, f3, g4 and h3.
From Lemma 2.6.16 we deduce that GJP has two infinite branches, the first consisting

of vertices en, fn and the second consisting of vertices gn, hn, and the only edge labels
appearing in these infinite branches are 1 and 2.

Since we are interested only in the additive Jacobi-Perron-admissible sequences (in)n∈N
(that is, containing infinitely many edge labelled by 3 or 4), we remove from GJP all the
vertices which are not at the beginning of a backward infinite path labelled by such a
sequence (in)n∈N. This yields the following subgraph of GJP (which now contains only one
infinite branch):

fb fd g0 g1 g2

fa fc fe h0 h1 h2

2 2 2 21

1 1 1 1

2

2 3

4

4

4 3

3

2

2 1

1

2

2 1

1

2

2 1

1

2

where the faces are given by

fa = [(1, 1,−1), 1]? fe = [(−1, 1, 1), 3]?
fb = [(1, 1,−1), 3]? gn = [(−n,−1, 1), 3]? for n > 0
fc = [(1, 1,−1), 2]? hn = [(−n,−1, 1), 1]? for n > 0
fd = [(1,−1, 1), 3]?

and the edges are the ones shown above, plus, for every n > 0,

gn
1→ gn, hn

2→ hn, hn
2→ gn, hn

1→ gn+1, hn
1→ hn+1, gn+1

2→ gn.

Moreover we have deleted the edge fe
4→ fd in the above graph, because every infinite path

containing it is incompatible with the condition an = bn ⇒ an+1 6= 0 on Jacobi-Perron
expansions (an, bn)n>1 (see Section 1.5). Indeed, if the edge fe

4→ fd is allowed, then the
forbidden product Θ4Θk

1Θ3 = ΣJP
1,1ΣJP

0,k+1 is allowed for some k > 0.

The graph HJP We now construct a generation graph HJP for the seeds VJP
1 , VJP

2 , VJP
3

and VJP
4 instead of U . Before computing HJP we must enumerate all the possible LJP-annuli



2.6 Technical proofs 61

of the VJP
i . This can be done similarly as in the proof of Proposition 2.6.3, and yields

eight possible annuli B1, . . . , B8, which are similar to the annuli B1, . . . , B4 computed for
the graph HBrun.
Let HJP be the generation graph (according to Definition 2.4.1) associated with the

additive Jacobi-Perron substitutions Θ1,Θ2,Θ3,Θ4, the initial set X = B1 ∪ · · · ∪ B8
and the filter FJP. Thanks to the structure of HJP we have the following lemma, which
can be proved in exactly the same way as the corresponding Lemma 2.6.15 for the Brun
substitutions.

Lemma 2.6.17. Let V ∈ {VJP
1 ,VJP

2 ,VJP
3 ,VJP

4 }. There exists N such that for every
(i1, . . . , in) ∈ {1, 2, 3, 4}n containing more than N occurrences of 3 or 4, the pattern
Θi1 · · ·Θin(V) contains an LJP-annulus of VJP

1 , VJP
2 , VJP

3 or VJP
4 .

2.6.7 Generating translates of seeds
Lemma 2.6.18. There exists N > 0 such that if (i1, · · · , in) ∈ {1, 2, 3}n contains more
than N occurrences of 3, then ΣBrun

i1
· · ·ΣBrun

in
(U) contains a translate of VBrun

1 or VBrun
2 .

Proof. Suppose that such an N does not exist. Then, by a compactness argument, there
exists an infinite sequence (in)n∈N such that

⋃
n>0 ΣBrun

i1
· · ·ΣBrun

in
(U) does not contain any

translate of VBrun
1 or VBrun

2 . By Theorem 2.5.2, there exists M such that (in)n∈N must be
the labelling of an infinite backward path · · · iM+1→ • iM→ • in the following graph.

1

1 1
2

2
2

3

33

Let k > 0 be such that every path • iM+k→ · · · iM→ • in the graph is such that the word
iM+k · · · iM starts with a word contained in one of the following rational languages:

• L21?321?31?2,
• L21?331?31?21?2,
• L21?331?31?21?33,
• L21?331?31?21?321?31?2(1 ∪ 2 ∪ 3),

where L = (2 ∪ 1)?3(2 ∪ 1)?3(2 ∪ 1)?3(2 ∪ 1)?. It can be checked by inspection that such a
k exists: by following the edges we must turn in counter-clockwise direction along the four
vertices, because in = 3 infinitely often. Hence, L is necessarily obtained because it only
requires three 3’s, and the rest of each language is obtained by starting at the top-right
vertex of the graph, and enumerating all the possible path labellings encountered.

We now prove that ΣBrun
iM
· · ·ΣBrun

iM+k
(U) contains a translate of VBrun

1 or VBrun
2 . This is

done thanks to the graph shown in Figure 2.5: following any corresponding path labelled by
iM , . . . , iM+k starting from U in the graph eventually yields to VBrun

1 or VBrun
2 , which proves

our claim because for every edge P i−→ Q in the graph, ΣBrun
i (P ) contains a translated

copy of Q. It follows that the lemma is proved, by contradiction of the assumption made
on (in)n∈N, because ΣBrun

i1
· · ·ΣBrun

iM+k
(U) must contain a translate of one of the VBrun

i . D
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Note that unlike the generation graphs constructed in Sections 2.6.5 and 2.6.6, the
graph of Figure 2.5 used in the proof of Lemma 2.6.18 has been constructed “by hand”
and not algorithmically. Constructing such a graph is tedious, but checking its validity is
easy (for example using computer algebra).

P0P2P12

P32

P1332 P332 P232

P31332 P3332 P3232 P13232

P123332 P23332 VBrun
1

P323332 VBrun
2

P2323332P12323332

P32323332P312323332

P232323332VBrun
1

3 3

3

21

3
3

3
2

1

33 3

22

1

2
2

1 2

3

2

3
3

2

1

33

21
1, 2

1, 2

3

1, 2

1, 2

1, 2

1, 21

1 1

11

1

1

1

Figure 2.5: The graph used in the proof of Lemma 2.6.18. Each vertex is a pattern, and
there is an edge P i−→ Q if ΣBrun

i (P ) contains a translated copy of Q.
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We now prove an analogue of the previous lemma for Jacobi-Perron substitutions. The
proof is easier (we need a smaller graph) because the set of “bad” Jacobi-Perron is more
constrained by Theorem 2.5.4.

Lemma 2.6.19. There exists N > 0 such that if n > N and (a1, b1), . . . , (an, bn) is an
admissible Jacobi-Perron expansion, then ΣJP

a1,b1
· · ·ΣJP

an,bn
(U) contains a translate of VJP

1 ,
VJP

2 , VJP
3 or VJP

4 .

Proof. Similarly as in the proof of Lemma 2.6.18, we can apply Theorem 2.5.4, so that
the result only needs to be proved for products of the form Θi1 · · ·Θin with i1 · · · in ∈
31?31?22?4, which is a translation of the condition given in Theorem 2.5.4 in terms of
additive Jacobi-Perron substitutions. This is settled by the following graph, in which every
edge P i−→ Q means that ΣBrun

i (P ) contains a translated copy of Q.

3 3 2 4
1 1 2

Finally, it can be checked that the last pattern is sufficient to generate a seed VJP
i , thanks

to Theorem 2.5.4. D

2.6.8 The case of the fully subtractive algorithm
In Section 3.4 we will need some discrete plane generation results for the substitutions
associated with the fully subtractive continued fraction algorithm (defined in Section 3.4).
We deal with this family of substitutions separately from the Arnoux-Rauzy, Brun and
Jacobi-Perron because it will be used only in the discrete-geometrical applications of
Section 3.4. These substitutions behave in a way similar to the Arnoux-Rauzy ones, in
the sense that good annulus is always generated from U .
We then define

σFS
1 =


1 7→ 1
2 7→ 21
3 7→ 31

σFS
2 =


1 7→ 2
2 7→ 12
3 7→ 32

σFS
3 =


1 7→ 3
2 7→ 13
3 7→ 23,

and their associated dual substitutions given by

ΣFS
1 :


7→
7→
7→

ΣFS
2 :


7→
7→
7→

ΣFS
3 :


7→
7→
7→ .

The following set of patterns will used to establish good covering properties for the
subsitutions ΣFS

i :
LFS =

{ }
.

Proposition 2.6.20 (Strong LFS-covering). Let P be a strongly LFS-covered pattern which
is contained in a stepped plane that avoids , , and . Then ΣFS

i (P ) is strongly
LFS-covered for every i ∈ {1, 2, 3}.
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Proof. Let i ∈ {1, 2, 3}. We must first prove that ΣFS
i (P ) is LFS-covered. The proof relies

on Proposition 2.2.2 by checking that ΣFS
i (Q) is LFS-covered for all Q ∈ LFS. This makes

a total of twenty-seven patterns to check.

P ΣFS
1 (P ) ΣFS

2 (P ) ΣFS
3 (P )

Now, let X ⊆ ΣFS
i (P ) be a two-face connected pattern. We must prove that there exists

Y ∈ LFS such that X ⊆ Y ⊆ Σ(P ). If X is a translation of one of the six patterns , ,
, , , , then the strong covering condition is trivially verified by taking Y = X.

By assumption and by Lemma 2.6.21, Σ(P ) does not contain any translate of , or ,
so we ignore these cases for X.

It remains to treat the cases X = , or . We have X ⊆ Σ(P ), so it is sufficient
to check that for every pattern Q ⊆ P such that X ⊆ Σ(Q), there exists Y ∈ LFS such
that X ⊆ Y ⊆ Σ(Q). Moreover, since X is a two-face pattern, we can restrict to the case
where Q consists of two faces only, which leaves a finite number of cases to check for Q:

i Q ΣFS
i (Q)

1
1
2
2
3
3

i Q ΣFS
i (Q)

1
1
2
2
3
3

i Q ΣFS
i (Q)

1
1
2
2
3
3

The case of the first, third and fifth rows of each table is settled, by taking Y = ∈ LFS,
Y = ∈ LFS, or Y = ∈ LFS. For the second row of the first table with Q = ,
P is strongly LFS-covered so we have Q ⊆ Y0 ⊆ P with Y0 = ∈ LFS. It follows that
X ⊆ ΣFS

1 (Y0) = , so taking Y = ΣFS
1 (Y0) ∈ LFS works. The cases of the second and

fourth rows of the second table can be dealt with similarly.
In the last row of the third table with we have Q = , so must appear in Γ, which is

forbidden by assumption. This can be seen by using Remark 2.6.1 to compute the only
possible “completion” of Q within Γ (shown in dark gray): . In all the remaining cases,
Q is a pattern which is not allowed in Γ by assumption, so they can be ignored. D

The following lemma will be needed to to handle the three patterns forbidden in
Proposition 2.6.20. It is analogous to Lemma 2.6.6 that is used with the Arnoux-Rauzy
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substitutions.

Lemma 2.6.21. Let Γ be a stepped plane that does not contain any translate of one of
the patterns , , and . Then no translate of any of these four patterns appears in
ΣFS

1 (Γ) for all i ∈ {1, 2, 3}.

Proof. The patterns and admit no preimage that is included in a discrete plane, as
can be checked using Remark 2.6.1. For the two other cases, below are listed their possible
preimages (in light gray), together with their only possible “completion” within a discrete
plane (in dark gray) obtained thanks to Remark 2.6.1.

i Σ−1
i ( )

1 or

2 or

3 or

i Σ−1
i ( )

1 or

2 or

3 or

These two tables show that if one of these two patterns appears in Σ(Γ), then one of the
four patterns must appear in Γ, which concludes the proof. D

Lemma 2.6.22. Let Σ be a product of ΣFS
1 , ΣFS

2 and ΣFS
3 in which ΣFS

3 appears at least
four times. Then Σ(U) contains an LFS-annulus of U .

Proof. In the below graph, we have Q ⊆ ΣFS
i (P ) for every edge P i→ Q, so the result

follows.

1, 2, 3 3 3 3

1, 2 1, 2 1, 2 1, 2, 3

D

Proposition 2.6.23 (Property A for fully subtractive). Property A holds for ΣFS
1 ,ΣFS

2 ,ΣFS
3

with LFS, when restricted to discrete planes avoiding , , and .

Proof. We enumerate all the faces f, g, f0, g0 such that f ∈ ΣFS
i (f0), g ∈ ΣAR

i (g0), f ∪ g
is connected and f0 ∪ g0 is disconnected, for some i ∈ {1, 2, 3}. All the possibilities are
given in Figure 2.3, where the faces plotted in dark gray correspond to the only possible
of f0 ∪ g0 within an admissible discrete plane, with respect to Remark 2.6.1.
The first such possibilities are f ∪ g = , or , but cases can be ignored thanks

to Lemma 2.6.21. Another possibility is f ∪ g = , which admits six disconnected
preimages f0 ∪ g0 (two for each ΣFS

i ). These preimages are shown below (in light gray),
together with their only possible completion within a stepped plane (in dark gray):

ΣFS
1 : , ΣFS

2 : , ΣFS
3 : , .

The patterns that appear in dark gray are forbidden by Lemma 2.6.21, so this case is
settled. The last two possibilities are f ∪ g = or . Below (in light gray) are all the
possible preimages f0 ∪ g0 (which are the same for the two possibilities), and in dark gray
is shown their only possible completion X within a stepped plane:

ΣFS
1 : , ΣFS

2 : , ΣFS
3 : , .
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Now, we have X ⊆ A because f0 ∩ g0 is disconnected, but this contradicts the strong
LFS-covering of A. Indeed, X is a two-face connected pattern, but there cannot exist a
pattern Y ∈ LFS such that X ⊆ Y ⊆ A because then we must have Y = , or ,
so Y must overlap with f0 or g0, which is impossible because f0, g0 are not in A. D
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Chapter 3

Applications
We give some applications of the discrete plane generation results established in the previous
chapter. We start with some dynamical properties of finite products of Arnoux-Rauzy,
Brun and Jacobi-Perron substitutions in Section 3.1, and some topological properties of
their Rauzy fractals in Section 3.2. Some number theoretical properties of the associated
number systems are given in 3.3. Finally, a discrete geometrical result is obtained in
Section 3.4, using the methods of Chapter 2. The first three sections are joint work with
Valérie Berthé and Anne Siegel [BJS13, BJS12, BBJS13], and Section 3.4 is joint work
with Valérie Berthé, Damien Jamet and Xavier Provençal [BJJP13].
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Before stating our results we recall the following:

• the product σAR
i1
· · ·σAR

in
is Arnoux-Rauzy-admissible if (i1, . . . , in) contains each

symbol 1, 2 and 3 at least once;
• the product σBrun

i1
· · ·σBrun

in
is Brun-admissible if ik = 3 for some n ∈ {1, . . . , n};

• the product σJP
a1,b1

· · ·σJP
an,bn

is Jacobi-Perron-admissible if for every 1 6 k 6 n,
we have 0 6 ak 6 bk, bk 6= 0, and ak = bk implies ak+1 6= 0.
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3.1 Dynamical properties of products of substitutions
Apart from the case of irreducible unimodular Pisot substitutions on two letters, for which
the Pisot conjecture is true [BD02, HS03], there are few results about the dynamics of
infinite families of substitutions. One such result states that some families of substitutions
arising from β-numeration are semi-conjugate to toral translations; see [Aki00, BBK06].
The tools developed in Chapter 2 enable us to establish dynamical properties of the

infinite families consisting of arbitrary finite products of Arnoux-Rauzy, Brun or Jacobi-
Perron substitutions in Theorem 3.1.1 below.

Even though our tools are not fully algorithmic, they can be seen as an extension of the
techniques known for the study of a single substitution, where many algorithms have been
developed.

Theorem 3.1.1. For every admissible finite product σ of Arnoux-Rauzy, Brun or Jacobi-
Perron substitutions, the system (Xσ, S) is semi-conjugate to a translation on the two-
dimensional torus.

Proof. This theorem follows directly from Proposition 1.4.1 (due to [IR06]), which states
that (Xσ, S) is semi-conjugate to a toral translation if and only if E?

1(σ)n(U) covers
translates of patterns with arbitrarily large combinatorial radius. Indeed, this property is
proved in Theorem 2.5.1 for Arnoux-Rauzy substitutions, and in Theorem 2.5.5 for Brun
and Jacobi-Perron substitutions. D

Note that another proof of Theorem 3.1.1 for Arnoux-Rauzy substitutions has been
obtained in [BŠW13] by different methods (homological tools).

Markov partition for toral automorphisms Another dynamical application of Theo-
rems 2.5.1 and 2.5.5 is that for every matrix M which is a product of incidences matrices
of Arnoux-Rauzy, Brun or Jacobi-Perron substitutions, an explicit Markov partition can
be constructed for the toral automorphisms (T3,M), as explained in Section 1.4 and
in Figure 1.3 page 32. Moreover, the domains of the Markov partition in question are
connected, thanks to Theorem 3.2.1.

3.2 Topological properties of Rauzy fractals of products of
substitutions

Before stating the results of this section, we mention that there are many connections
between some topological properties of Rauzy fractals (such as being connected or having
zero interior point) and some number theoretical properties of the associated dominant
Pisot eigenvalue. This is described more in detail in Section 3.3.

Connectedness
The following result states that the Rauzy fractals of the substitutions in the families we
consider are all connected. Contrary to the other results of this section, this can be proved
by using L-coverings only (there is no need for strong coverings or the annulus property).
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Theorem 3.2.1. The Rauzy fractal of every admissible finite product of Arnoux-Rauzy,
Brun or Jacobi-Perron substitutions is connected.

Proof. Let σ be such an admissible product. Thanks to Propositions 2.6.5, 2.6.7 and 2.6.8,
these patterns E?

1(σ)n(U) are all L-connected, for the case of Arnoux-Rauzy, Brun and
Jacobi-Perron substitutions. (Where L is the set of patterns associated with the substitu-
tions.)

Since L consists of connected patterns only, the definition of L-coverings (Definition 2.2.1)
implies that every L-covered pattern is path-connected. It follows that the patterns
E?

1(σ)n(U) are connected for every n > 0, so the Rauzy fractal of σ is a Hausdorff limit of
connected sets, according to Definition 1.3.5. The result then follows from the fact that
connectedness is preserved by the Hausdorff limit. D

There are examples of such connected fractals which are not simply connected. This
raises the question of characterizing the products that yield a simply connected fractal,
which is an interesting and difficult question. (See Example 5.3 for a non-simply connected
Arnoux-Rauzy fractal.)

Remark 3.2.2. It is interesting to note that, even though some of these fractals are not
simply connected, all of them are the Hausdorff limit of simply connected polygons. The
simply connected polygons in question are the polygons Pn = hnσπσ(E?

1(σ)n(U)) given
in Definition 1.3.5. One way to prove that each Pn is simply connected is to prove that
Pn admits a tiling of the plane and does not have any cut point. We will not prove this
formally here, but this tiling property can be deduced from the fact that U = tiles
the discrete plane Γ(1,1,1) (periodically), so E?

1(σ)n(U) tiles E?
1(σ)n(Γ(1,1,1)) for all n > 0

thanks to Proposition 1.2.4. (The fact that E?
1(σ)n(U) does not have cut points follows

from the L-covering properties, because the patterns in L do not have cut points as well.)

Zero interior point
Discrete plane generation properties can be interpreted in terms of Rauzy fractals. More
precisely, the origin is as an interior point of the Rauzy fractal of σ if and only if the
patterns E?

1(σ)n(U) generate patterns with arbitrarily large combinatorial radius centered
at the origin (see [BS05] or [ST09]). This has the following immediate consequences
for Arnoux-Rauzy substitutions (by Theorem 2.5.1) and for Brun and Jacobi-Perron
substitutions (by Theorems 2.5.2 and 2.5.4).

Theorem 3.2.3. We have:

• The origin is an interior point of the Rauzy fractal of every admissible product of
Arnoux-Rauzy substitutions.
• The origin is not an interior point of the Rauzy fractal of an admissible product
σBrun
i1
· · ·σBrun

in
if and only if there exists a cycle • i1→ • i2→ · · · in→ • in the directed

graph given in Theorem 2.5.2.
• The origin is not an interior point of the Rauzy fractal of an admissible product
σJP
a1,b1

· · ·σJP
an,bn

if and only if the infinite sequence ((a1, b1), . . . , (an, bn))∞ satisfies
the condition given in Theorem 2.5.4.

This theorem is illustrated on some finite products of Brun substitutions in Figure 3.1.
The comments made in Example 2.5.3 also apply to the finite products of substitutions
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considered in Theorem 3.2.3. For example, the origin is an interior point of the Rauzy
fractal of σBrun

3 σBrun
3 σBrun

3 (σBrun
2 )k if and only if k is even; see Figure 3.1, (a) and (b) for

the associated Rauzy fractals when k = 1 or 2.

(a) σBrun
3 σBrun

3 σBrun
3 σBrun

2 σBrun
2 (b) σBrun

3 σBrun
3 σBrun

3 σBrun
2

(c) σBrun
2 σBrun

3 σBrun
2 (d) σBrun

1 σBrun
1 σBrun

3 σBrun
2 (e) σBrun

2 σBrun
3 σBrun

1 σBrun
1

Figure 3.1: Some Rauzy fractals of products of Brun substitutions. Only (b) and (d) do
not have the origin as an interior point. An example of a product whose Rauzy fractal has
zero interior point but whose reverse product does not is provided by (d) and (e). The
fractals of (c) and (d) correspond to the two examples of substitutions shown in Figure 2.1
of Section 2.1, where (c) generates a full discrete plane but (d) does not.

3.3 Number-theoretical implications
Links with topology of Rauzy fractals
The (F) property (introduced in [FS92]), which expresses some finiteness properties of
digital expansions in non-integer base β, can be reformulated in topological terms: it is
equivalent to the fact that the origin is an interior point of the central tile associated with
β [Aki99, Aki02].

Several variants of the (F) property have been proposed, one of them being the extended
(F) property, introduced in [BS05, FT06] to extend the classical (F) property to the
numeration system associated with a substitution σ. The extended (F) property can also
be stated in topological terms: it is true if and only if the origin is an interior point of the
Rauzy fractal associated with σ.

Consequently, Theorem 3.2.3, which characterizes the products of Arnoux-Rauzy, Brun
and Jacobi-Perron substitutions for which the origin is an interior point of the Rauzy
fractal, also provides a characterization of when such a product of substitutions satisfies
the extended (F) property.

The connectedness of the fractal is conjectured to guarantee explicit relations between
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the norm of β and the β-expansion of 1 [AG05]. The properties of rational numbers with
purely periodic β-expansions are closely related to the shape of the boundary of the Rauzy
fractal [ABBS08, AFSS10].
In Diophantine approximation, explicit computation of the size of the largest ball

contained in the fractal provides the best possible simultaneous approximations of some
two-dimensional vectors with respect to a specific norm [HM06].

Fractal tiles for cubic number fields
Thanks to a result by Paysant-Le-Roux and Dubois [PD84] we are able to associate Rauzy
fractal dynamics with every cubic real field in the theorem below.

Theorem 3.3.1. For every cubic real extension K of Q, there exist α, β ∈ K and a 3-letter
unimodular Pisot irreducible substitution σ such that K = Q(α, β) and such that the toral
translation (T2, x 7→ x+ ( αβ )) is semi-conjugate to (Xσ, S).

Proof. According to [PD84, Proposition IV], if K is a totally real cubic field, then
there exists a Pisot number β that generates K, with minimal polynomial P (X) =
X3 − c2X2 + c1X − 1 = 0, where c2 > 2c1 − 2 and c1 > 3. If we set

σ = σJP
0,1σ

JP
0,1σ

JP
c1−3,c2−c1

(an admissible product because c2 − c1 > c1 − 2), then Mσ has characteristic polynomial
P (X). Since Mσ is primitive, it admits a positive eigenvector v with v1+v2+v3 = 1 and we
haveQ(v2,v3) = K. The Jacobi-Perron expansion of v has period (c1−3, c2−c1)(0, 1), (0, 1)
(this is an admissible expansion). Now consider the projection πv,1⊥ along v onto the
plane with normal vector (1, 1, 1). This projection expresses as

πv,1⊥(x, y, x) = (v2(x+ y + z)− x)(e3 − e1) + (v3(x+ y + z)− y)(e3 − e2).

The vectors πv,1⊥(ei) expressed in the basis (e3 − e1, e3 − e2) are congruent to the
translation by (v2,v3) modulo Z2. The projection πv,1⊥ can also be used to define the
Rauzy fractal of σ (instead of the projection πσ defined in Section 1.3), so the results
follows by taking α = v2, β = v3 thanks to Proposition 1.4.1 and Theorem 2.5.5. D

Convergence of multidimensional continued fraction algorithms
The Arnoux-Rauzy substitutions ΣAR

1 ,ΣAR
2 ,ΣAR

3 (defined in section 1.5) and the substi-
tutions ΣFS

1 ,ΣFS
2 ,ΣFS

3 (defined in Section 3.4) have natural interpretations in terms of
multidimensional continued fraction algorithms, similarly as what we have described in
Section 1.5 for the Brun and Jacobi-Perron substitutions. To avoid confusion, in this
section we will denote by:

• FAR the continued fraction algorithm associated with ΣAR
1 ,ΣAR

2 ,ΣAR
3 ,

• FFS the continued fraction algorithm associated with ΣFS
1 ,ΣFS

2 ,ΣFS
3 .

The associated continued fraction algorithms can be obtained via the incidence matrices
of these substitutions, where each step of the algorithm is given by v(n−1) = tMΣAR

in
v(n)
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or v(n−1) = tMΣFS
in

v(n) as described in Section 1.5 for the Brun and Jacobi-Perron substi-
tutions. This yields the following two maps.

FAR : v 7→


(v1,v2 − v1,v3 − v1) if 0 < v1 6 v2 and 0 < v1 6 v3

(v1 − v2,v2,v3 − v2) if 0 < v2 6 v1 and 0 < v2 6 v3

(v1 − v2,v2 − v3,v3) if 0 < v3 6 v1 and 0 < v3 6 v2,

FFS : v 7→


(v1,v2 − v1,v3 − v1) if 0 < v1 6 v2 − v1 6 v3 − v1

(v2 − v1,v1,v3 − v1) if 0 < v2 − v1 < v1 6 v3 − v1

(v2 − v1,v3 − v1,v1) if 0 < v2 − v1 6 v3 − v1 < v1.

These two algorithms are very similar: in both of them, the smallest coordinate of v is
subtracted to the two others. For this reason FAR and FFS are called fully subtractive
algorithms. The only difference is that FFS reorders coordinates at each step.
The discrete plane generation properties established in Chapter 2 allow us to recover

some convergence properties of these two algorithms. We can define the FAR- and FFS-
expansions of a vector v in a similar way as in Section 1.5.

Theorem 3.3.2. The continued fraction algorithms associated with FAR and FFS are
convergent. More precisely:

• For every sequence (in)n∈N ∈ {1, 2, 3}N, in which 1, 2 and 3 each occur infinitely
often, there exists a unique vector v ∈ R3

>0 whose FAR-expansion is (in)n∈N.
• For every sequence (in)n∈N ∈ {1, 2, 3}N, in which 3 occurs infinitely often, there
exists a unique vector v ∈ R3

>0 whose FFS-expansion is (in)n∈N.

Proof. The statement for the Arnoux-Rauzy case is a direct consequence of the fact that
the sequence of vectors

w(n) := tMσAR
i1
· · · tMσAR

in
w

is convergent for every admissible infinite sequence (in)n∈N and for every vector w ∈ R3
>0.

Let us then prove this fact. Let (in)n∈N be an admissible expansion and let w ∈ R3
>0 be

arbitrary. We have U ⊆ Γw, so we can prove by induction, using Proposition 1.2.4, that

ΣAR
i1 · · ·Σ

AR
in (U) ⊆ ΣAR

i1 · · ·Σ
AR
in (Γw(n)).

for all n > 1. The result now follows because thanks to Theorem 2.5.1, the patterns
ΣAR
i1
· · ·ΣAR

in
(U) have arbitrarily large combinatorial radius as n→∞, so the vectors w(n)

are constrained to a unique direction in the limit. The situation is identical with the
substituions ΣFS

i . D

Note that we cannot directly deduce the same results for the Brun and Jacobi-Perron
algorithms because we have used their convergence properties to establish their discrete
plane generation properties in Section 2.4. Stronger (almost-everywhere) convergence
properties of such algorithms can be obtained by other methods [AD13]; see also [Sch00].

Remark 3.3.3. Unlike the Brun and Jacobi-Perron algorithms, the set of vectors that
admit an admissible FAR- or FFS-expansion is not full. The set of convergence of the two
algorithms is in fact a rather complicated set (plotted below). In the case of FAR it is
called the “Rauzy gasket” and has been proved to be homeomorphic to the Sierpiński
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triangle [AS13a]. Many properties of this set are currently unknown (its Lebesgue measure,
its fractal dimension, or whether it can be decided if a given vector belongs to it). See
Figure 3.2.

Figure 3.2: The Rauzy gasket. Picture from [AS13a].

3.4 Critical connectedness of arithmetical discrete planes
This section is devoted to an application in discrete geometry, concerning discrete planes
defined by taking the vertices in Z3 which are contained in an ω-neighborhood of an actual
two-dimensional plane in R3 (Definition 3.4.1). The number ω > 0 is referred to as the
thickness of the discrete plane, and modifying it naturally has an impact on the features
of the discrete plane.
The aim of this section is to study some properties of the infimum thickness Ω(v) for

which the discrete plane of normal vector v is 2-connected (i.e., is “path-connected” by
paths of adjacent vertices, see Definition 3.4.2).
In [JT09] an algorithm was given to compute this infimum Ω(v). However, it is not

known if a discrete plane is 2-connected when its thickness is precisely this infimum. We
answer this question in Theorem 3.4.8 by giving a characterization of which discrete planes
are 2-connected at thickness Ω(v). Again, we will use some discrete plane generation
methods developed in Chapter 2.

Arithmetical discrete planes and connecting thickness
In Chapters 1 and 2 we have been working with discrete planes (Definition 1.2.1), which
consist of an infinite union of faces [x, i]? for x ∈ Z3 and i ∈ {1, 2, 3}. In this section we
will consider a more basic notion of discrete planes, arithmetical discrete planes, consisting
only of elements of Z3, which we will interpret as “voxels” (three-dimensional pixels).
Their definition below has been introduced in [Rev91, And03]. Denote by e1, e2, e3 the
canonical basis of R3, and by 〈·, ·〉 the usual scalar product.

Definition 3.4.1. Let v ∈ R3
>0 and ω ∈ R+. The arithmetical discrete plane with

normal vector v, and thickness ω is the set P(v, ω) ⊆ Z3 defined by

P(v, ω) =
{

x ∈ Z3 : 0 6 〈x,v〉 < ω
}
.

Definition 3.4.2. Two distinct x,y ∈ Z3 are 2-adjacent if ‖x − y‖1 = 1. A subset
X ⊆ Z3 is 2-connected if for every x,y ∈ X, there exist x(1), . . . ,x(n) ∈ X such that
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x(i) and x(i+1) are 2-adjacent for all i ∈ {1, . . . , n− 1}, with x(1) = x and x(n) = y. The
connecting thickness Ω(v) of v ∈ R3

+ is defined by:

Ω(v) = inf {ω ∈ R+ : P(v, ω) is 2-connected} .

The two above definitions are illustrated in Figure 3.3. Note that these definitions focus
on 2-connectedness, but similar definitions are also possible for k-connectedness with k = 0
or 1. However, the value of Ω(v) for such alternative definitions can be directly deduced
from the value of Ω(v) for 2-connectedness (see [JT06]), so it is natural to restrict to
2-connectedness.

(a) ω = 1 (b) ω = 2.5

(c) ω = 4 (d) ω = 6

Figure 3.3: The arithmetical discrete plane P((1,
√

2, π), ω), with varying thickness ω. In
(a) and (b), P(v, 1) and P(v, 2.5) are not 2-connected, but in (c) and (d), P(v, 4) and
P(v, 6) are 2-connected. It follows that 1 < Ω(v), 2.5 6 Ω(v), 4 > Ω(v) and 6 > Ω(v).

Computing connecting thickness: the fully subtractive algorithm
In order to compute Ω(v), we can assume without loss of generality that 0 6 v1 6 v2 6 v3.
We thus restrict ourselves in the sequel to the set O+

3 =
{

v ∈ R3 : 0 6 v1 6 v2 6 v3
}
.

A first gross approximation of Ω(v) is provided by ‖v‖∞ 6 Ω(v) 6 ‖v‖1 (see [AAS97]).
Jamet and Toutant gave in [JT09] a procedure to compute Ω(v). It can be nicely expressed
in terms of the fully subtractive algorithm F : O+

3 → O
+
3 defined by

F(v) =


(v1,v2 − v1,v3 − v1) if v1 6 v2 − v1 6 v3 − v1

(v2 − v1,v1,v3 − v1) if v2 − v1 < v1 6 v3 − v1

(v2 − v1,v3 − v1,v1) if v2 − v1 6 v3 − v1 < v1.

This is the map FFS introduced on page 71. Similarly as with the Brun and Jacobi-Perron
algorithms, we denote by v(1),v(2), . . . the sequence of vectors obtained by iterating F on
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a vector v. The link between connecting thickness and the fully subtractive algorithm F
is given in the next theorem.

Theorem 3.4.3 ([JT09],[DJT09]). Let v ∈ O+
3 . The arithmetical discrete plane P(v, ω)

is 2-connected if and only if so is P(F(v), ω − v1). Consequently, Ω(v) = Ω(F(v)) + v1,
and the following algorithm computes Ω(v).

def FS(v):
return sorted([v[0], v[1]-v[0], v[2]-v[0]])

def connecting_thickness(v):
if v[0]+v[1] <= v[2]:

return max(v)
else:

return v[0] + connecting_thickness(FS(v))

Moreover, if the algorithm never stops, then Ω(v) =
∑∞
n=0 v(n)

1 = ‖v‖1/2.
Example 3.4.4. Let v = (1,

√
13,
√

17). Iterating F yields

v(1) = (1,
√

13− 1,
√

17− 1)
v(2) = (1,

√
13− 2,

√
17− 2)

v(3) = (
√

13− 3, 1,
√

17− 3)
v(4) = (4−

√
13,
√

17−
√

13,
√

13− 3)
v(5) = (

√
17− 4, 2

√
13− 7, 4−

√
13)

and stops because v(5)
1 + v(5)

2 6 v(5)
3 , so Ω(v) = 1 + 1 + 1 +

√
13− 3 + 4−

√
13 + 4−

√
13 =

8 −
√

13. Similarly, if v = (1, 3
√

10, π), then the algorithm stops after 19 steps and
Ω(v) = 2π−98 3

√
10+208. It is also possible to exhibit some examples where the algorithm

never stops, for example by choosing a right eigenvetor of one of the matrices of F. This
is the case for example with the vector v = (1, α+ 1, α2 + α+ 1) = (1, 1.54 . . . , 1.84 . . .),
where α = 0.54 . . . is the real root of x3 + x2 + x+ 1.

The set on which the algorithm of Theorem 3.4.3 never stops is defined by

F3 =
{

v ∈ O+
3 : v(n)

1 + v(n)
2 > v(n)

3 , for all n ∈ N
}
.

It will plays a crucial role in the characterization stated in Theorem 3.4.8: P(v,Ω(v)) is
2-connected if and only if v ∈ F3. This set has been studied in [Mee89], and its properties
are similar to that of the Rauzy gasket discussed in Remark 3.3.3. The next property
relates the expansion of a vector v and its belonging to F3.

Lemma 3.4.5. We have v ∈ F3 if and only the expansion (in)n∈N of v contains infinitely
many occurrences of 3.

Proof. Let v ∈ F3, and assume by contradiction that (in)n∈N does not take the value
3. One thus checks that limn→∞ v(n)

1 = limn→∞ v(n)
2 = 0, and hence, limn→∞ v(n)

3 = 0.
Furthermore, v(n+1)

1 + v(n+1)
2 + v(n+1)

3 + 2v(n)
1 = v(n)

1 + v(n)
2 + v(n)

3 , for all n. Hence
v1 + v2 + v3

2 =
∑
n>1

v(n)
1 .
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Note that the expansion of (v1,v2,v1 + v2) obtained by applying the fully subtractive
algorithm F to (v1,v2,v1 + v2) coincides on the first two coordinates with the expansion
of (v1,v2,v3), that is, Fn(v1,v2,v1 + v2) = (v(n)

1 ,v(n)
2 ,v(n)

1 + v(n)
2 ) for all n > 1. Hence,

here again v1 + v2 =
∑
n>1 v(n)

1 , which implies v3 = v1 + v2, a contradiction. Hence, the
sequence (in)n takes the value 3 at least once, and by repeating the argument indefinitely.

Conversely, assume that v 6∈ F3. If v(n)
1 +v(n)

2 6 v(n)
3 for some n, then v(m)

1 +v(m)
2 6 v(m)

3
for allm > n, and in particular, v(m)

3 −v(m)
1 > v(m)

2 > v(m)
1 . This implies that the sequence

(im)m>n will never take the value 3. D

Remark 3.4.6. If v(n)
1 +v(n)

2 < v(n)
3 for some n, then limn→∞ v(n) 6= 0. If v(n)

1 +v(n)
2 = v(n)

3
for some n, we can say nothing concerning the fact that limn→∞ v(n) = 0. Indeed, take
v = (v1,v1, 2v1) for some v1 > 0. Then limn→∞ v(n) = (0,v1,v1) 6= 0. Now take
v = (1/ϕ2, 1/ϕ, 1) with 1/ϕ+ 1/ϕ2 = 1 and ϕ > 0. One checks that limn→∞ v(n) = 0.

By using methods similar as in [AD13], we can prove the following proposition.

Proposition 3.4.7. If v ∈ F3, then dimQ{v1,v2,v3} = 3.

Main result
We can now state the main result of this section, Theorem 3.4.8, which is a characterization
of the vectors v for which the arithmetical discrete plane of thickness Ω(v) is 2-connected.
Proving the “⇒” direction of Theorem 3.4.8 can be done without too much effort (see

the proof below). To prove the converse we need to introduce several ingredients: given a
vector v ∈ F3, we will construct two sequences (Pn)n∈N and (Tn)n∈N of subsetes os Z3,
which play a crucial role in the proof of the theorem. We state and prove the theorem
now, but the definitons and properties are given in the next section.

Theorem 3.4.8. Let v ∈ O+
3 . The arithmetical discrete plane P(v,Ω(v)) is 2-connected

if and only if v ∈ F3.

Proof. Let v ∈ F3 and x ∈ P(v,Ω(v)). Theorem 3.4.3 we have Ω(v) = ‖v‖1/2. If
‖v‖∞ 6 〈x,v〉 < ‖v‖1/2, then ‖v‖∞ − v1 6 〈x − e1,v〉 < ‖v‖1/2 − v1 < ‖v‖∞, so
x − e1 ∈ P(v, ‖v‖∞). In other words, an element x of P(v,Ω(v)) either belongs to
P(v, ‖v‖∞) or is 2-adjacent to an element of P(v, ‖v‖∞).
Now, given y ∈ P(v,Ω(v)), both x and y belong or are adjacent to P(v, ‖v‖∞), so

they are 2-connected in P(v,Ω(v)) because:

• P(v, ‖v‖∞) ⊆ ∪∞n=0Tn, thanks to Propositions 3.4.13 and 3.4.14,
• ∪∞n=0Tn is 2-connected: it is a increasing union of sets Tn which are 2-connected
thanks to Proposition 3.4.11,

• ∪∞n=0Tn ⊆ P(v,Ω(v)), thanks to Proposition 3.4.10.

We now prove the converse implication, and we assume that P(v,Ω(v)) is 2-connected.
Assume dimQ{v1,v2,v3} = 1, v ∈ Z3 with gcd{v1,v2,v3} = 1. Let n ∈ N such that
v(n)

1 = 0. The plane P(v,Ω(v)) is 2-connected if and only if so is P(v(n),Ω(v(n))). But
Ω(v(n)) = v(n)

2 + v(n)
3 − 1 so P(v(n),Ω(v(n))) is the translation along e1 of an arithmetical

discrete line strictly thinner than a standard one and cannot be 2-connected. Hence
dimQ{v1,v2,v3} > 1. If v 6∈ F3, there exists n ∈ N such that v(n)

1 + v(n)
2 6 v(n)

3 . The
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plane P(v,Ω(v)) is 2-connected if and only if so is P(v(n),Ω(v(n))). But Ω(v(n)) =
‖v(n)‖∞, so P(v(n), ‖v(n)‖∞) cannot be 2-connected since x and x + e3 cannot be both
in P(v(n), ‖v(n)‖∞). D

Properties of the patterns Pn and Tn

Let us express the action of F in terms of the dual substitutions ΣFS
1 ,ΣFS

2 ,ΣFS
3 defined in

Section 2.6.8, similarly as done with the other continued fraction algorithms we have dealt
with. We also define, in the same way, the F-expansion of a vector v.

Definition 3.4.9 (Patterns Tn). Let v ∈ F3 be a vector with F-expansion (in)n∈N. Denote
by Mn the matrix tMσFS

in
, for all n > 1. The sequence (Tn)n∈N of subsets of Z3 defined

as follows for all n > 0:

T0 = {0}, T1 = {0, e1}, Tn+1 = Tn ∪
(

Tn + t(M1 . . .Mn)−1 · e1

)
.

Note that the second initial condition T1 = {0, e1} is consistent with the usual conven-
tion that an empty product of matrices is equal to the identity matrix.

Proposition 3.4.10. Let v ∈ F3. We have ∪∞n=0Tn ⊆ P(v,Ω(v)).

Proof. Let us prove that for all n ∈ N and x ∈ Tn, we have

〈x,v〉 <
n∑
i=0

v(i)
1 .

The case n ∈ {0, 1} can be checked easily. Assume that the inequality holds for some
n > 1, and let x ∈ Tn+1 = Tn ∪ (Tn + t(M1 · · ·Mn)−1 · e1). Then, two cases can occur:

(1) If x ∈ Tn then 〈x,v〉 <
n∑
i=0

v(i)
1 <

n+1∑
i=0

v(i)
1 .

(2) If x ∈ Tn+t(M1 · · ·Mn)−1·e1, then let y ∈ Tn such that x = y+t(M1 · · ·Mn)−1·e1.
We have

〈x,v〉 = 〈y + t(M1 · · ·Mn)−1 · e1,v〉
= 〈y,v〉+ 〈t(M1 · · ·Mn)−1 · e1,v〉
= 〈y,v〉+ 〈t(M1 · · ·Mn)−1 · e1,M1 . . .Mn · v(n)〉
= 〈y,v〉+ 〈e1,v(n)〉

= 〈y,v〉+ v(n)
1 <

∑
06i6n

v(i)
1 + v(n)

1 =
∑

06i6n+1
v(i)

1 . D

Proposition 3.4.11. Let v ∈ F3. For all n ∈ N, the set Tn is 2-connected.

Proof. With the same arguments as in proof of Proposition 3.4.10, and by using Proposi-
tion 3.4.7, we first get by induction that, for all n > 1:

Tn =
{

x ∈ Z3 : 〈x,v〉 =
n−1∑
i=0

εiv(i)
1 with εi ∈ {0, 1} for all i

}
.
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Now, for all n ∈ N, let xn ∈ Tn such that 〈xn,v〉 =
∑n−1
i=0 v(i)

1 (we set x0 = 0). Let us
prove by induction the following property: for all n > 1 there exists in ∈ {1, 2, 3} such
that xn− ein ∈ Tn−1. This property implies that xn is 2-adjacent to Tn−1, which implies
the 2-connectedness of Tn.
The induction property is true for n = 1 with x1 = e1. Let us now assume that

the induction hypothesis holds for n > 1. Let u1 · · ·un ∈ {1, 2, 3}N be such that
tMσFS

u1
· · · tMσFS

un
v(n) = v. We have 〈xn+1,v〉 = 〈xn,v〉 + v(n)

1 , and by definition of the
fully subtractive algorithm:

v(n)
1 =

{
v(n−1)

1 , if un = 1
v(n−1)

2 − v(n−1)
1 , if un ∈ {2, 3}.

We conclude the proof by a case distinction of the values taken by u1 · · ·un.
Case 1. If un = 1, then, 〈xn+1,v〉 = 〈xn,v〉+ v(n−1)

1 , and

〈xn+1 − ein ,v〉 = 〈xn − ein︸ ︷︷ ︸
∈Tn−1

,v〉+ v(n−1)
1 =

n−2∑
i=1

εiv(i)
1 + v(n−1)

1 ,

where εi ∈ {0, 1} for 1 6 i 6 n − 2, which implies that xn+1 − ein ∈ Tn, so taking
in+1 = in yields the desired result.
Case 2. If un ∈ {2, 3} and u1 · · ·un−1 = 1k, then we have xn+1 − e2 ∈ Tn, because

〈xn+1,v〉 = 〈xn,v〉+ v(n−1)
2 − v(n−1)

1 = 〈xn−1,v〉+ v(n−1)
2

= 〈xn−2,v〉+ v(n−2)
2 = · · · = 〈xn−1−k,v〉+ v(n−1−k)

2 = v(0)
2 .

Case 3. If un ∈ {2, 3} and u1 · · ·un−1 = · · · 21k with 0 6 k 6 n−2, then xn+1−ein−1−k ∈
Tn−1−k ⊆ Tn, because

〈xn+1,v〉 = 〈xn,v〉+ v(n−1)
2 − v(n−1)

1 = 〈xn−1,v〉+ v(n−1)
2

= 〈xn−1−k,v〉+ v(n−1−k)
2 = 〈xn−1−k,v〉+ v(n−2−k)

1 .

Case 4. If un ∈ {2, 3} and u1 · · ·un−1 = w31k with w ∈ {1, 2}` and k > 0, then so
xn+1 − e3 ∈ Tn, because

〈xn+1,v〉 = 〈xn−1−k,v〉+ v(n−1−k)
2 = 〈xn−2−k,v〉+ v(n−2−k)

3

= 〈xn−2−k−`,v〉+ v(n−2−k−`)
3 = v(0)

3 .

Case 5. If un ∈ {2, 3} and u1 · · ·un−1 = · · · 3w31k with w ∈ {1, 2}`, k > 0, then
xn+1 − ein−2−k−` ∈ Tn−2−k−` ⊆ Tn, because

〈xn+1,v〉 = 〈xn−2−k−`,v〉+ v(n−2−k−`)
3

= 〈xn−2−k−`,v〉+ v(n−3−k−`)
1 .

D

Definition 3.4.12 (Patterns Pn). Let v ∈ F3 be a vector with F-expansion (in)n∈N.
We define:
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• Pn = ΣFS
i1
· · ·ΣFS

in
(U) for n > 1 and P0 = U ;

• Pn = {x : [x, i]? ∈ Pn} for n > 0.

Proposition 3.4.13. Let v ∈ F3. For every n ∈ N, we have Pn ⊆ Tn.

Proof. We first remark that ΣFS
i (U) = U ∪ [e1, 2]? ∪ [e1, 3]? = for all i ∈ {1, 2, 3}. For

n ∈ N, we have

Pn+1 = ΣFS
i1 · · ·Σ

FS
inΣFS

in+1
(U)

= ΣFS
i1 · · ·Σ

FS
in (U ∪ [e1, 2]? ∪ [e1, 3]?)

= Pn ∪ ΣFS
i1 · · ·Σ

FS
in ([e1, 2]? ∪ [e1, 3]?),

which implies Pn ⊆ Pn+1. We have [e1, 2]? ∪ [e1, 3]? ⊆ e1 + U , so

Pn+1 ⊆ Pn ∪ ΣFS
i1 · · ·Σ

FS
in (e1 + U).

By Proposition 1.2.4 (1) and (2), it follows that

ΣFS
i1 · · ·Σ

FS
in (e1 + U) = M−1

σFS
in

· · ·M−1
σFS
i1
· e1 + ΣFS

i1 · · ·Σ
FS
in (U)

= (tMn · · · tM1)−1 · e1 + Pn

= t(M1 · · ·Mn)−1 · e1 + Pn,

where Mn = tMσFS
in
, which proves that Pn ⊆ Pn+1 ⊆ Pn ∪ (Pn + t(M1 · · ·Mn)−1 · e1).

The result now follows by induction. D

Ultimately, we prove the following proposition thanks to the discrete plane generation
properties of Chapter 2.

Proposition 3.4.14. If v ∈ F3, then
⋃∞
n=0 Pn = P(v, ‖v‖∞).

Proof. Let v ∈ F3 and let (in)n∈N be its F-expansion. By definition of the patterns Pn,
and thanks to the fact that {x : [x, i]? ∈ Γv} = P(v, ‖v‖∞), it is enough to prove that
the patterns ΣFS

i1
· · ·ΣFS

in
(U) have arbitrarily large combinatorial radius as n→∞.

This can be proved in exactly the same way as for the other families of substitutions
we considered in Chapter 2, so the proof follows the lines of the reasonning of the proof
of Theorem 2.5.1, by using Lemma 2.6.22 (to generate the first annulus), together with
Proposition 2.3.5 (the annulus property), Proposition 2.6.20 (strong covering conditions),
and Proposition 2.6.23 with Lemma 2.6.21 (Property A).
Note that since v ∈ F3, Lemma 3.4.5 implies that in = 3 infinitely many often, a fact

which was implicitely above in the statement of Lemma 2.6.22. D



80



81

Chapter 4

Rauzy fractals with countable
fundamental group

All the currently known examples of Rauzy fractals seem to suggest that the fundamental
group of a Rauzy fractal is always either trivial or uncountable. In this chapter we show
that such a “dichotomy” situation doesn’t hold. We prove that every free group of finite
rank can be realized as the fundamental group of the (planar) Rauzy fractal of a 4-letter
unimodular cubic Pisot substitution. Our construction relies on two symbolic operations
on substitutions: symbolic splitting and conjugacy by free group automorphisms. This is
joint work with Benoît Loridant and Jun Luo [JLL13].
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4.1 Introduction
We have seen in Section 1.3 that Rauzy fractal topology is very rich and diverse. There
are many explicit examples of fractals which are homeomorphic to a disc [Mes98, Mes06],
or whose fundamental group is uncountable [ST09]. However, there is no known example
of an “intermediate” constellation, where the fundamental group would be nontrivial, but
countable. There are also examples of infinite families where the fundamental group jumps
from trivial to uncountable when modifying parameters [LMST13].

In this chapter we will prove that such an intermediate situation is possible. We will first
prove in Proposition 4.2.5 that if the fundamental group of a Rauzy fractal is countable,
then it must be isomorphic to the free group Fk of rank k for some finite integer k. We
will then give a method to construct, for any k ∈ N, a 4-letter unimodular cubic Pisot
substitution whose Rauzy fractal fundamental group is homeomorphic to the free group
Fk of rank k (Theorem 4.5.3).

Our methods are based on symbolic operations on substitutions that induce manipulation
of the subtiles of their Rauzy fractals, namely symbol splittings and conjugation by free group
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automorphisms. Questions about the effect of conjugation by free group automorphisms
on Rauzy fractals have been raised in [Gäh10] and [ABHS06]. A consequence of this work
is that the fundamental group of the Rauzy fractal of a substitution σ is not preserved by
conjugating σ by free group automorphisms.

Strategy Rauzy fractals can naturally be decomposed into subtiles and subsubtiles (see
Definitions 1.3.2 and 4.2.2). We will manipulate these tiles within a fractal in order to
obtain the desired topological properties. This will be done using tools consisting of
two symbolic operations on substitutions, state splittings and conjugacy by free group
automorphisms. The strategy is more precisely described in Figure 4.1 below:

(a) Start with a 3-letter substitution σ whose Rauzy fractal and its subtiles are disklike.
(b) Take n large enough such that the subtiles of σn consist of sufficiently many subsub-

tiles for the next two steps to be applicable (Proposition 4.2.7).
(c) Split a symbol to isolate one subsubtile and turn it into a subtile of the Rauzy fractal

of a new substitution τ on four symbols (Proposition 4.3.2).
(d) Conjugate τ by a suitable free group automorphism ρ. The Rauzy fractal associated

with ρτρ−1 now has a hole (Proposition 4.4.1).

(a) Subtiles of σ (b) Subsubtiles of σ3

(c) Subtiles after splitting a symbol
in σ3

(d) Subtiles after conjugating by a
free group automorphism

Figure 4.1: The main strategy.
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4.2 Basic properties and definitions
We will need several definitions introduced in Section 1.3, including Rauzy fractals and
their subtiles (Definition 1.3.2), and the projection and renormalization maps πσ and hσ
associated with a substitution σ.

We insist again on the point already made in Remark 1.3.3, that the norm of the chosen
eigenvector vβ used to define πσ (and hence to define Rauzy fractals) affects the fractal
tiles up to an affine mapping. This fact will be used in Propositions 4.3.2 and 4.4.1, by
carefully choosing the eigenvectors to relate some Rauzy fractals coming from substitutions
which do not have the same number of letters, but have the same Pisot eigenvalue. The a
priori difficulty that such fractals “do not live in the same space” and cannot be compared
is solved, because we have chosen the representation space Rr × Cs for Rauzy fractals,
which only depends on the degree of β and not on the number of letters of the substitution.

If w ∈ A? is a word, we denote by wi the i-th symbol of w. A pair (j, k) ∈ A× N is an
occurrence of the symbol i in σ if σ(j)k = i, that is if the k-th letter of σ(j) is i. We
will denote occurrences by (j; k) to emphasize the fact that j is an element of A and k is
an index. The set of occurrences of i in σ is denoted by occ(σ, i).

Example 4.2.1. Let σ : 1 7→ 11213, 2 7→ 331, 3 7→ 1. We have occ(σ, 1) = {(1; 1), (1; 2),
(1; 4), (2; 3), (3; 1)}, occ(σ, 2) = {(1; 3)} and occ(σ, 3) = {(1; 5), (2; 1), (2; 2)}.

It is possible to decompose Rauzy fractals one step further than the subtiles Tσ(i): each
subtile Tσ(i) can be decomposed into its subsubtiles Tσ(i, j; k), defined below.

Definition 4.2.2. Let (j; k) ∈ occ(σ, i). The subsubtile Tσ(i, j; k) is defined by

Tσ(i, j; k) = hσ(Tσ(j)) + πσP(σ(j)1 · · ·σ(j)k−1).

Note that Tσ(i, j; k) is defined only if (j; k) ∈ occ(σ, i). Sirvent and Wang [SW02] have
proved that the tiles Tσ(i) are the solution of a graph-directed iterated function system,
which can be conveniently expressed in terms of subsubtiles and symbol occurrences in
the following theorem. Proofs of this result can also be found in [ST09] or [BR10].

Theorem 4.2.3. Let σ be primitive unimodular Pisot substitution on alphabet A. For
every i ∈ A we have

Tσ(i) =
⋃

(j;k)∈occ(σ,i)

Tσ(i, j; k).

Example 4.2.4. Let σ : 1 7→ 21, 2 7→ 31, 3 7→ 1. The subsubtiles of σ3 : 1 7→ 1213121, 2 7→
213121, 3 7→ 3121 are plotted in Figure 4.1 (b). The 9 subsubtiles of Tσ(1) correspond to
the 9 occurrences of 1 in σ3; the 5 subsubtiles of Tσ(2) correspond to the 5 occurrences of
2 in σ3; the 3 subsubtiles of Tσ(3) correspond to the 3 occurrences of 3 in σ3.

We now prove that free groups of finite rank are the only possible countable fundamental
groups of Rauzy fractals. Let us recall the following basics in topology [WD79]. A topo-
logical space X is a continuum if it is compact and connected. It is locally connected
if it has a base of connected sets. A path from x to y in X is a continuous function
f : [0, 1]→ X with f(x) = 0, f(y) = 1. X is path-connected if every two points of X are
joined by a path, and locally path-connected if it has a base of path-connected sets. It
follows from the theorem of Hahn-Mazurkiewicz that any locally connected continuum is
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path-connected. Moreover, in metric spaces, every locally connected continuum is locally
path-connected by results of Mazurkiewicz, Moore and Menger (see [Kur68, Section 50,
Chapter II, p.254]).

Proposition 4.2.5. Let σ be a primitive unimodular Pisot substitution and let Tσ be its
Rauzy fractal. Suppose that Tσ and its subtiles are planar locally connected continua. If
the fundamental group of Tσ is countable, then it is isomorphic to the free group Fk on k
generators for some finite rank k.

Proof. This result can be proved in two different ways. A theorem of Shelah [She88]
states that for every compact, path-connected and locally path-connected metric space
K, if the fundamental group of K is not finitely generated then it is uncountable, so the
result follows directly by contraposition.

Another result by Conner and Lamoreaux [CL05] states that if K is a connected, locally
path-connected set of the plane, then its fundamental group is not free if and only if it is
uncountable, which also directly implies the result. D

Remark 4.2.6. For a given primitive unimodular Pisot substitution, a sufficient condition
for the associated Rauzy fractal and its subtiles to be locally connected continua can be
found in [ST09, Theorem 4.13]. This condition can be checked algorithmically.

Proposition 4.2.7. Let p > 1. Let σ be a primitive unimodular Pisot substitution on
alphabet A with dominant cubic Pisot eigenvalue, such that Tσ and its subtiles are homeo-
morphic to a closed disc. Suppose that there exist a, c ∈ A such that for every j ∈ {1, 2, 3},
there exists n ∈ N such that σ(j) contains at least one occurrence of the word ca. Then
there exists N > 1 and I ⊆ occ(σN , a) such that⋃

(j;k)∈occ(σN ,a)\I

TσN (a; j; k)

is homeomorphic to a closed disc minus the union of p disjoint open discs that do not
intersect the boundary of Tσ(a).

Proof sketch. This result can be proved thanks to the fact that iterating σ produces tiles
with smaller and smaller diameter (because they are scaled down by hσ at each step,
which is a contraction), and thanks to primitivity of σ together with the hypothesis on
the occurrences of the words ca in the images of each letter. D

4.3 Symbol splittings
We define a symbolic operation, symbol splitting, that we use in Proposition 4.3.2 in order
to select a subsubtile and assign it to a new symbol.

Definition 4.3.1. Let σ be a substitution on alphabet A, let a ∈ A, let b /∈ A be a
new symbol and let I ⊆ occ(σ, a). The splitting of symbol a to the new symbol b with
occurrences I is the substitution τ defined by

τ(i) =
{
the word σ(i) in which σ(i)k is replaced by b for every (i; k) ∈ I, if i 6= b,
τ(a), if i = b.
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Note that if σ is a primitive unimodular Pisot substitution, then so also is any splitting
τ arising from σ, provided that occ(a, τ) 6= ∅, which we will always assume to be the
case in the following. Moreover, we have χτ (x) = x · χσ(x), where χσ and χτ are the
characteristic polynomials of Mσ and Mτ , respectively. The action of state splittings on
the Rauzy fractal of a substitution σ is described in the next proposition.

Proposition 4.3.2. Let

• σ be a primitive unimodular Pisot substitution on alphabet A = {1, . . . , n},
• τ be obtained by splitting of σ from symbol a to a new symbol b = n + 1 with
occurrences I ⊆ occ(σ, a),
• vβ = (v1, . . . , vn) ∈ Rn be a left β-eigenvector of Mσ,
• wβ = (v1, . . . , vn, va) ∈ Rn+1 (which is a β-eigenvector of Mτ , see Lemma 4.3.4),
• Tσ be the Rauzy fractal of σ (with respect to the β-eigenvector vβ),
• Tτ be the Rauzy fractal of τ (with respect to the β-eigenvector wβ).

We have

(1) Tτ (i) = Tσ(i) if i /∈ {a, b},

(2) Tτ (a) =
⋃

(j;k)∈occ(σ,a)\I

Tσ(a, j; k),

(3) Tτ (b) =
⋃

(j;k)∈I

Tσ(a, j; k).

Example 4.3.3. Let σ : 1 7→ 1213121, 2 7→ 213121, 3 7→ 3121. We split the symbol a = 1
to the new symbol b = 4 with occurrences I = {(1; 1), (2; 6), (3; 2)} of 1 in σ. The resulting
substitution τ and its Rauzy fractal are shown below. (The tiles associated with 4 are
shown in dark.)

τ :


1 7→ 4213121
2 7→ 213124
3 7→ 3421
4 7→ 4213121

In order to prove Proposition 4.3.2 we need Lemma 4.3.4 and Lemma 4.3.5 below.

Lemma 4.3.4. Under the hypotheses of Proposition 4.3.2, β is an eigenvalue of Mτ and
wβ a left β-eigenvector of Mτ . Hence, the Rauzy fractal Tτ mentioned in the statement
of Proposition 4.3.2 is well defined.

Proof. Denote by C1, . . . , Cn the columns of Mσ and by C ′1, . . . , C ′n+1 the columns of Mτ .
By definition of symbol splittings we have

• C ′i,j = Ci,j for all i 6= n+ 1 and j /∈ {a, n+ 1},
• C ′n+1,j = Ca,j for all j /∈ {a, n+ 1},
• C ′i,a + C ′i,n+1 = Ci,a for all i 6= n+ 1.

Hence, by definition of wβ we have (wβMτ )i = (vβMσ)i if i 6= n+ 1 and (wβMτ )n+1 =
(vβMσ)a, so wβMτ = βwβ , which proves the lemma. D
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Lemma 4.3.5. Under the hypotheses of Proposition 4.3.2, let i ∈ {1, . . . , n, b = n + 1}
and (j; k) ∈ occ(τ, i), and let i′ = a if i = b and i′ = i otherwise. We have Tτ (i, j; k) =
Tσ(i′, j; k) if j /∈ {a, b}, and Tτ (i, a; k) ∪ Tτ (i, b; k) = Tσ(i′, a; k).

Proof. First, note that hσ = hτ by definition, because these two maps both depend on the
same eigenvalue β. Also, by Lemma 4.3.4, for j = 1, . . . , r+ s, βj is an eigenvalue and wβj

is a left βj-eigenvector of Mτ , where wβj is obtained by replacing β by βj in the coordinates
of wβ . It follows that πτP(τ(i)) = πσP(σ(i)) for all i 6= b and πτP(τ(b)) = πσP(σ(a)).
We will use these facts later in the proof.

Next, we claim that Tτ (i) = Tσ(i) if i /∈ {a, b} and Tτ (a) ∪ Tτ (b) = Tσ(a). Indeed, let u
be a periodic point of τ , and let u′ be defined by u′m = a if um = b and u′m = um otherwise.
Then it is easy to check that u′ is a periodic point of σ, and that πτP(u1 · · ·um) =
πσP(u′1 · · ·u′m) for all m > 1, so our claim follows from Definition 1.3.2 of Rauzy fractals.
Finally, we have

Tτ (i, j; k) = hτTτ (j) + πτP(τ(j)1 · · · τ(j)k−1)
= hσTσ(j) + πσP(σ(j)1 · · ·σ(j)k−1)
= Tσ(i′, j; k) for j /∈ {a, b},

and

Tτ (i, a; k) ∪ Tτ (i, b; k) = hτ (Tτ (a) ∪ Tτ (b)) + πτP(τ(a)1 · · · τ(a)k−1)
= hτTσ(a) + πτP(τ(a)1 · · · τ(a)k−1)
= hσTσ(a) + πσP(σ(a)1 · · ·σ(a)k−1)
= Tσ(i′, a; k),

which proves the lemma. D

Proof of Proposition 4.3.2. Let (j; k) ∈ occ(τ, i), and let i′ = a if i = b and i′ = i otherwise.
We have

Tτ (i) =
⋃

(j;k)∈occ(τ,i)

Tτ (i, j; k) by Theorem 4.2.3

=
⋃

(j;k)∈occ(τ,i)
j /∈{a,b}

Tτ (i, j; k) ∪
⋃

(a;k)∈occ(τ,i)

Tτ (i, a; k) ∪
⋃

(b;k)∈occ(τ,i)

Tτ (i, b; k)

=
⋃

(j;k)∈occ(τ,i)
j /∈{a,b}

Tτ (i, j; k) ∪
⋃

(a;k)∈occ(τ,i)

Tτ (i, a; k) ∪ Tτ (i, b; k)

=
⋃

(j;k)∈occ(τ,i)
j /∈{a,b}

Tσ(i′, j; k) ∪
⋃

(a;k)∈occ(τ,i)

Tσ(i′, a; k) by Lemma 4.3.5

=
⋃

(j;k)∈occ(τ,i)
j 6=b

Tσ(i′, j; k).

The third line of the above equation follows from the second line because (a; k) ∈ occ(τ, i)
if and only if (b; k) ∈ occ(τ, i), by definition of symbol splittings. Statements (1), (2),



4.4 Conjugacy by free group automorphisms 87

and (3) can now be proved by combining the above equality and the fact that the condition
“(j; k) ∈ occ(τ, i) and j 6= b” is equivalent to

• (j; k) ∈ occ(σ, i) if i /∈ {a, b}, which proves (1);
• (j; k) ∈ occ(σ, a) \ I if i = a, which proves (2);
• (j; k) ∈ I if i = b, which proves (3).

Note that Proposition 4.3.2 (1) was already proved in the proof of Lemma 4.3.5. D

4.4 Conjugacy by free group automorphisms
In this section we describe the action of a particular family of free group automorphisms
on the Rauzy fractal of a substitution in Proposition 4.4.1, which will be used to prove
our main result, Theorem 4.5.3.
A free group morphism on the alphabet A is a non-erasing morphism of the free

group generated by A, consisting of the finite words made of symbols a and a−1 for a ∈ A.
Substitutions can be seen as a particular case of free group automorphisms, where no “−1”
appears in the image of each letter. The inverse of a free group automorphism ρ is the
unique morphism (denoted by ρ−1) such that ρρ−1 = ρ−1ρ is the identity. For example,
the inverse of ρ : 1 7→ 1, 2 7→ 211, is ρ−1 : 1 7→ 1, 2 7→ 21−11−1. The fundamental operation
we will perform on a substitution σ is conjugacy by a free group automorphism ρ,
i.e., the product ρ−1σρ where ρ is an automorphism. In the specific cases that we will
consider, σ and ρ−1σρ will always both be substitutions (i.e., contain no “−1”). The
particular family of free group automorphisms we will need consists of the mappings ρij
defined below.

ρij(k) =
{
ij if k = j

k if k 6= j
ρ−1
ij (k) =

{
i−1j if k = j

k if k 6= j

The next proposition describes how the Rauzy fractal of a substitution is affected when it
is conjugated by a free group automorphism ρij .

Proposition 4.4.1. Let

• τ be a primitive unimodular Pisot substitution on alphabet A,
• b ∈ A be such that there exists a unique c ∈ A such that for every (j; k) ∈ occ(τ, b),
we have k > 2 and τ(j)k−1 = c,
• θ = ρ−1

cb τρcb,
• wβ ∈ Rn+1 be a left β-eigenvector of Mτ ,
• zβ = wβMρcb ∈ Rn+1 (which is a β-eigenvector of Mθ),
• Tτ be the Rauzy fractal of τ (with respect to β-eigenvector wβ),
• Tθ be the Rauzy fractal of θ (with respect to β-eigenvector zβ).

We have

(1) Tθ(i) = Tτ (i) if i /∈ {b, c},
(2) Tθ(b) ∪ Tθ(c) = Tτ (c),

and in particular Tθ =
⋃
i 6=b Tτ (i).
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Proof. We first check that zβ is a left β-eigenvector of Mθ.

zβMθ = wβMρcbMθ = wβMρcbM−1
ρcb

MτMρcb = wβMτMρcb = βwβMρcb = βzβ .

Hence, the Rauzy fractal Tθ mentioned in the statement of the Proposition is well defined.
Let u be a periodic point of θ (i.e., there exists k > 1 such that θk(u) = u), and let
v = ρcb(u). It is easy to check that v is a periodic point of τ :

τk(ρcb(u)) = (ρcbθρ
−1
cb )kρcb(u) = ρcbθ

kρ−1
cb ρcb(u) = ρcbθ

k(u) = ρcb(u).

Let ` : N→ N be the unique function defined by induction as follows for m > 2:

`(1) =
{

1 if u1 6= b

2 if u1 = b,
`(m) =

{
`(m− 1) + 1 if um 6= b

`(m− 1) + 2 if um = b.

In particular, we have um = v`(m) for all m ∈ N. The definition of ` is illustrated below,
on an example where u3 = v4 = b, v3 = c and u1, u2, u4, v1, v2, v5 /∈ {b, c}.

u = u1 u2 u3 = b u4 · · ·
ρcb(u) = v = v1 v2 v3 = c v4 = b v5 · · ·

= v`(1) v`(2) v`(2)+1 v`(3) v`(4) · · ·

The equality zβ = wβMρcb implies that 〈zβ , ei〉 = 〈wβ , ei〉 if i 6= b and 〈zβ , eb〉 =
〈wβ , ec〉+ 〈wβ , eb〉. Hence, by definition of πτ and πθ we have πθP(i) = πτP(i) if i 6= b
and πθP(b) = πτP(c) + πτP(b). It follows that for all m ∈ N,

πθP(u1 · · ·um) =
∑

16k6m
uk 6=b

πθP(uk) +
∑

16k6m
uk=b

πθP(b)

=
∑

16k6m
uk 6=b

πτP(v`(k)) +
∑

16k6m
uk=b

(πτP(c) + πτP(b))

=
∑

16k6m
uk 6=b

πτP(v`(k)) +
∑

16k6m
uk=b

πτP(v`(k)−1v`(k))

= πτP(v`(1) · · · v`(m)).

Finally, it is easy to verify that for all i /∈ {b, c}, ` is a bijection between {m ∈ N : um+1 = i}
and {m ∈ N : vm+1 = i}, so

Tθ(i) = {πθP(u1 · · ·um) : um+1 = i}
= {πτP(v1 · · · v`(m)) : v`(m)+1 = i}
= Tτ (i),

and ` is also a bijection between {m ∈ N : um+1 = b or c} and {m ∈ N : vm+1 = c}, so

Tθ(b) ∪ Tθ(c) = {πθP(u1 · · ·um) : um+1 = b or c}
= {πτP(v1 · · · v`(m)) : v`(m)+1 = c}
= Tτ (c),

so the proposition is proved. D
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Remark 4.4.2. Statement (2) of Proposition 4.4.1, stating that Tθ(b) ∪ Tθ(c) = Tτ (c) will
be sufficient for our purposes in Proposition 4.4.1. By using similar arguments as in
the proof of Proposition 4.3.2, we could have been more precise and give a subsubtile
decomposition of the subtiles Tθ(b) and Tθ(c) as follows:

Tθ(b) =
⋃

(j;k)∈I

Tτ (c, j; k − 1), Tθ(c) =
⋃

(j;k)∈occ(τ,c)
(j;k+1)/∈I

Tτ (c, j; k).

Example 4.4.3. Let σ : 1 7→ 21, 2 7→ 31, 3 7→ 1. First we split σ3 : 1 7→ 1213121, 2 7→
213121, 3 7→ 3121 from a = 1 to b = 4 with occurrences I = {(1; 7)} to obtain τ : 1 7→
1213124, 2 7→ 213121, 3 7→ 3121, 4 7→ 1213124. Then we conjugate τ with ρ24 : 1 7→ 1, 2 7→
2, 3 7→ 3, 4 7→ 24:

ρ−1
24 τρ24 :


1 7→ 1 7→ 1213124 7→ 121314
2 7→ 2 7→ 213121 7→ 213121
3 7→ 3 7→ 3121 7→ 3121
4 7→ 24 7→ 2131211213124 7→ 213121121314

The effect of these operations on the Rauzy fractals are shown in Figure 4.1 and in
Figure 4.2.

Figure 4.2: Rauzy fractals of the substitutions defined in Example 4.4.3. The subsubtiles
of Tσ3 (left), the subtiles of Tτ (center), and the subtiles of Tθ (right).

Example 4.4.4. Let σ : 1 7→ 21, 2 7→ 31, 3 7→ 1. Let τ be the splitting of σ6 from 1 to
4 with occurrences I = {(1; 24); (1; 31); (1; 33); (1; 40)}. (Note that σ(1)k−1 = 2 for all
(1, k) ∈ I.) Let θ = ρ−1

24 τρ24 with ρ24 : 1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ 24. The effect of these
operations on the Rauzy fractal are shown in Figure 4.3.

Figure 4.3: Rauzy fractals of the substitutions defined in Example 4.4.4. The subsubtiles
of Tσ6 (left), the subtiles of Tτ (center), and the subtiles of Tθ (right).



90 Chapter 4 Rauzy fractals with countable fundamental group

4.5 Main results
We now combine the results of Section 4.4 (state splittings) and Section 4.4 (conjugacies
by free group automorphisms) in order to prove our main result, Theorem 4.5.3.

First, we shall prove that the subtiles of the Rauzy fractals obtained from state splittings
and conjugacies by free group automorphisms have disjoint interiors. A sufficient condition
ensuring this is the strong coincidence condition (see [AI01] for the irreducible case
and [BS05] for the reducible case). We recall that a substitution σ on alphabet A satisfies
the strong coincidence condition if for every (j1, j2) ∈ A2, there exists k ∈ N and
i ∈ A such that σk(j1) = p1is1 and σk(j2) = p2is2 with P(p1) = P(p2) or P(s1) = P(s2).

Lemma 4.5.1. Let σ be a primitive unimodular Pisot substitution on alphabet A =
{1, . . . , n}, let a ∈ A and let τ be obtained by splitting of σ from symbol a to a new symbol
b = n+ 1 with occurrences I ⊆ occ(σ, a). If σ satisfies the strong coincidence condition,
then τ also satisfies it.

Proof. Let (j1, j2) ∈ A2. Because σ satisfies the strong coincidence condition, there exists
k ∈ N and i ∈ A such that σk(j1) = p1is1 and σk(j2) = p2is2 with P(p1) = P(p2) or
P(s1) = P(s2) (without loss of generality we assume P(p1) = P(p2)). By definition of
state splittings, we have

τk+1(j1) = τ(p1)τ(i)τ(s1)
τk+1(j2) = τ(p2)τ(i)τ(s2),

and P(τ(p1)) = P(τ(p2)) so τ satisfies the strong coincidence condition. We have
omitted the case where j1 = b or j2 = b, because it follows directly from the fact that
τ(a) = τ(b). D

Lemma 4.5.2. Let τ be a primitive unimodular Pisot substitution on alphabet A, let b ∈ A
be such that there exists a unique c ∈ A such that for every (j; k) ∈ occ(τ, b), we have
k > 2 and τ(j)k−1 = c. Let θ = ρ−1

cb τρcb. If τ satisfies the strong coincidence condition,
then θ also satisfies it.

Proof. Let (j1, j2) ∈ A2. Because τ satisfies the strong coincidence condition, there exists
k ∈ N and i ∈ A such that τk(j1) = p1is1 and τk(j2) = p2is2 with P(p1) = P(p2) or
P(s1) = P(s2) (without loss of generality we assume P(p1) = P(p2)). Suppose first that
j1 6= b and j2 6= b. We have

θk(j1) = ρ−1
cb τ

kρcb(j1) = ρ−1
cb τ

k(j1) = ρ−1
cb (p1is1)

θk(j2) = ρ−1
cb τ

kρcb(j2) = ρ−1
cb τ

k(j2) = ρ−1
cb (p2is2),

so τ satisfies the strong coincidence condition because P(ρ−1
cb (p1)) = P(ρ−1

cb (p2)). In the
remaining case where j1 or j2 is equal to b (say, j1), we have

θk(j1) = θk(b) = ρ−1
cb τ

kρcb(b) = ρ−1
cb τ

k(cb) = ρ−1
cb τ

k(c)ρ−1
cb τ

k(b),

so result follows because the case j1 = b is now reduced to the case j1 = c, which has been
treated above. D

We can now prove our main theorem, using the tools developed in this chapter.



4.6 Conclusion 91

Theorem 4.5.3. Let k > 1 be an integer. We have:

(1) There exists a 4-letter primitive unimodular Pisot substitution τ such that the
fundamental group of the subtile Tτ (a) is homeomorphic to Fk (for some a ∈ {1, 2, 3}),
and such that the subtiles of Tτ have disjoint interiors.

(2) There exists a 4-letter primitive unimodular Pisot substitution θ such that the
fundamental group of the Rauzy fractal Tθ is homeomorphic to Fk and such that the
subtiles of Tτ have disjoint interiors.

Proof. Let σ be a primitive unimodular on alphabet {1, 2, 3} whose dominant eigenvalue
is a cubic Pisot number, and such that Tσ and its subtiles are homeomorphic to a disc
and have disjoint interiors. Assume that there exists a, c ∈ {1, 2, 3} such that for every
j ∈ {1, 2, 3}, there exists n ∈ N such that σ(j) contains at least one occurrence of ca. Such
a substitution exists, as can easily be verified for the substitution σ given in Example 4.4.3
or Example 4.4.4. By Proposition 4.2.7, there exists N > 1 and I ⊆ occ(σN , a) such that⋃

(j;k)∈occ(σN ,a)\I

Tσ(a; j; k)

is homeomorphic to a closed disc minus the union of k disjoint open discs, and such that
for every (j; k) ∈ I, we have k > 2 and σ(j)k−1 = c.
Performing a splitting of the occurrences I of a to a new symbol b /∈ {1, 2, 3} yields a

substitution τ . Statement (1) now follows by Proposition 4.3.2. The subtiles of Tτ have
disjoint interior because τ satisfies the strong coincidence condition thanks to Lemma 4.5.1
and [ST09, Theorem 2.10]. (This fact also follows from the fact that every subtile is a
interior-disjoint union of subsubtiles, and subsubtiles always have disjoint interior [ST09,
Theorem 2.6].)

Let θ = ρ−1
cb τρcb. Statement (2) follows from Proposition 4.4.1, and the subtiles of

Tθ have disjoint interior because θ satisfies the strong coincidence condition thanks to
Lemma 4.5.2 and [ST09, Theorem 2.10]. D

4.6 Conclusion
Note that these results are obtained with a fixed number of symbols, 4, so there is no
bound of the number of holes by the number of symbols (which answers a question asked
by Minervino). It is not known if there exists a 3-letter irreducible Pisot substitution with
nontrivial but countable fundamental group.

Further possible developments include establishing higher homology/homotopy realiza-
tion results for Rauzy fractals associated with Pisot numbers of degree > 4. This is out of
reach with the current tools at the current state because we have no tools to prove, for
example, that a tile is homeomorphic to a ball. An illustration is given in Figure 4.4. Like
in the proof of Theorem 4.5.3, Proposition 4.3.2 and Proposition 4.4.1 do imply that the
subsubtiles corresponding to the occurrences of θ in Figure 4.4 have been “removed” from
the Rauzy fractal of σ. However, we cannot deduce that we have managed to “drill a hole”
in the fractal, because the fact that it is 3-dimensional makes it difficult to prove, for
example, that the subtiles are homeomorphic to a ball, which is an essential preliminary
fact. Note that this fractal is three-dimensional because its associated Pisot eigenvalue
β ≈ 1.926 is of degree 4.
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Figure 4.4: Drilling holes in the “Quadribonacci” substitution σ : 1 7→ 21, 2 7→ 31, 3 7→
41, 4 7→ 1. We have splitted the occurrences {(1; 8), (2; 7)} of 1 to a new symbol 5 in
σ3 to obtain a new substitution τ . Conjugating τ by ρ25 yields θ : 1 7→ 4121315, 2 7→
121315, 3 7→ 213121, 4 7→ 3121, 5 7→ 1213154121315. The subtiles of Tτ and Tθ are plotted
left and right, respectively. A “hole” (or “tunnel”) can be observed in Tθ.

Another perspective is trying to describe the uncountable fundamental groups of some
simple examples, such as the fractal shown in Figure 4.5. This has successfully been done
for some fractals such as the Hawaiian earring or the Sierpiński triangle [CC00, ADTW09].

Figure 4.5: The Rauzy fractals of 1 7→ 2413, 2 7→ 43, 3 7→ 2433, 4 7→ 1 (left), 1 7→ 2413, 2 7→
1, 3 7→ 2433, 4 7→ 43 (middle), 1 7→ 2, 2 7→ 4, 3, 3 7→ 4, 4 7→ 53, 5 7→ 6, 6 7→ 1 (right). In the
first examples, we are tempted to guess that one of the tiles is homeomorphic to a disc
from which infinitely discs have been removed, which would make it homeomorphic to the
Hawaiian earring.
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Chapter 5

Examples and counterexamples of Rauzy
fractals

We conclude the first four chapters, where the focus was directly on one-dimensional Pisot
substitutions, by giving a collection of examples of Rauzy fractals with various properties.

Contents
5.1 A connected fractal with a disconnected subtile . . . . . . . . . 93
5.2 Rauzy fractals with common matrix but single point intersection 94
5.3 A non-simply connected Arnoux-Rauzy fractal . . . . . . . . . 95
5.4 Invertibility and connectedness . . . . . . . . . . . . . . . . . . 95
5.5 Hokkaido mysteries . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6 Reducible substitutions with overlapping tiles . . . . . . . . . . 97

5.1 A connected fractal with a disconnected subtile
The following observation is made in Section 4.5 of the book Topological properties of
Rauzy fractals [ST09].

Notice that it is not easy to provide a necessary and sufficient condition for
the connectivity of the central tile. The reason is that the central tile T might
be connected even if some of the subtiles are disconnected. However, we were
not able to find an example with this constellation.

Such counterexamples can actually be found by computer exploration (by plotting many
Rauzy fractals and watching them all). The following picture strongly suggests that we
have found a good candidate, and Proposition 5.1.1 below confirms that it is the case.
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Proposition 5.1.1. Let σ : 1 7→ 212, 2 7→ 3, 3 7→ 3123 be the substitution associated with
the Rauzy fractal plotted above.
(1) The subtiles Tσ(1) and Tσ(3) are connected, but Tσ(2) is disconnected.
(2) The Rauzy fractal Tσ(1) ∪ Tσ(2) ∪ Tσ(3) is connected.

Proof. Statement (1) can be checked thanks to the algorithm given in [ST09, Theorem 4.9],
but Statement (2) cannot be proved in the same way because the tools of [ST09] do not
apply to this case. However, we can prove (2) thanks to the E?

1 definition of the Rauzy
fractal of σ and L-coverings (described in Section 2.2). Let

L =
{

, , , , ,
}
.

We can easily check that U is L-covered and that E?
1(σ)(P ) is L-covered for every P ∈ L,

where U = [0, 1]? ∪ [0, 2]? ∪ [0, 3]? is the “starting pattern” used in Definition 1.3.5 to
define Rauzy fractals as renormalized patches. Thanks to Proposition 2.2.2, it follows that
E?

1(σ)n(U) is L-covered for all n > 0. Hence, in the same way as in Theorem 3.2.1, the
connectedness of the patterns in L imply that the Rauzy fractal of σ is a Hausdorff limit
of connected sets, so it is connected. D

Note that the above proof using L-coverings is currently the only known way to prove
the connectedness of this Rauzy fractal.

5.2 Rauzy fractals with common matrix but single point
intersection

Let σ and τ be two substitution that have the same incidence matrix. Tarek Sellami
proved [Sel12] that if 0 is an inner point of the Rauzy fractal of σ or τ , then the intersection
of the two Rauzy fractals has positive Lebesgue measure, and it is equal to the Rauzy
fractal of a substitution which can be algorithmically constructed.
The following example suggests that the assumption of having 0 as an interior point

cannot be dropped. Let σ : 1 7→ 13, 2 7→ 133, 3 7→ 233 and let τ : 1 7→ 31, 2 7→ 331, 3 7→ 332
(the mirror image of σ). The Rauzy fractals of σ and τ are plotted below left and right,
respectively. These two substitutions have the same incidence matrix, but the Rauzy
fractals seem to intersect at a single point only (we do not prove this here).
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5.3 A non-simply connected Arnoux-Rauzy fractal

We know that the Rauzy fractal of a finite product of Arnoux-Rauzy substitutions is always
connected by Theorem 3.2.1. However, such fractals are not always simply connected.
Indeed, let σ = (σAR

1 )4(σAR
2 )4(σAR

3 )4, and let τ = 1 7→ 21111, 2 7→ 31111, 3 7→ 1. It can be
proved that Tτ is not simply connected using the algorithms given in [ST09]. Moreover
we have σ = τ3, so Tσ = Tτ . It follows that σ is an example of a product of Arnoux-Rauzy
substitutions whose Rauzy fractal is not simply connected.

This example also shows that there cannot be a “reasonable” link between the simple
connectedness of Tσ and the factor complexity of the language of σ, because of the well
known fact that Arnoux-Rauzy sequences have minimal factor complexity 2n+ 1.

5.4 Invertibility and connectedness

In the of 2-letter substitutions, it has been shown that the Rauzy fractal of σ is connected
if and only if σ is invertible [EI98, Lam98, BEIR07]; see also [BFS12] for a survey of many
equivalent formulations of invertibility in the 2-letter case. (Recall that a substitution σ
is invertible if there exists an automorphism σ′ of the free group such that σσ′ is the
identity.) Both implications of the above statement are false in the 3-letter case, as shown
by the following two examples.
Let σ = ε1,2ε3,1ε2,3ε1,3 : 1 7→ 31, 2 7→ 12, 3 7→ 31123, where for every distinct i, j ∈
{1, 2, 3}, εi,j is the elementary substitution j 7→ ji, k 7→ k if k 6= j. This substitution
is invertible (as a product of elementary substitutions) but its Rauzy fractal (shown below
left) is not connected, as can be checked using the algorithms given in [ST09]. Conversely,
there also exist examples of non-invertible substitutions with a connected Rauzy fractal
(see the examples found by Edmund Harriss [HFa, HFc]).
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5.5 Hokkaido mysteries
The Hokkaido tile (plotted below left) is one of the first examples of fractal tiles appearing
in numeration, as early as 1989 in the work of Thurston [Thu89], and it is known to be
homeomorphic to a closed disk [Luo02]. It owes its name to its resemblance with the
northern island of Japan, Hokkaido (plotted below right).

This tile is naturally linked with the smallest cubic Pisot number βmin ≈ 1.325 (the real
root of x3 − x− 1), since it can be defined as the Rauzy fractal of the beta-substitution
1 7→ 12, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 1, whose dominant Pisot eigenvalue is equal to βmin.

There are many other tiles related in the same way with βmin, as for example the Rauzy
fractal of σ : 1 7→ 2, 2 7→ 3, 3 7→ 1, 2, whose dominant eigenvalue is also βmin. The “mystery”
is that by zooming in the Rauzy fractal of σ, we can see a copy of the Hokkaido tile,
even though the two fractals do not seem to share any similarities, as shown below. (The
framed area in the fractal below left is shown zoomed at the right. Plots with several
million points are needed to allow such visualization.)

Such an observation was first made by Julien Bernat, who glimpsed a Hokkaido tile
between three translated copies of the Rauzy fractal of σ. The Hokkaido tile also appears
in many other Rauzy fractals of substitutions with dominant eigenvalue βmin, such as
1 7→ 2, 2 7→ 43, 3 7→ 4, 4 7→ 53, 5 7→ 6, 6 7→ 1, which yields the following surprising fractal
shown below (together with its associated domain exchange).
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Question. Can any of the above observations be rigorously proved? That is, do copies of
the Hokkaido tile actually appear in the Rauzy fractals shown above? Similar questions
for other examples than the Hokkaido tile also seem to be unsolved.

5.6 Reducible substitutions with overlapping tiles
A weak formulation of the Pisot conjecture is that the subtiles of the Rauzy fractal of
a Pisot irreducible substitution do not overlap. This formulation is wrong if we remove
the irreducibility assumption. The first counterexample was given in [BBK06]: a 6-letter
reducible substitutions (with quadratic dominant eigenvalue) whose subtiles overlap on
a set of positive measure. The tiles in this example are one-dimensional because the
eigenvalue is quadratic.
It is also possible to find examples where the overlapping tiles are two-dimensional,

which allows a proper visualization of the overlapping tiles. For example let σ : 1 7→
213, 2 7→ 4, 3 7→ 5, 4 7→ 1, 5 7→ 21. Below left are plotted the tiles Tσ(2) and Tσ(4), which
clearly seem to overlap, and things are worse when all the tiles are plotted together (below
right). Note that the incidence matrix of σ is the square of the incidence matrix of the
Hokkaido substitution.

Many other examples can be found thanks to computer exploration. All the above claims
about overlapping tiles can be rigorously proved thanks to the algorithms described
in [ST09] or in Chapter 5 of [BR10].
Since the Pisot conjecture is wrong in the reducible case and believed to be true in

the irreducible case, it would be interesting to replace the irreducibility assumption by a
weaker one, which includes all the known examples of reducible substitutions that satisfy
the Pisot conjecture. Efforts in this direction can be found for example in [BBJS12], where
the irreducibility assumption is replaced by conditions on the action of the substitution
on the cohomology of the tiling space.
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Chapter 6

Combinatorial substitutions
In this chapter we consider a general notion of multidimensional substitution acting on
words defined over the integer lattice Zd, where the words are not necessarily rectangles.
This requires a specific description of the way the images of a symbol are glued together.
Two problems can arise when defining a substitution in such a way: it can fail to be
consistent, and the patterns in an image by the substitution might overlap.
We prove that it is undecidable whether a two-dimensional substitution is consistent

or overlapping, and we provide practical algorithms to decide these properties in some
particular cases.

The original motivating examples that led to this work come from the dual E?
1 substitu-

tions defined in Section 1.2; the link between the two is described in Section 6.5. This is
joint work with Jarkko Kari [JK12].
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6.1 Introduction
The aim of this chapter is to discuss a general notion of multidimensional substitutions
acting not on one-dimensional words, but on words defined over the integer lattice Zd.
In the one-dimensional setting we have the natural relation σ(uv) = σ(u)σ(v), which

allows the computation of the image of a word by concatenating the images of each
letter. For example, σ(1321) = σ(1)σ(3)σ(2)σ(1) = 1211312 if σ is the substitution
1 7→ 12, 2 7→ 13, 3 7→ 1. The main challenge of defining multidimensional substitutions
is to generalize the relation σ(uv) = σ(u)σ(v) to higher dimensional words. This can be
done easily if, for example, the images of the letters are squares of the same size, like in
the two-dimensional Thue-Morse substitution 1 7→ 1 2

2 1 , 2 7→ 2 1
1 2 , which gives:

1 7→ 1 2
2 1 7→

1 2 2 1
2 1 1 2
2 1 1 2
1 2 2 1

7→

1 2 2 1 2 1 1 2
2 1 1 2 1 2 2 1
2 1 1 2 1 2 2 1
1 2 2 1 2 1 1 2
1 2 2 1 2 1 1 2
2 1 1 2 1 2 2 1
2 1 1 2 1 2 2 1
1 2 2 1 2 1 1 2

7→ · · ·

Similar generalizations are possible with rectangular shapes that have compatible edge
lengths; see the survey [Fra08], or [Moz89].

We are interested in the more general case where the images of the letters have arbitrary
shapes (not necessarily rectangular), which are a priori not compatible with concatenation.
For example, if σ is a substitution defined by:

1 7→ 1
2

1
3 2 7→ 1

2 3 7→ 1
2

3 ,

how can we define the image by σ of patterns that consist of more than one cell? A natural
approach is to give explicit concatenation rules, such as:

1
2 7→ 1

2
3

1

1
2

3 1 7→ 1
2

3

1
1
2

3 1
1 7→

1
2

1
3

1
1
2

3
2 1 7→ 1

2

1
2

1
3 3

1 7→
1
2

3

1
2

3
1 .

Using these rules, we can compute the image of every pattern that can be “covered” by
the two-cell patterns on the left-hand sides of the rules, as shown below.

1 7→ 1
2

1
3 7→

1
2

1
1
2

3

1
2

1
3

1
2

3
7→

1
2

1
31

2

1
3
1
2

3

1
2

3

1
2

3
1

1
2

3

1
2

3
1

1
2

1
2

1
2

3 1
2

1

1
21

1
2

3

7→ · · ·

Our results In this chapter we study the two problems that can arise when multidimen-
sional concatenation is defined as above:

(1) The resulting substitution can fail to be consistent: depending on the sequence of
concatenation rules that are used, a pattern might have two different images.

(2) The resulting substitution can fail to be non-overlapping: the images of the cells of
a pattern might overlap.



6.2 Definitions 101

The substitutions which are consistent and non-overlapping correspond to “well defined”
substitutions, and we would like to be able to detect them algorithmically. We will prove
that consistency and non-overlapping are undecidable properties for two-dimensional
combinatorial substitutions (Theorems 6.3.1 and 6.3.3), but that these properties are
decidable in the case of domino-complete substitutions, that is, when the concatenation
rules are given for every possible domino (Theorems 6.4.1 and 6.4.4). This answers the
decidability question raised in [Fer07a].
As an application of the methods developed for the decidability results, we provide

combinatorial proofs of the consistency and non-overlapping of some particular two-
dimensional substitutions, using a slightly more general definition of domino-completeness
(Theorem 6.4.2, Section 6.5). Such proofs have been requested in [ABS04, Fra08].

It is important to remark that the properties studied in this chapter (consistency and
overlapping) only concern a single iteration of the substitution. This is a necessary first
step for the further study of properties related with iterating a substitution indefinitely
on a given pattern (see the related open problems in the conclusion).

Links with dual substitutions Combinatorial substitutions as defined in this chapter
were introduced in [ABS04] in order to study the particular example of the dual E?

1(σ)
substitution of σ : 1 7→ 13, 2 7→ 1, 3 7→ 3 (see Section 1.2). They were later defined more
generally in [Fer07a], and they are related to the substitutions found in [Fra03] defined
using the dual graph of a pattern. (See [Fra08] for a survey about multidimensional
substitutions in general.)

The idea that originally led to the introduction of combinatorial substitutions was that
of local rules. In the context of E?

1 substitutions, this idea consists in computing images
by “multidimensional concatenation”, instead of computing the new position of each cell
individually by multiplication with a matrix (like in Definition 1.2.3 of E?

1 substitutions).
This idea was initially exploited in [IO93, IO94] and then in [ABI02, ABS04], and it is
one of the key ingredients of the results in Chapters 2 and 3 of this thesis, where it is
implicitly used in the form of L-coverings; see Section 2.2. See Section 6.5.

6.2 Definitions
Cells and patterns
Let A denote a finite set of symbols. A d-dimensional cell is a couple c = [v, t], where
v ∈ Zd is the vector of c and t ∈ A is the type of c. A d-dimensional pattern is a finite
union of d-dimensional cells with distinct vectors. Translation v+P of a pattern P by v ∈ Zd
is defined in the natural way. The support of a pattern is supp(P ) = {v : [v, t] ∈ P}.
Many of the substitutions we will encounter later use dominoes, which are two-

dimensional patterns that consists of two cells of vectors v and v′ such that v′ − v ∈
{(±1, 0), (0,±1))}.

Substitutions
A d-dimensional substitution σ on alphabet A is defined by:

• a base rule: an application σbase from A to the set of d-dimensional patterns,
• a finite set of concatenation rules (t, t′, u) 7→ v, where t, t′ ∈ A and u, v ∈ Zd.
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The way to interpret this definition is the following: σbase replaces each cell of a pattern
by a pattern, and the concatenation rules describe how to place the images of the cells
relatively to each other. The intuitive meaning of “(t, t′, u) 7→ v” is: two cells of types
t and t′ separated by u must be mapped by σ to the two patterns σbase(t) and σbase(t′)
separated by v. (A precise definition is given below.) From now on we only consider
deterministic substitutions, which means that if a rule has a left-hand side (t, t′, u), then
there is no other rule with left-hand side either (t, t′, u) or (t′, t,−u). We will need the
following notation.

• We extend σbase from A to the set of cells naturally: σbase(c) = σbase(t) for a cell
c = [v, t]. (Only the type of c is taken into account by σbase.)

• The set of the starting patterns of σ is

Cσ = {{[0, t], [u, t′]} : (t, t′, u) 7→ v is a rule of σ for some v}.

It corresponds to the patterns at the left-hand sides of the concatenation rules of σ.
(This set contains only patterns of size two.)
• If c = [u, t] and c′ = [u′, t′] are cells, we denote

σrule(c, c′) =
{

v if (t, t′, u′ − u) 7→ v is a rule of σ
−v if (t′, t, u− u′) 7→ v is a rule of σ ,

and σrule is not defined otherwise.

A domino substitution is a two-dimensional substitution such that for every rule
(t, t′, u) 7→ v, we have u ∈ {±(1, 0),±(0, 1)}. A domino-to-domino substitution is a
domino substitution such that for every rule (t, t′, u) 7→ v, we have v ∈ {±(1, 0),±(0, 1)},
and the patterns σbase(t) and σbase(t′) both consist of a single cell of vector (0, 0).

Example 6.2.1. The combinatorial substitution given in Section 6.1 is formally defined
as follows: it is the two-dimensional substitution on alphabet {1, 2, 3} with the following
base rule (on the left) and concatenation rules (on the right).

1 7→ {[(0, 0), 1], [(0, 1), 1], [(0, 2), 2], [(−1, 1), 3]} (1, 2, (0, 1)) 7→ (1, 2)
2 7→ {[(0, 0), 1], [(0, 1), 2]} (3, 1, (1, 0)) 7→ (2,−2)
3 7→ {[(0, 0), 3], [(1, 0), 1], [(1, 1), 2]} (1, 1, (0, 1)) 7→ (1, 2)

(2, 1, (1, 0)) 7→ (1,−2)
(3, 1, (0, 1)) 7→ (2, 1).

Paths, covers, image vectors
Let C be a finite set of patterns each consisting of two cells. A C-path from c1 to cn is
a finite sequence of cells γ = (c1, . . . , cn) such that {ci, ci+1} is a translated copy of an
element of C for all 1 6 i 6 n− 1, and such that ci = cj if ci and cj have the same vector.
(Paths are hence allowed to self-overlap, but the overlapping cells must agree.) If c1 = cn,
then γ is called a C-loop. A path (or a loop) is simple if it does not self-intersect. If all
the cells of γ are contained in P then it is called a C-path of P .

A pattern P is C-covered if for every c, c′ ∈ P , there exists a C-path γ of P from c to
c′. Let σ be a substitution and γ = (c1, . . . , cn) be a Cσ-path. We denote by ωσ(γ) the
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image vector of γ defined by

ωσ(γ) =
n−1∑
i=1

σrule(ci, ci+1).

Consistency and non-overlapping
Let σ be a substitution and P be a Cσ-covered pattern. We say that σ is:

• consistent on P if for every cells c, c′ ∈ P and for every Cσ-paths γ, γ′ of P from c
to c′, we have ωσ(γ) = ωσ(γ′), i.e., if the placement of the images does not depend
on the path used.

• non-overlapping on P if for every cells c, c′ ∈ P such that c 6= c′ and for every
Cσ-path γ of P from c to c′, we have supp(σbase(c)) ∩ (supp(ωσ(γ)+σbase(c′))) = ∅,
i.e., if two distinct cells have non-overlapping images.

If σ is consistent on every Cσ-covered pattern, then σ is said to be consistent. (The same
goes for non-overlapping.) Examples of inconsistent and overlapping substitutions will be
given in Examples 6.2.4 and 6.2.5.

Proposition 6.2.2. Let σ be a combinatorial substitution and P be a pattern. The following
statements are equivalent.

(1) σ is consistent on P .
(2) For every Cσ-loop γ of P , we have ωσ(γ) = 0.
(3) For every simple Cσ-loop γ of P , we have ωσ(γ) = 0.

Proof. (1) ⇔ (2). Suppose that σ is consistent, and let γ = (c1, . . . , cn) be a Cσ-loop of P .
Let γ′ = (c1, . . . , cn−1) and γ′′ = (cn, cn−1). Because cn = c1 and σ is consistent we have
ωσ(γ′) = ωσ(γ′′), so

ωσ(γ) =
n−1∑
i=1

σrule(ci, ci+1) =
n−2∑
i=1

σrule(ci, ci+1)− σrule(cn, cn−1)

= ωσ(γ′)− ωσ(γ′′) = 0.

Conversely, let γ = (c1, . . . , cn) and γ′ = (c′1, . . . c′m) be two Cσ-paths of P with c1 = c′1
and cn = c′m. Now, γ′′ := (c1, . . . , cn−1, cn, c

′
m−1, . . . , c

′
1) is a Cσ-loop, so ωσ(γ′′) = 0,

which implies that ωσ(γ) = ωσ(γ)− ωσ(γ′′) = ωσ(γ)− (ωσ(γ)− ωσ(γ′)) = ωσ(γ′).
(2) ⇔ (3). Implication “⇒” is trivial. For the converse, suppose that there exists

a non-simple Cσ-loop γ = (c1, . . . , cn) of P such that ωσ(γ) 6= 0, and let i < j < n
such that ci = cj . Let γ′ = (ci, . . . , cj) and γ′′ = (c1, . . . , ci, cj+1, . . . , cn). We have
ωσ(γ′) + ωσ(γ′′) = ωσ(γ) 6= 0, so ωσ(γ′) 6= 0 or ωσ(γ′′) 6= 0. Repeating this operation
inductively yields the existence of a simple loop (strictly smaller than γ) which does not
overlap itself and which has a nonzero image vector. (The loop cannot reduce to a single
cell because we assumed that ωσ(γ) 6= 0.) D
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Image by a substitution
Let σ be a non-overlapping substitution. Let P be a Cσ-covered pattern and c0 be a cell
of P . An image of P by σ computed from c0 is a pattern⋃

c∈P
(σbase(c) + ωσ(γc)),

where for each c ∈ P , γc is a Cσ-path from c0 to c. This union of patterns is indeed a
pattern because the cells have distinct positions (σ is non-overlapping).
If σ is consistent, this pattern is uniquely defined because it does not depend on the

choice of the paths γc, by consistency of σ. In this case, the image of P by σ computed
from c0 is denoted by σ(P, c0), but because c0 only affects by a translation we will use the
simpler notation σ(P ) when the translation is irrelevant.
In practice, to compute the image of an Cσ-covered pattern P by σ, we start by

constructing a covering tree whose vertices are the cells of P , such that two cells are
connected must belong to a same pattern of Cσ. (Such a tree exists because P is Cσ-
covered.) We then choose a “root cell” (c0 in the definition above), and we construct the
image of P incrementally, starting from c0 and following the edges in the tree. This is
shown in Example 6.2.3 below.

Example 6.2.3. Let σ be the two-dimensional substitution defined on the alphabet {1, 2, 3}
with the base rule

1 7→ {[(0, 0), 2]} = 2

2 7→ {[(0, 0), 3]} = 3

3 7→ {[(0, 0), 1], [(1, 0), 3]} = 1 3

and the concatenation rules

(2, 3,
(

1
1
)
) 7→

(−2
0
)

(3, 2,
(

0
1
)
) 7→

(−1
−1
)

(1, 3,
(

1
0
)
) 7→

(
0
1
)

(3, 3,
(

1
0
)
) 7→

(
0
1
)

(3, 1,
(

1
1
)
) 7→

(−1
0
)

(3, 3,
(

0
1
)
) 7→

(−2
−1
)

(2, 1,
(

1
0
)
) 7→

(
0
1
)

which can also be represented as follows

2
3 7→ 31 3 2

3 7→ 3
1 3 1 3 7→ 2

1 3 3 3 7→ 1 3
1 3

1
3 7→ 2 1 3 3

3 7→ 1 3
1 3 2 1 7→ 3

2 .

To compute the image of 2
1

1 3
3 3 by σ, we can use the Cσ-covering 2 1 3

1 3 3 :

σ
(

2
1

1 3
3 3 ) = {[

(
0
0
)
, 3]}

∪ {[
(

0
0
)
, 1], [

(
1
0
)
, 3]}+

(−2
0
)

∪ {[
(

0
0
)
, 2]}+

(−2
0
)

+
( 0
−1
)

∪ {[
(

0
0
)
, 1], [

(
1
0
)
, 3]}+

(−2
0
)

+
(

0
1
)

∪ {[
(

0
0
)
, 1], [

(
1
0
)
, 3]}+

(−2
0
)

+
(

0
1
)

+
(

2
1
)

∪ {[
(

0
0
)
, 2]}+

(−2
0
)

+
(

0
1
)

+
(

2
1
)

+
( 0
−1
)

= 1 3 2

2

1 3

1 3 3 .

We chose to place the image of the cell 2 first, at position (0, 0). This cell and its image
are shown in gray. In this case it is possible to iterate σ on its images; a few iterations are
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shown below. (The Cσ-covering is drawn on each pattern.)

1 3
1 3

3
2
1 3

2 7→
1 3

2
2

1 3
2

1 33
1 3

3 7→
3

1 32
1 3 2

1 3

2

1 3

2

1 3

1 3

3
3 7→ 3

2

1 3

2

1 3

1 3

3
2

1 32

2
1 3

1 3

3

3

2

1 3
1 3

1 3
7→

1 3

1 3

1 3

1 3

2
2

3

2

1 3 1 3
2
3

3

1 3 3
1 3

1 3

1 3

32

2
1 3

1 3

2
1 3

2 3
2

Figure 6.1: The boundaries of the patterns σ12({[(0, 0), 3], [(1, 0), 1], [(1, 1), 2]} of Exam-
ple 6.2.3 (left), and σ4({[(0, 0), 1]}) of Example 6.4.5 (right).

Example 6.2.4. The substitution defined by the base rule 1 7→ {[(0, 0), 1}, 2 7→ {[(0, 0), 2}
and the concatenation rules 1 1 7→ 1 1 , 2

1 7→ 2
1 , 2 2 7→ 2

2 is not consistent: the
Cσ-loop γ = {[(0, 0), 2], [(1, 0), 2], [(1, 1), 1], [(0, 1), 1], [(0, 0), 2]} has a nonzero image vector
ωσ(γ) = (1,−1) + (0, 1)− (1, 0)− (0, 1) = (0,−1), so σ in inconsistent by Proposition 6.2.2.
This is also illustrated by the following:

2 2
1 1 7→ 2 2

1 1
2 2
1 1 7→ 2

2

1
1 .

Example 6.2.5. The substitution defined by the base rule 1 7→ {[(0, 0), 1} and the con-
catenation rules 1 1 7→ 1 1 , 1

1 7→ 1 1 is overlapping: the images of the cells [(0, 1), 1]
and [(1, 0), 1] overlap in the image of the pattern {[(0, 0), 1], [(1, 0), 1], [(0, 1), 1]}:

1 1
1 7→ 1 1 .

Example 6.2.6. The following example concerns the definition of consistency. Let σ be the
substitution on the alphabet A = {1, 2, 3, 4, 5, 6}, with the base rule σbase(a) = [(0, 0), 1]
for every a ∈ A, and the concatenation rules

(a, b, (1, 0)) 7→ (1, 0) for (a, b) ∈ {(1, 1), (2, 2), (3, 1), (4, 2), (1, 5), (2, 6)}
(3, 4, (0, 1)) 7→ (0, 1)
(5, 6, (0, 1)) 7→ (0,−1).

No Cσ-covered-pattern can have more than two rows. Also, the only patterns that admit
more than one possible Cσ-covering are the patterns of the form 4 2 2 ··· 2 6

3 1 1 ··· 1 5 , but all their
possible images are equal up to translation. Hence, every Cσ-covered pattern admits only
one image by σ up to translation.

This naturally suggests that σ is consistent, but it is in fact not the case: the two paths
going from the cell of type 4 to the cell of type 5 in the above pattern do not have the
same image vector.
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Therefore, the property “every Cσ-covered pattern admits only one image up to trans-
lation” is not equivalent to the consistency of σ, which is an important fact to mention
because it is another natural candidate to define consistency. Note that our definition of
consistency is actually stronger. Also, the undecidability proofs of Section 6.3 can easily
be adapted to yield the undecidability of the alternative notion of consistency.

6.3 Undecidability results
Wang tiles are unit square tiles with colored edges, which are oriented and may not be
rotated. We say that a set of Wang tiles T admits a valid tiling of a cycle if there
exists a nontrivial sequence (a1, . . . , an) of translates of tiles of T such that ai and ai+1
share exactly one edge and their colors agree on it for all 1 6 i < n, and such that an = a1
(the other tiles ai cannot overlap and are distinct). Note that cycle are required to be
nontrivial so we must have n > 5.

In [Kar02], it is proved that the following problem is undecidable: “Does a given finite
set of Wang tiles admit a valid tiling of a cycle?” This problem is called the weak cycle
tiling problem (the strong version of the same problem requires that any two adjacent
tiles in the cycle match in color, and not only ai and ai+1). We will use the fact that this
problem is undecidable in order to prove Theorems 6.3.1 and 6.3.3.
The undecidability results below are proved for two-dimensional substitutions. The

proofs can easily be modified to get undecidability in higher dimensions, but dimension 1
has to be ruled out.

Consistency
Theorem 6.3.1. It is undecidable whether a two-dimensional combinatorial substitution is
consistent.

Proof. We are going to reduce the weak cycle tiling problem for Wang tiles to the
consistency problem for substitutions. The former is undecidable so the result follows.
Let T be a set of Wang tiles. Let A = T × {→, ↑,←, ↓}, and σ be the substitution over
alphabet A defined by σbase(t) = [(0, 0), t] for all t ∈ A, with the rules

a
b 7→ a

b a

b
7→ a b

a
b 7→ a

b

a

b
7→ b a a

b
7→ b a

a

b
7→ b a

for all the tiles a, b ∈ T such that the edges match in a
b , and the rules

a b 7→ a b a b 7→ a b a b 7→ a b

a
b 7→ b

a a b 7→ b a a
b 7→ b

a

for all the tiles a, b ∈ T such that the edges match in a b . By definition of the above
rules, the set Cσ consists of all the valid dominoes of tiles of T , where in each domino,
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exactly one of the two tiles points at the other. The image of a domino by σbase is then
the concatenation of the pointing tile and the pointed tile, from left to right respectively,
as illustrated below in an image by σ of a σ-loop of length 8:

a1 a2
a3

a4

a5a6
a7

a8 7−→ a1 a2
a3 a4 a5 a6

a7 a8 .

We can now finish the proof by showing that T admits a valid tiling of a cycle if and only
if σ is not consistent. Indeed, suppose that T admits a valid tiling of a cycle (a1, . . . , an).
To this cycle corresponds a Cσ-loop γ = (c1, . . . , cn) where the type of each ci is (ai, di)
and the arrow di points at the cell ci+1, for 1 6 i < n (and dn = d1 so dn points at c2).
However, we have ωσ(γ) = (n− 1, 0) 6= (0, 0), so σ is not consistent, by Proposition 6.2.2.
Conversely, if T does not admit a valid tiling of a cycle then there cannot exist any

simple Cσ-loop, so σ is consistent thanks to Proposition 6.2.2. D

Remark 6.3.2. The above proof yields a stronger version of Theorem 6.3.1: consistency is
undecidable for two-dimensional domino-to-domino substitutions.

We can also prove that undecidability of consistency holds for non-overlapping substitu-
tions, by modifying the above reduction slightly. Let us first note that the substitution
produced in the above reduction is not non-overlapping, as can be seen for example if two
cells point at a same arrow, in which case the two pointing cells will overlap in an image
by σ:

a

b

c

7−→ b a c .

Hence, we want to make sure that the image of a pattern P can be computed only if a
cell of P is pointed by at most one other cell of P .

The new reduction is then the following given a tile set T let σ be the two-dimensional
substitution defined on the alphabet

A = T × { , , , , , , , , , , , .}

and such that Cσ consist of all the valid dominoes of tiles of T in which exactly one tile
points at the other, but a tile is allowed to point at another if and only if the tip of the
arrow of the pointing tile matches with the tail of the arrow of the pointed tile. The rules
of σ behave similarly as in the above reduction: the pointed tile is put at the right of the
pointing tile, as shown in the following three examples:

a

b
7→ ab a b 7→ ab

a

b

7→ a
b .

The substitution is non-overlapping, because the only patterns that admit an image by σ
are paths or cycles decorated by matching arrows, whose images are necessarily made of
non-overlapping cells.



108 Chapter 6 Combinatorial substitutions

Overlapping
The weak cycle tiling problem can also be used to prove the undecidability of overlapping
for consistent two-dimensional substitutions.

Theorem 6.3.3. It is undecidable whether a two-dimensional consistent combinatorial
substitution is overlapping.

Proof. We will reduce the weak cycle tiling problem. Let T be a set of Wang tiles. Given
two tiles a, b ∈ T whose colors match in a b , let σa,b be the two-dimensional substitution
defined on the alphabet A = T ∪ {a0, b0} where a0 and b0 are two new states, with the
base rule t 7→ {[(0, 0), t]} for all t ∈ A and the concatenation rules

t t′ 7→ t t′
t
t′

7→ t
t′

t a0 7→ t a0
t
a0

7→ t
a0

a0
t
7→ a0

t

b0 t 7→ b0 t
t
b0

7→ t
b0

b0
t
7→ b0

t

for the t, t′ ∈ A \ {a0, b0} such that the tiles match in left-hand sides of the above rules
(we require a0 and b0 to match in the same way as a and b). On patterns without a0 or b0,
the image of a pattern by σa,b is a copy expanded horizontally by a factor of two (leaving
one horizontal gap between horizontal neighbors). When a0 or b0 is in the pattern, the
action of σa,b is the same, and in addition it shifts every occurrence of a0 to the right and
every occurrence of b0 to the left, as illustrated below. Note that the images of a0 and b0
are shifted but that the images of a and b are not (they are treated like the other cells).

a0 b0

a0
7→ a0

a0

The rule is hence consistent, and an overlap can happen only between the images of a
cell of type a0 and a cell of type b0: an overlap occurs if and only if the image of a0 b0 is
computed (as shown in the above picture). It follows that σa,b is overlapping if and only
if there exists a Wang tile cycle of T that contains a b . Indeed, if there exists such a
cycle, then the image of the corresponding pattern in which exactly one occurrence of
a b is replaced by a0 b0 can be computed (it is Cσa,b -covered) and will cause an overlap.
Conversely, an overlap can only be caused by the computation of the image of a0 b0 . This
is possible only if a cycle of T containing a b exists, because a0 b0 is not a starting
pattern of σa,b.

Now we can finish the reduction. Given a set of Wang tiles T , compute σa,b for all the
tiles a, b whose colors match in a b . One of the substitutions σa,b is overlapping if and
only if T admits a tiling of a cycle. D

Remark 6.3.4. The above proof yields a stronger version of Theorem 6.3.3: non-overlapping
is undecidable for consistent two-dimensional domino substitutions. One can also prove
that this holds even for domino-to-domino substitutions.
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6.4 Decidability results
In this section we give algorithms to decide the consistency or the non-overlappingness of
a natural class of substitutions: the substitutions σ that are domino-complete, that is,
such that the set of starting patterns Cσ is the set of all the possible dominoes.

Consistency for domino-complete substitutions
Theorem 6.4.1. It is decidable whether a given two-dimensional domino-complete substi-
tution is consistent. More precisely, such a substitution is consistent if and only if it is
consistent on every 2× 2 pattern.

Proof. The “only if” implication is trivial. For the “if” implication, suppose that σ is not
consistent. By Proposition 6.2.2, there exists a simple Cσ-loop γ = (c1, . . . , cn) such that
ωσ(γ) 6= 0. We will prove that there exists a 2× 2 pattern on which σ is not consistent by
“reducing” γ inductively.

Let c be the lowest cell on the leftmost column of γ. Since γ does not overlap itself,
there exist two cells d, e ∈ γ such that d is above c and e is at the right of c. We
suppose, without loss of generality, that d, c, e appear in this order in γ, i.e., γ =
(c1, . . . , ci, d, c, e, ci+4, . . . , cn). Let f = [v + (1, 1), t], where v is the vector of c and t ∈ A
is arbitrary (or t agrees with γ if γ already contains a cell of vector v + (1, 1)). Let
γ′ = (c, e, f, d, c) and γ′′ = (c1, . . . , ci, d, f, e, ci+4, . . . , cn), as shown below.

c

d

e

f

γ γ′′

γ′

We have ωσ(γ′) + ωσ(γ′′) = ωσ(γ) 6= 0, so ωσ(γ′) 6= 0 or ωσ(γ′′) 6= 0, which implies the
existence of a Cσ-loop (γ′ or γ′′) with nonzero image vector which surrounds strictly less
cells than γ (unless γ consists 4 cells already). Now, in the same way as in the second
part of the proof of Proposition 6.2.2, γ′ or γ′′ must contain a simple loop with nonzero
image vector. Applying this reasoning inductively eventually leads to a 2× 2 loop γ such
that ωσ(γ) 6= 0, which concludes the proof. D

Generalization to domino-completeness within a set of patterns We now want to
generalize Theorem 6.4.1 to substitutions that are domino-complete only within a particular
set of patterns. Let us first state a few definitions. If P is a set of patterns, we say that σ
is P-domino-complete if Cσ is equal to the set of dominoes that appear in the patterns
of P . If S ⊆ AZ2 , we denote by patt(S) the set of the patterns that appear in the elements
of S. (That is, a pattern is in patt(S) if it can be extended to an element of S.)
Theorem 6.4.2 below gives a simple criterion to determine if a P-domino-complete

substitution is consistent when P is the set of all the 2 × 2 patterns of some S ⊆ AZ2 .
Note that to decide this property, we must be able to compute the 2× 2 patterns of S,
which is not necessarily possible. Note that Theorem 6.4.1 can be seen as the particular
case of Theorem 6.4.2 when S = AZ2 .
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Theorem 6.4.2. Let S ⊆ AZ2 and let P = {P1, . . . , Pn} be the list of the 2 × 2 patterns
that appear in the elements of S. A P-domino-complete substitution is consistent on
patt(S) if and only if it is consistent on the patterns P1, . . . , Pn.

Proof. Let P be a pattern of patt(S) that contains a Cσ-loop γ such that ωσ(γ) 6= 0. We
cannot directly reduce the loop as in the proof of Theorem 6.4.1 because σ is not domino-
complete. However, there exists c ∈ S that contains P and σ is P-domino complete, so we
can then reduce γ within c to a 2× 2 loop, as explained in the proof of Theorem 6.4.1. It
follows that σ is consistent on patt(S) if and only if it is consistent on P1, . . . , Pn. D

Overlapping for consistent domino-complete substitutions
We now focus on the domino-complete substitutions that are consistent. Proposition 6.4.3
below tells us that such substitutions are simple: there exists α, β ∈ Z2 such that the
image of the cell placed at (x, y) is placed at (xα, yβ) in the lattice αZ × βZ. We will
use this proposition to give an algorithm that decides if a consistent domino-complete is
overlapping (Theorem 6.4.4).
Unfortunately, we are not able to give an analogue of Theorem 6.4.2 for the non-

overlapping property, because the associated decision problems seem to become too
difficult to track.

Proposition 6.4.3. Let σ be a consistent two-dimensional domino-complete substitution.
There exist two vectors α, β ∈ Z2 and a vector vt ∈ Z2 for every t ∈ A such that for every
Cσ-path γ from a cell [(0, 0), t] to a cell [(x, y), t′], we have ωσ(γ) = xα + yβ − vt + vt′ .
Moreover, α, β and vt can be obtained effectively.

Proof. Let t0 ∈ A be arbitrary, where A is the alphabet of σ. Let α = ωσ(γ) and
β = ωσ(γ′), where γ = ([(0, 0), t0], [(1, 0), t0]) and γ′ = ([(0, 0), t0], [(0, 1), t0]). For t ∈ A,
define vt = ωσ(γ) − α, where γ = ([(0, 0), t0], [(1, 0), t]). We first prove the theorem for
paths of length two. Because σ is consistent and domino-complete, we can for example
use the following patterns

t0 t0

t0 t

t0 t0

t t′

t0 t

t0 t′

to compute the values

ωσ([(0, 0), t0], [(0, 1), t]) = −α+ β + α+ vt = β + vt
ωσ([(0, 0), t], [(1, 0), t′]) = −β − vt + α+ β + vt′ = α− vt + vt′

ωσ([(0, 0), t], [(0, 1), t′]) = −α− vt + β + α+ vt′ = β − vt + vt′

which proves the statement for paths of length two. The statement for arbitrary paths
follows directly, by adding the consecutive dominoes along the path. D

Theorem 6.4.4. It is decidable whether a given two-dimensional consistent domino-
complete substitution σ is overlapping.

Proof. By Proposition 6.4.3, we can compute α, β, vt, vt′ ∈ Z2 such that ωσ(γ) = xα +
yβ − vt + vt′ for every Cσ-path γ from a cell [(0, 0), t] to a cell [(x, y), t′].
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Denote At = supp(σbase(t)) for t ∈ A. By definition, σ is overlapping if and only if
there exists t, t′ ∈ A and x, y ∈ Z such that At ∩ {b+ xα+ yβ − vt + vt′ : b ∈ At′} 6= ∅.
This leaves a finite number of linear equations to check: for each (t, t′) ∈ A2, we check if
there exists a ∈ At and b ∈ At′ such that the following equation has a nonzero solution
(x, y) ∈ Z2:

a = b+ xα+ yβ − vt + vt′

This can be done algorithmically and σ is overlapping if and only if such a solution
exists. D

Note that some conditions equivalent to consistency and non-overlapping have been
given in some particular examples in [Del11].
Example 6.4.5. Let σ be the two-dimensional substitution on the alphabet {1} defined
by the base rule

1 7→ {[(0, 0), 1], [(1, 0), 1], [(2, 0), 1], [(1, 1), 1]} = 1 1 1
1

and the concatenation rules (1, 1, (1, 0)) 7→ (3, 0) and (1, 1, (0, 1)) 7→ (0, 2). This substi-
tution is domino-complete and consistent. Proposition 6.4.3 applied to σ gives ωσ(γ) =
(3x, 0) + (0, 2y) for every Cσ-path γ from a cell [(0, 0), 1] to a cell [(x, y), 1]. Note that in
this case, v1 = (0, 0).
Example 6.4.6. For n > 0, let σn be the two-dimensional substitution on the alphabet
{1, 2} defined by the base rule 1 7→ {[(0, 0), 1]}, 2 7→ {[(0, 0), 2]} and

(1, 1, (1, 0)) 7→ (1, 0) (1, 2, (1, 0)) 7→ (n+ 1, 0)
(1, 1, (0, 1)) 7→ (0, 1) (1, 2, (−1, 0)) 7→ (n− 1, 0)
(2, 2, (1, 0)) 7→ (1, 0) (1, 2, (0, 1)) 7→ (n, 1)
(2, 2, (0, 1)) 7→ (0, 1) (1, 2, (0,−1)) 7→ (n,−1),

or more graphically:

a a 7→ a a 1 2 7→
1 2

n+ 1
1
2 7→

1
2n

a
a 7→ a

a
2 1 7→

21

n− 1
2
1 7→ 2

1 n .

The substitution σn is domino-complete and consistent for all n. Proposition 6.4.3 applied
to σn gives ωσ(γ) = (x, y) − vt + vt′ for every Cσ-path γ from a cell [(0, 0), t] to a cell
[(x, y), t′], where v1 = (0, 0) and v2 = (n, 0). This gives an example of a substitution with
at least one nonzero vt.

This example is also interesting because it is overlapping, but only on sufficiently large
patterns. Indeed, it is non-overlapping on patterns of horizontal diameter smaller than n,
but overlapping on larger patterns such as

Pn =
1 1 1 · · · 1 1

12
n

= [(0, 0), 2] ∪ [(n+ 1, 0), 1] ∪ {[(i, 1), 1] : 0 6 i 6 n+ 1}.

This shows that the overlapping property cannot be decided as simply as consistency,
where looking at the 2 × 2 patterns was sufficient. Now the size of the rules has to be
taken into account, which explains why the algorithm of Theorem 6.4.4 is not as simple as
the algorithm of Theorem 6.4.1.
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6.5 Links with dual substitutions

The subshift of discrete surfaces
As mentioned earlier, combinatorial substitution as introduced in this chapter were
originally motivated by the study of dual E?

1 substitutions. A formal correspondence
between patterns of {1, 2, 3}Z2 and E?

1 patterns made of unit faces can be found in [ABI02,
ABS04], but it is intuitively summarized by Figure 6.2: point the E?

1 faces so that all the
pointings lie on a two-dimensional lattice, and label the lattice vertices with the types of
the faces.

1
2

2
1

3
3

2
1

3
3

2
2

3
2

2
1

2
2

3
1

3
2

1
3

2
1

3
1

3
3

3
1

3
33

2
1

2 1 3 3
2 1 3 3 2 2

3 2 2 1 2 2
3 1 3 2 1 3
2 1 3 1 3 3

3 1 3 3
3

Figure 6.2: It is possible to define a bijective mapping ϕ from the patterns that are
contained in the set Ssurf ⊆ {1, 2, 3}Z

2 defined below and the patterns of lozenges that are
codings of discrete surfaces. A detailed definition can be found in [ABI02, ABS04].

Let Ssurf ⊆ {1, 2, 3}Z
2 be the set configurations whose set of allowed 2× 2 patterns is

the following set Psurf of 28 patterns

1 1
1 1

1 1
2 1

1 1
3 1

1 2
1 1

1 2
2 1

1 2
3 1

1 3
1 2

1 3
1 3

1 3
2 2

1 3
3 2

1 3
3 3

2 1
1 2

2 1
1 3

2 1
2 2

2 1
3 2

2 1
3 3

2 2
1 2

2 2
1 3

2 2
2 2

2 2
3 2

2 2
3 3

3 1
2 1

3 1
3 1

3 2
2 1

3 2
3 1

3 3
2 2

3 3
3 2

3 3
3 3

(each pattern can be extended to a configuration in Ssurf). Equivalently, Ssurf is the set
of elements of {1, 2, 3}Z2 that do not contain any of the following 11 forbidden patterns.
For each pattern we have plotted the corresponding E?

1 pattern (using the correspondence
described above). We see that for each forbidden pattern, there is either an overlap, or a
pattern that cannot be extended to an infinite configuration.

2
1

3
1

2 3 1 1
2

1 1
3

1 2
2

3 2
2

3 1
3

3 2
3

1 2
3

3 1
2

It has been proved [Jam04] that c ∈ Ssurf if and only if c is the coding of a discrete surface
made of E?

1 faces. (See [ABFJ07] for more about these stepped surfaces.) Intuitively,
sufficiently many forbidden patterns are enough, because in a “problematic” configuration,
the problematic patterns (causing overlaps or gaps) can be reduced inductively to patterns
of minimal size. The 11 patterns above are all possible “normal forms” after reduction.
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From dual substitutions to combinatorial substitutions
We now describe one way of constructing examples of combinatorial substitutions, by
starting from a dual substitution: take a dual substitution Σ = E?

1(σ) and compute (using
Definition 1.2.3) the images of all the two-face patterns corresponding to the allowed
dominoes in Ssurf. This yields a set of concatenation rules, and the three base rules
are given by the image by Σ of each face. This is illustrated in Example 6.5.2 for the
substitution 1 7→ 13, 2 7→ 1, 3 7→ 2, an example also given in [Fer07a].

Remark 6.5.1. Constructing a combinatorial substitution from E?
1(σ) as described above

can be done for every unimodular 3-letter substitution σ. However, to be able to iterate
the resulting combinatorial substitution, we need its image patterns to be covered by its
starting patterns (as specified in the definition of the image of a combinatorial substitution
in Section 6.2). This property is far from being true in general. For example, if the image
patterns are disconnected (which can happen with E?

1(σ) substitutions), they will not be
covered by dominoes (or any set of connected patterns). In Example 6.5.2 below, we are
“lucky” because the forward images of 1 are all covered by the starting patterns of the
substitution, which allows us to iterate it indefinitely.
Note that finding such a set of rules which allows iteration is equivalent to finding a

finite set L of E?
1 patterns such that the forward images of E?

1(σ) are all L-covered (see
Section 2.2).

Now, using Proposition 1.2.4, it can be proved that the resulting combinatorial sub-
stitution is consistent and non-overlapping. (We actually need a stronger variant of
the proposition that holds in the more general case of discrete surfaces, which exists
in [ABFJ07]). However, such a proof is specific to substitutions constructed in this
way, and relies on some “scalar product inequalities” arguments about discrete surfaces
and dual substitutions. The authors of [ABS04] have asked for a more generic, “purely
combinatorial” proof in the particular case of the substitution of Example 6.5.2:

Unfortunately, although this theorem appears to be a purely combinatorial
result, we do not know any combinatorial proof of it, and we would be very
interested in such a proof.

Such generic proofs have also been requested in [PF02]. The results presented in Section 6.4
partially answer these questions. The situation is different for consistency and non-
overlapping, as described below.

Consistency in Ssurf Checking if a given Psurf-domino-complete substitution on pattSsurf,
is consistent can be reduced to simply checking its consistency on the 28 patterns in Psurf,
thanks to Theorem 6.4.2.

Overlapping in Ssurf Checking the overlapping property on patt(Ssurf) for Psurf-domino-
complete substitutions is not as easy as checking consistency, because we have not proved
an “enhanced” version of Theorem 6.4.4 as we did with Theorem 6.4.2 for Theorem 6.4.1.
We do it “by hand” in Proposition 6.5.3 for the particular substitution of Example 6.5.2.
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Example 6.5.2. Let Σ = E?
1(1 7→ 13, 2 7→ 1, 3 7→ 2). Using the correspondence ϕ described

in Figure 6.2, we define a two-dimensional substitution σ on patterns of Ssurf ⊆ {1, 2, 3}Z
2

corresponding to the dual substitution Σ. The base is rule is given by

1 7→ ϕ(Σ( )) = ϕ( ) = 2
1

2 7→ ϕ(Σ( )) = ϕ( ) = 3

3 7→ ϕ(Σ( )) = ϕ( ) = 1 ,

and the concatenation rules can be obtained by computing the images of the E?
1 patterns

corresponding to dominoes in Ssurf, using the mapping ϕ. For example the images of the
dominoes 2 1 and 1

3 are computed in the following way:

2 1
3
2
1σ

Σ

ϕ ϕ−1

1
3

2
1

1
σ

Σ

ϕ ϕ−1

In total this gives the 16 concatenation rules below.

1 1 7→
2
1
2
1

1 2 7→
2
1
3

1 3 7→
2
1
1

2 1 7→
3
2
1

2 2 7→ 3
3 3 1 7→

1
2
1

3 2 7→ 1
3 3 3 7→ 1

1

1
1 7→ 2

1

2
1 1

2 7→ 2
1

3 1
3 7→ 2

1
1 2

1 7→ 3
2
1

2
2 7→ 33 2

3 7→ 31 3
2 7→ 1

3 3
3 7→ 1

1

3
1 7→ 12

1
1

1 7→
2
12

1

This substitution is the main object of study of [ABS04] and it also appears in [Fer07a].
It is Psurf-domino-complete, and it is consistent and non-overlapping on patt(Ssurf). Note
that the last two rules 3

1 and 1
1 have been given in order for the substitution to be

iterable indefinitely when starting from any valid domino.

We can now recover the following properties of the substitution of Example 6.5.2 in a
combinatorial way, without having to use the inherent to E?

1 substitutions.

Proposition 6.5.3. The substitution of Example 6.5.2 is consistent and non-overlapping
on patt(Ssurf).

Proof. Consistency can be checked algorithmically, thanks to Theorem 6.4.2. To prove that
it is non-overlapping, let c = [(0, 0), t] and c′ = [(x, y), t′] be two distinct cells belonging to
a pattern P ∈ patt(Ssurf). There exists a Cσ-path from c to c′ that consists of a horizontal
segment followed by a vertical segment, because σ is Psurf-domino-complete and P is
extendible to an element of Ssurf. Along the horizontal segment, all image vectors are of
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the form (0, i), because the right-hand sides of the rules of σ for horizontal dominoes have
the image patterns aligned vertically. Along the vertical segment, all image vectors are of
the form (−1, i) when moving upward, because the images of the vertical dominoes are
aligned that way. It follows that ωσ(γ) = (−y, i) with i ∈ Z. Since the image patterns
have width 1, it is clear that there is no overlap between the images of c and c′ if y 6= 0. If
y = 0 then we are considering a horizontal path, and it is clear that such path induces no
overlap either because the images are stacked on top of each other. D

6.6 Conclusion
In this chapter we focused on consistency and overlapping properties, because they are
the first properties that one should look at, in order to make sure that a substitution is
“well defined”. There are many other interesting properties whose decidability status has
not been investigated yet. Some of them are:

• Given a substitution σ and a pattern P , can σ be iterated on the successive images
of P by σ? (That is, are the successive images of P by σ all Cσ-covered?)

• Given a substitution σ and a pattern P , are the iterates of σ on P (simply) connected?
• One property that would be very interesting to decide is whether the iterates of a
given substitution σ on a given pattern P contains arbitrarily large balls? As we
have seen in Section 1.4, in the case of a dual E?

1(σ) substitution this property is
equivalent to the Pisot conjecture for σ. Even more interesting would be to be able
to decide such properties for the iterations of a finite set of substitutions, hence
tackling questions similar to the discrete plane generation questions addressed in
Chapter 2.

More generally, as pointed out in [Fra08], there are many things to discover about the
emerging class of combinatorial substitutions, whose study is still at its beginnings. It
would be interesting to find some families of relevant examples which do not come from
dual E?

1 substitutions.

Towards topological substitutions Let us mention some work in progress with Nicolas
Bédaride and Arnaud Hilion [BHJ13], where we study some particular examples of topo-
logical substitutions which are a less “rigid” and more geometrical version of combinatorial
substitutions.
We aim to describe how the examples of combinatorial substitutions coming from

E?
1 substitutions can sometimes be expressed in the form of a topological substitution.

This provides us with an alternative viewpoint of the combinatorial properties of the
original combinatorial substitution, but also gives new interesting examples of topological
substitutions, for which not much examples are known at the moment.
This has been carried out for the combinatorial substitution of Example 6.5.2; as

illustrated in Figure 6.3.
Topological substitutions have been introduced in [BH12], where it is proved that no

such substitution can be primitive and generate a tiling of the hyperbolic plane. (An
explicit non-primitive example for which such a tiling exists is also given in [BH12].)
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Figure 6.3: Topological substitution associated with E?
1(1 7→ 13, 2 7→ 1, 3 7→ 2), obtained

from the combinatorial substitution given in Example 6.5.2.
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Chapter 7

Undecidable properties of self-affine sets
This final chapter is devoted to establishing the undecidability of some properties of
self-affine sets specified by a graph-directed iterated function system (GIFS). We focus on
topological properties such as interior emptiness. The situation contrasts with the case
of Rauzy fractals, for which many such properties are decidable. This is joint work with
Jarkko Kari [JK13].
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7.1 Introduction
Iterated function systems
One of the most common ways to define fractals is to use an iterated function system
(IFS), defined by a finite collection of maps f1, . . . , fn : Rd → Rd which are all con-
tracting: there exists 0 6 c < 1 such that ‖fi(x) − fi(y)‖ 6 c‖x − y‖ for all x, y ∈ Rd.
The associated fractal, called the attractor of the IFS, is the unique nonempty compact
set R such that

R =
n⋃
i=1

fi(R).

Such a set R always exists and is unique thanks to a famous result of Hutchinson [Hut81],
based on an application of Banach fixed-point theorem; see also [Fal03] or [Bar93]. For
example, the classical Cantor set can be defined as the unique compact set X ⊆ R
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satisfying the set equation X = 1
3X ∪ ( 1

3X + 2
3 ), and the Sierpiński triangle can defined as

the unique compact set X ⊆ R2 satisfying X = 1
2X ∪ ( 1

2X + (1/2, 0)) ∪ ( 1
2X + (0, 1/2)).

A natural generalization of IFS can be obtained by restricting which infinite sequences
of maps (fin)n∈N we are allowed to iterate. One of the simplest such restrictions is to
require the set of allowed sequence (in)n∈N to be the language of the infinite paths of
a finite graph. Doing so we can give a new definition: a d-dimensional graph-directed
iterated function system (GIFS) is a directed graph in which each edge e is labelled
by a contracting mapping fe : Rd → Rd. The attractors of the GIFS are the unique
nonempty compact sets {Rq}q∈Q such that

Rq =
⋃
q∈Q

⋃
e∈Eq,r

fe(Rr),

where Q is the set of vertices of the directed graph defining the GIFS, and Eq,r denote the
set of edges from vertex q to vertex r. Again, such a collection of compact set {Rq}q∈Q
exist and are unique [Fal97].

Self-affine and self-similar sets
Many works are focused on the more specific family of self-affine attractors, in which
the contractions fi must be affine (of the form Mix+ vi where Mi is a d× d matrix and
vi ∈ Rd), or the even more constrained family of self-similar attractors, in which the
fi must be similarities (of the form ax+ vi where a ∈ [0, 1[ and vi ∈ Rd).
Self-affine attractors are intensively studied, and many results are known about some

particular families. For example the Hausdorff dimension of Bedford-McMullen carpets
(which are described in Example 7.3.5) admits an exact simple formula [Bed84, McM84],
and similar results about the fractal dimension or the Lebesgue measure of some other
classes exist [LG92, FW05, Bar07, BK11, Fra12]. Moreover, there is an “almost sure”
formula for the packing and Hausdorff dimension in the self-similar case [Fal88].
Despite all the positive results stated above, the notorious difficulty of self-affine

sets suggests that there cannot exist any simple criteria to decide such properties in
full generality. From a computer-theoretical point of view, this would correspond to
undecidability results of the type: “there cannot be an algorithm that, given input an IFS
specified by rational coefficients, determines if Property X holds for the IFS attractor”,
where “Property X” can be any IFS attractor property we are interested in.

A first undecidability result has been established by Dube [Dub93]: it is undecidable if
the attractor of a rational 2-dimensional affine IFS intersects the diagonal {(x, x) : x ∈
[0, 1]}, or if each point in the attractor has a unique address. (This latter property is
referred to as “totally disconnected” in [Dub93], but it is not the same the attractor being
totally disconnected in the topological sense.)

Our results
The aim of this chapter is to prove the undecidability of some topological properties of
self-affine graph-directed iterated function systems. Most notably, we prove that it is
undecidable if the attractor of a 2-dimensional, 3-state affine GIFS has empty interior
(Theorem 7.4.2). Other related GIFS attractor undecidability results are obtained in
Theorems 7.4.1 and 7.4.3.
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To do so, we take the approach of Dube [Dub93] and we associate self-affine sets with
computational devices called multitape automata, which are finite automata acting on
several tapes, with an independent head reading each tape. Then we relate some properties
of the automaton with topological properties of its associated attractor, and we obtain
the undecidability of the latter by proving the undecidability of the former; see 7.3.
All the GIFS that will appear in our constructions are box-like, in the sense that all

the considered affine maps take [0, 1]d to a shrinked copy of itself, with faces parallel to
the axes. Our undecidability results hence yield undecidability results for the particular
class of box-like self-affine sets specified by rational coefficients. The class of box-like affine
sets include all the families mentioned above, for which “positive” results exit.

Links with Rauzy fractals
The undecidability results of this chapter can be interestingly compared with the case of
Rauzy fractal, where much more things are decidable.
In Section 1.3 we have seen that many topological properties of Rauzy fractals can be

algorithmically checked. The Hausdorff dimension of the boundary of a planar Rauzy
fractal can be computed if its corresponding Pisot eigenvalue has complex conjugates,
because the associated GIFS is then self-similar. In contrast, no formula is known if the
two conjugates of the Pisot eigenvalue are real, because then their norms are not equal,
so the GIFS is self-affine but not self-similar. This reflects the difficulty of the study of
self-affine sets.

There are several algorithms to decide if the tiles of the Rauzy fractal of a unimodular
Pisot substitution σ do not overlap, that is, if they intersect on a set of Lebesgue measure
zero. In the case of Rauzy fractals, this is equivalent to having intersection with empty
interior. It follows that the undecidable property that we stated in Theorem 7.4.3 is
actually decidable for the case of Rauzy fractals.
Finally, note that the family of Rauzy fractals GIFS is disjoint from the family of the

GIFS associated with multitape automata, for the simple reason that negative powers of
integers cannot be the expansion factors of a Rauzy fractal GIFS, which, in opposition, is
always the case for multitape automata GIFS; see Remark 7.4.4.

7.2 Multitape automata
Definitions
A d-tape automaton M on alphabet A = A1 × · · · ×Ad is defined by:

• a finite set of states Q ofM,
• a finite set of transitions R ⊆ Q×Q× (A+

1 × · · · ×A
+
d ).

A d-tape automaton on state Q is conveniently represented by a directed graph with vertex
set Q and an edge (q, r) labelled by w1| · · · |wd for every transition (q, r, (w1, . . . , wd)).
This is illustrated in Example 7.2.1.

A configuration is an infinite sequence c ∈ AN = (A1× · · · ×Ad)N. For k ∈ {1, . . . , d},
the kth tape of c refers to the infinite sequence ((cn)k)n∈N, which is an infinite concate-
nation of words in A?k. For convenience, configurations will be denoted by writing the
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tape components separated the symbol “|”. For example, 00 · · · | 11 · · · | 00 · · · denotes the
3-tape configuration (0, 1, 0), (0, 1, 0), . . . ∈ ({0, 1} × {0, 1} × {0, 1})N.

Let q be a state ofM. A configuration c ∈ AN is q-accepted byM if there exists an
infinite sequence of transitions

(q1, r1, (w1,1, . . . , w1,d)),
(q2, r2, (w2,1, . . . , w2,d)),
. . .

such that q1 = q, rn = qn+1 for all n > 1, and for every k ∈ {1, . . . , d}, the infinite word
w1,kw2,k . . . is equal to the kth tape of c (that is, w1,kw2,k . . . = (c1)k(c2)k . . .). Such an
infinite sequence of transitions will sometimes be referred to as a run of M starting
at q. Note that the above definition of acceptance forbids ε-transitions because the words
w1, . . . , wd used in transitions must be nonempty.

Example 7.2.1. Consider the following 2-tape, 2-state automaton on alphabet A =
{0, 1} × {0, 1, 2}, with state set Q = {X,Y } and transitions given by the following.

X Y0|22
1|001

20|1

10|11

110|2

It is easy to check that the configuration 00 · · · |22 · · · is not Y -accepted but is X-accepted
by M (by repeatedly using the transition (X,X, (0, 22))). However, giving a precise
description of the set of configurations which are accepted byM seems difficult.

Remark 7.2.2. Multitape automata are very powerful computational devices because of
the fact that the words w1, . . . , wd in a transition are allowed to have different lengths.
This is the fundamental feature that will allow us to establish several undecidability results
about multitape automata later in this section. On the other hand, if the words w1, . . . , wd
all have the same length in every transition, then it is easy to see that the automaton is
not more powerful than a classical finite automaton on a product alphabet.

Post correspondence problems
The undecidability results of this chapter are all derived from the undecidability of the
following decision problems. The Post correspondence problem (PCP) is defined by:

• Instance: A list of pairs of nonempty words (u1, v1), . . . , (un, vn).
• Question: Do there exist m > 1 and a word i1 · · · im such that ui1 · · ·uim =
vi1 · · · vim?

PCP is a well-known undecidable problem [Pos46]. We will actually need a slight variant
of PCP, the prefix Post correspondence problem (prefix-PCP), defined by:

• Instance: A list of pairs of nonempty words (u1, v1), . . . , (un, vn).
• Question: Do there exist m,m′ > 1 and two words i1 · · · im and i1 · · · im′ such that
ui1 · · ·uim = vi1 · · · vim′ and one of the two words i1 · · · im and i1 · · · im′ is a prefix
of the other?
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A valid PCP always yields a valid prefix-PCP instance (by takingm = m′), but the converse
is not always true. For example, the instance (u1, v1) = (a, abb), (u2, v2) = (bb, aa) admits
the prefix-PCP solution given by u1u2u1u1 = v1v2 = aabbaa, that is, m = 4, m′ = 2 and
the two words i1i2i3i4 = 1211 and i1i2 = 12. However, this instance cannot admit any
PCP solution because no pair of words ends by the same symbol.

Lemma 7.2.3. Prefix-PCP is undecidable.

Proof. We reduce PCP to prefix-PCP. Let (u1, v1), . . . , (un, vn) be an instance of PCP on
alphabet A. Let B = A ∪ {#, *} be a new alphabet, where # and * are two new symbols
not contained in A. We construct a prefix-PCP instance (A1, B1), . . . , (An, Bn), (U1, V1),
. . . , (Un, Vn), (Y, Z) on the new alphabet B, defined by

Ai = #x1*x2* · · · *xk Ui = *x1*x2* · · · *xk Y = *#

Bi = #y1*y2* · · · *y`* Vi = y1*y2* · · · *y`* Z = #

for all i ∈ {1, . . . , n}, where ui = x1 · · ·xn and vi = y1 · · · y` and the xj , yj are in A. We
now prove that the PCP instance has a solution if and only if the prefix-PCP instance
has a solution. Suppose that there exists a solution i1 · · · im to the PCP instance, that
is ui1 · · ·uim = vi1 · · · vim . Then clearly the prefix-PCP also has a solution, given by
Ai1Ui2 · · ·UimY = Bi1Vi2 · · ·VimZ.
Conversely, suppose that the prefix-PCP instance has a solution. By construction,

because of # and *, there must exist a prefix-PCP solution of the form Ai1Ui2 · · ·VimY =
Bi1Vi2 · · ·Vim′Z, where i1 · · · im is a prefix of i1 · · · im′ or vice-versa. But the pairs (Ui, Vi)
do not contain any #, so the pair (Y, Z) is used exactly once, both after mth pair and the
m′th pair, so m = m′ and the PCP instance has a solution. D

Undecidable properties of multitape automata
Let M be a d-tape automaton on alphabet A, and let q be a state of M. State q is
universal if every sequence in AN is q-accepted by M. A finite sequence x ∈ A? is a
universal prefix for state q if for every infinite sequence y ∈ AN, the infinite sequence
xy is q-accepted byM.

Example 7.2.4. Let M be a 1-tape, 1-state automaton on alphabet {0, 1} with three
transitions labelled by 1, 10 and 00. This automaton is not universal because every
sequence starting with 01 is rejected, but the word 1 is a universal prefix: any sequence
starting with 1 is accepted, because any finite segment 10n1 is accepted by transitions
1, 00× k, 1 if n = 2k or 10, 00× k, 1 if n = 2k + 1, and any infinite tail of 0’s of 1’s is
obviously accepted. Hence there exist some multitape automata without universal states
but that admit universal prefixes. The self-affine set associated with this automaton is
discussed in Example 7.3.6.

Theorem 7.2.5. It is undecidable whether a given state of a given d-tape automaton is
universal. This problem remains undecidable if we restrict to 2-tape automata with 3
states.

Proof. We reduce prefix-PCP, which is undecidable thanks to Lemma 7.2.3. Let (u1, v1),
. . . , (un, vn) be an instance of prefix-PCP where the ui, vi are words over B. We define a
2-tape automatonM on 3 states (denoted by X,U, V ). The alphabet ofM is A1 ×A2,
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with A1 = {1, . . . , n} and A2 = B ∪ {#}, where n is the size of the prefix-PCP instance, B
is the alphabet of words ui, vi and # is a new symbol not in B. The transitions ofM are

(1) X i|ui−→ U and U i|ui−→ U for every i ∈ A1;
(2) X i|vi−→ V and V i|vi−→ V for every i ∈ A1;
(3) U i|u−→ X for every i ∈ A1 and u ∈ A+

2 such that
(i) |u| 6 |ui|,
(ii) u is not a prefix of ui,
(iii) u does not begin with #;

(4) X i|u−→ X for every i ∈ A1 and u ∈ A+
2 such that (i) and (ii) above hold;

(5) V i|v−→ X for every i ∈ A1 and v ∈ A+
2 such that

(i) |v| 6 |vi|,
(ii) v is not a prefix of vi,
(iii) v does not begin with #;

(6) X i|v−→ X for every i ∈ A1 and v ∈ A+
2 such that (i) and (ii) above hold.

We now prove that there exists a solution to the prefix-PCP instance (u1, v1), . . . , (un, vn)
if and only if state X is not universal inM.
(⇒) Suppose that the prefix-PCP instance admits a solution: there exist m,m′ > 1

and two words i1 · · · im and i1 · · · im′ such that ui1 · · ·uim = vi1 · · · vim′ and one of the two
words i1 · · · im and i1 · · · im′ is a prefix of the other. Without loss of generality we can
assume that m > m′ and i1 · · · im′ is a prefix of i1 · · · im. We prove thatM cannot accept
any infinite sequence in (A1 ×A2)N beginning with

i1 · · · im | ui1 · · ·uim#

when starting from state X, soM is not universal. Indeed, let us describe the evolution
ofM when reading such a sequence.

• We start from X, so M necessarily uses a transition defined in (1) and (2) and
moves to state U or V after having read i1|ui1 or i1|vi1 , respectively. (The other
transitions (4) and (6) cannot be used because of the conditions (i) and (ii).) Note
that both ui1 and vi1 are prefixes of the content of the second tape.

• Now ifM is in state U , the remaining input starts with some i on the first tape and
starts with ui on the second tape. SoM must use transition (1): stay in state U
and read i|ui. (Transition (3) cannot be used because of the conditions (i) and (ii).)
The same holds ifM is in state V .

It follows that whenM reads i1, . . . , im′ on the first tape, then it is either in state U and has
read ui1 · · ·uim′ on the second tape, or it is in state V and has read vi1 · · · vim′ = ui1 · · ·uim
on the second tape. In the second case, the next symbol on the second tape is #, soM is
“blocked” on this input (there is no suitable transition for this sequence because of (iii)).
In the first case, the computation must continue in the same way as before, so eventually
M is still in state U and has read i1 · · · im|ui1 · · ·uim , and again,M is blocked because
the next symbol on the second tape is #.

(⇐) Suppose that no solution exists for the prefix-PCP instance. The following strategy
shows that a move by the automaton can always be made, whatever its tape contents. If
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M is in state U or V , any move is possible. In state X, if no move is possible, then in the
current configuration (i1i2 · · · |w), both ui1 and vi1 must be prefixes of w, otherwise (4)
or (6) could have been used. Write w = ui1w

′ = vi1w
′′. Then:

(a) if ui1 · · ·uik# is a prefix of w for some k, then go to state V by reading i1|vi1 ;
(b) if vi1 · · · vik# is a prefix of w for some k, then go to state U by reading i1|ui1 ;
(c) if none of the two above cases hold, go either to U or V .

The only possible ways to be stuck at this point are:

• M is in state U or V and the next symbol on the second tape is #;
• M is in state X and (i), (ii) prevent from moving to U or V .

The second case cannot happen because it implies the existence of a prefix-PCP solution. If
we are in the first case, we can assume by symmetry that we are in state U . In the last step
whereM went from X to U , the configuration must start with i1i2 · · · |ui1ui2 · · ·uik# · · ·
for some k, because this is the only way to get stuck in U some k steps later. However,
this contradicts the choice made in (a) above, becauseM should have moved to V instead
of state U . D

Theorem 7.2.6. It is undecidable whether a given state of a given d-tape automaton admits
a universal prefix. This problem remains undecidable if we restrict to 2-tape automata with
3 states.

Proof. We modify the prefix-PCP reduction made in the proof of Theorem 7.2.5. Let
(u1, v1), . . . , (un, vn) be an instance of prefix-PCP where the ui, vi are words over B?.
First we modify the ui, vi by adding a new symbol * not in B after each letter of each ui
and each vi (a word x1x2 · · ·xk becomes x1*x2* · · ·xk*). This modified instance is clearly
equivalent to the original one, so we denote it again by (u1, v1), . . . , (un, vn).

We now define a 2-tape automatonM on 3 states X,U, V . We take the same alphabet
A1 × A2 as in the other reduction, with a new symbol & for both A1 and A2, and the
symbol * for A2. This gives A1 = {1, . . . , n} ∪ {&} and A2 = B ∪ {#, &, *}, where n is
the size of the prefix-PCP instance, B is the alphabet of words ui, vi and #, &, * are new
symbol not in B. The transitions ofM consist of

• (1) and (2) like in the proof of Theorem 7.2.5, without allowing any symbol & or *;
• (3), (4), (5), (6) like in the proof of Theorem 7.2.5, where symbols & or * are allowed,
except in the first letter of u or v;

plus the following transitions:

(7) X a|&−→ X, U a|&−→ X and V a|&−→ X for every a ∈ A1;
(8) X &|a−→ X, U &|a−→ X and V &|a−→ X for every a ∈ A2 \ {*};
(9) X a|*b−→ X, U a|*b−→ X and V a|*b−→ X for every a ∈ A1 and b ∈ A2.

We now prove that there exists a solution to the prefix-PCP instance (u1, v1), . . . , (un, vn)
if and only if state X does not have any unversal prefix.
(⇒) Suppose that the prefix-PCP instance has a solution: there exist m,m′ > 1 and

two words i1 · · · im and i1 · · · im′ such that ui1 · · ·uim = vi1 · · · vim′ and one of the two
words i1 · · · im and i1 · · · im′ is a prefix of the other. Consider the following claim.
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Claim. Let x ∈ A?1 and y ∈ A?2 be such that x&& · · · |y&& · · · is X-accepted by
at most k > 1 different runs ofM. Then there exist x′ ∈ A?1 and y′ ∈ A?2 such
that xx′&& · · · |yy′&& · · · is X-accepted by at most k − 1 different runs.

This claim implies that X does not have any universal prefix, i.e., that for every finite words
x ∈ A?1 and y ∈ A?2, there exists a configuration starting with x|y that is not X-accepted.
Indeed, for every such x, y, there can be only finitely many different accepting runs (say k),
becauseM eventually loops on state X with transition &|&. So it suffices to apply the
claim k times to obtain a configuration starting with x|y which is not X-accepted.

We now prove the claim, using the prefix-PCP solution. Let x ∈ A?1 and y ∈ A?2 be such
that x&& · · · |y&& · · · is X-accepted by k different runs. Denote by R1, . . . , Rk the finite
prefixes of the k runs, each cut whenM reaches the && · · · |&& · · · part. Let s = i1 · · · im ∈
A?1 and let t = u1 · · ·uim , which can be written in the form t = a1*a2* · · · *a|t|−1* ∈ A?2,
where each ai is in A2 \ {#, &, *}, thanks to the modification made to the instance.

Let ` be the distance between the two tapes heads whenM has completed the finite
run R1. (Note that the first head is always behind the second one because it can only
move by one cell at at time.) Without loss of generality we can assume that R1 is the
run for which such an ` is minimal. Let L,L′ > 0 such that s (on the first tape) begins `
positions behind t (on the second tape) in the configuration

c = x&Ls&& · · · | y&L
′
t#&& · · · ,

so that during any run starting with R1,M starts reading s and t# exactly at the same
time. It follows that R1 cannot be extended to an accepting run for c, because s, t
corresponds to a prefix-PCP solution, similarly as in the proof of Theorem 7.2.5. The
same is true for any other run Ri for which such an ` is the same as R1.

Let us now consider another accepting run Ri. By minimality of `, the distance between
the two tapes heads when M first reaches && · · · |&& · · · during run Ri is strictly larger
than `. We now prove that Ri can be extended in a unique way to an accepting run for c.
Indeed, any run ofM starting with Ri must evolve in the following way:

• when t starts being read the second tape, s is not yet being read on the first tape,
so at this timeM is reading & on the first tape and a1 on the second tape;

• the only possible transition is (8), soM moves one step on both tapes, and is now
reading * on the second tape;

• the only possible transition is (9), soM moves one step on the first tape and two
steps on the second, and is again reading * on the second tape;

• this continues until the whole t = a1*a2* · · · *a|t|−1* has been read on the second
tape, andM is deterministically looping on &|&.

From this analysis, it follows that Ri can be extended in a unique way to an accepting
run for c. Hence c is a configuration starting with x|y with at most k − 1 accepting runs,
because every accepting run for c must start with an Ri, each of which can be extended
in at most one way if i ∈ {2, . . . , k}, or in no way at all if i = 1. Thus the claim is proved
by taking x′ = &Ls and y′ = &L

′
t#.

(⇐) Suppose that no solution exists for the prefix-PCP instance. The strategy described
in the “⇐” direction of the proof of Theorem 7.2.5 can be applied to prove that every
sequence must be accepted, with the additional case that if the tape begins by & or *,
then the transition (7), (8) or (9) can always be used. D
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Remark 7.2.7. In the reduction made in the above proof of Theorem 7.2.6, if state X has
a universal prefix, then in fact X is universal. Also, in this case, it is easy to see that any
finite word satisfying (i), (ii) and (iii) of transition (3) is a universal prefix for U (and V ),
so X, U (and V ) have a common universal prefix Hence we have the following: given a
2-tape automatonM on 3 states and two states q, r ofM, it is undecidable if q and r
have a common universal prefix.

7.3 Affine GIFS associated with multitape automata
Let M be a d-tape automaton on alphabet A = A1 × . . . × Ad. We want to give a
“numerical interpretation” to a finite word u ∈ A? or to an infinite configuration c ∈ AN.

We must first specify, for each k ∈ {1, . . . , n}, a numerical interpretation of the letters
of Ak by choosing a bijection δk : Ak → {0, . . . , |Ak| − 1}. We then define ∆k : A?k → R by

∆k(u) =
∑

16i6|u|

δk(ui)|Ak|−i.

Equivalently, for u = u1 · · ·un ∈ Ank , the number ∆k(u) is represented by 0.δk(u1) · · · δk(un)
in base |Ak|. The domain of definition of ∆k can naturally be extended to configurations
c ∈ AN

k . Finally, for every w1, . . . , wd ∈ A+
1 × . . . × A+

d , we write ∆(w1, . . . , wd) =
(∆1(w1), . . . , δd(wd)). The mappings ∆k and ∆ can naturally be extended to infinite
sequences in AN

k and AN, respectively.
In the examples that will follow, if the alphabets Ak are all of the form {0, . . . , |Ak| − 1}

and the maps δk : Ak → {0, . . . , |Ak| − 1} are not specified, we will assume for convenience
that they are identity mappings.

Definition 7.3.1. LetM be a d-tape automaton on stateQ and alphabet A = A1×· · ·×An.
The GIFS associated with M is the GIFS defined by the graph G with vertex set Q
and, for every transition R = (q, r, (w1, . . . , wd)) ofM, an edge (q, r) labelled by the map
f : [0, 1]d → [0, 1]d defined by

fR(x) =

|A1|−|w1| 0
. . .

0 |Ad|−|wd|

x + ∆(w1, . . . , wd).

Example 7.3.2. LetM be a 2-tape automaton on alphabet A = {0, 1} × {0, 1}, and let
c ∈ AN be configuration. IfM contains a transition R = (q, r, (1011, 11)), then applying
the contracting map fR on ∆(c) = (0.x1x2 . . . , 0.y1y2 . . .) ∈ [0, 1]2 has the following effect:

fR(∆(c)) =
(

1/16 0
0 1/4

)(
0.x1x2 . . .
0.y1u2 . . .

)
+ ∆(1011, 11)

=
(

0.0000x1x2 . . .
0.00y1u2 . . .

)
+
(

0.1011
0.11

)
=
(

0.1011x1x2 . . .
0.11y1u2 . . .

)
.

Similarly, applying a sequence of mappings fR1 · · · fRn(∆(c)) corresponds to concatenating
the words associated with the transitions Rn in the numerical interpretation ∆(c) of a
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configuration c. This is the key thanks to which a correspondence between the GIFS of an
automaton and its accepted sequences can be established. This is formalized in the next
proposition.

Proposition 7.3.3. LetM be a 2-tape automaton and let q be a state ofM. The GIFS
attractor ofM associated with q is equal to the set {∆(c) : c is q-accepted byM}.

Proof. Let x ∈ [0, 1]d. A standard fact in the theory of iterated function systems [Fal03,
Chapter 9] is that x ∈ Rq if and only if there is an infinite sequence of mappings (fRn)n>1
of the GIFS such that

x =
⋂
n>1

fR1 · · · fRn([0, 1]d)

and such that fR1 is the labelling of an outgoing edge from q. Moreover, by definition of
the GIFS ofM, for every such sequence of transitions R1, R2, . . ., the configuration

c = w1,1w2,1 · · · | · · · | w1,dw2,d · · ·

is such that x = ∆(c), where the wn,k are given by the transitions (qn, rn, (wn,1, . . . , wn,d))
for all n > 1, so the proposition is proved because c is a q-accepted configuration. D

Example 7.3.4. LetM be the 2-tape GIFS on alphabet {0, 1} with one state and tran-
sitions 0|0, 0|1, 1|0. The iterated function system associated with M consists of the
maps x 7→ x/2, x 7→ x/2 + (0, 1/2), x 7→ x/2 + (1/2, 0) and it can easily be seen that the
associated attractor the Sierpiński triangle.

Example 7.3.5. Let n,m > 1 and let I ⊆ {1, . . . , n} × {1, . . . ,m}. The Bedford-
McMullen carpet of size (n,m) and parameters I is the attractor the IFS specified the
maps

fi,j : x 7→
(

1/n 0
0 1/m

)
x+

(
i/n
j/m

)
for every (i, j) ∈ I. Such an attractor can easily be realized by the attractor of the
one-state, 2-tape automaton on alphabet {1, . . . , n} × {1, . . . ,m}, with the transition i|j
for every (i, j) ∈ I.
Bedford-McMullen carpets have been introduced in [Bed84, McM84] and an explicit

formula is known to compute their Hausdorff dimension. The original motivating example
for the study of this class was the carpet with parameters (n,m) = (3, 2) and I =
{(0, 1), (1, 0), (2, 1)}: cut the square in 3 columns and 2 lines, choose the sub-squares with
coordinates I and replace each square of with a renormalized union of the chosen squares:

7→ 7→ 7→ 7→ · · ·

Example 7.3.6. The 1-tape, 1-state automatonM on alphabet {0, 1} with three transitions
1, 10 and 00 (described in Example 7.2.4) is an example of a non-universal automaton
which admits universal prefixes. This reflects in the attractor associated withM in the
following way: it is not equal to [0, 1] but it has nonempty interior. This can be proved
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either by Proposition 7.3.8, or by proving directly that a configuration x ∈ {0, 1}N is
accepted byM if and only if it does not start with 02k+11 for some k > 0, which implies
that the attractor is equal to

⋃
k>0[2−2k−1, 2−2k].

Remark 7.3.7. Given a d-tape automaton and a point x ∈ [0, 1]d, if there exists two
distinct configuration c, c′ such that x = ∆(c) = ∆(c′), then every tape component of c
and c′ must end by a stationary sequence 0ω or (|Ak|−1)ω. In particular, ∆ is finite-to-one.

The next proposition establishes the desired correspondence between word-theoretical
properties of multitape automata and topological properties of the associated self-affine
attractors.

Proposition 7.3.8. LetM be a d-tape automaton on alphabet A, let q, r be two states of
M, and let Rq, Rr be their associated GIFS attractor. We have:

(1) q is universal if and only if Rq = [0, 1]d,
(2) q has a universal prefix if and only if Rq has nonemtpy interior.
(3) q and r have a common universal prefix if and only if Rq ∩Rr has nonemtpy interior.

Proof. (1) If state q is universal the expansion of every element of [0, 1]d must be q-accepted
so Rq = [0, 1]d thanks to Proposition 7.3.3. Conversely, suppose that there exists an
infinite sequence c that is not q-accepted. By a compactness argument, there must exist
a prefix w of c such that wc′ is not q-accepted for every infinite sequence c′. Thanks
to Remark 7.3.7, by choosing c′ with no tape components ending by 0ω or (|Ak| − 1)ω,
the sequence wc′ is the only sequence such that x = ∆(wc′), so ∆(wc′) /∈ Rq because
otherwise wc′ would be q-accepted otherwise. It follows that Rq 6= [0, 1]d.
(2) For a finite word w ∈ A?, define the cylinder [w] to be equal to the set of

configurations that start with w. If q admits a universal prefix w, then ∆([w]) ⊆ Rq by
Proposition 7.3.3, so Rq has nonempty interior. Conversely, suppose that there exists a
nonempty open set U ⊆ Rq, and let w ∈ A? be a finite word such that ∆([w]) ⊆ U . By a
reasoning similar as in the proof of (1), we can prove that w is a universal prefix for q.
The proof of (3) is analogous. D

7.4 Undecidability results
Thanks to the undecidability results obtained for multitape automata in Theorem 7.2.5
and to the correspondence between word-theoretical and topological properties in Proposi-
tion 7.3.8, we obtain the following undecidability results about topological properties of
self-affine attractors.
The first result below states that it is undecidable if an attractor “takes up the whole

space”, that is, equals [0, 1]d.

Theorem 7.4.1. The following problem is undecidable. Instance: a d-dimensional affine
GIFS G specified by maps with rational coefficients, and a state q of G. Question: is
Rq = [0, 1]d? This problem remains undecidable if we restrict to 2-dimensional GIFS with
3 states.

Proof. Follows directly from Theorem 7.2.5 and Proposition 7.3.8, (1). D

The next result states the undecidability of a fundamental topological property for
self-affine sets: having empty interior.
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Theorem 7.4.2. The following problem is undecidable. Instance: a d-dimensional affine
GIFS G specified by maps with rational coefficients, and a state q of G. Question: does Rq
have empty interior? This problem remains undecidable if we restrict to 2-dimensional
GIFS with 3 states.
Proof. Follows directly from Theorem 7.2.6 and Proposition 7.3.8, (2). D

The next theorem, stating the undecidability of interior emptiness of attractor intersec-
tions, is interesting to compare with the case of Rauzy fractals, where this property is
decidable. (See Chapter 1 for various examples of Rauzy fractals with non-overlapping
attractors, and see Section 5.6 for an example of a Rauzy fractal with overlapping tiles.)
Theorem 7.4.3. The following problem is undecidable. Instance: a d-dimensional affine
GIFS G specified by maps with rational coefficients, and two states q, q′ of G. Question:
does Rq ∩ Rq′ have empty interior? This problem remains undecidable if we restrict to
2-dimensional GIFS with 3 states.
Proof. Follows directly from Remark 7.2.7 and Proposition 7.3.8, (3). D

Remark 7.4.4. All the undecidability results above have been obtained via a reduction
using affine GIFS associated with a multitape automaton. Hence it follows that undecid-
ability holds even if we restrict to affine GIFS in which the linear part of the contractions
fi are diagonal matrices whose entries are negative powers of integers. By adding dummy
duplicate symbols, undecidability holds even if the entries are negative powers of two.

The diagonal entries are not always equal, so the attractors are not always self-similar,
but we can observe that the family of affine GIFS in question is still quite a restricted one,
and it belongs to the class of box-like self-affine sets mentioned in the introduction.

7.5 Conclusion
The undecidability results of this chapter have been obtained by linking word-theoretical
properties of multitape automata with topological properties of their associated attractors.
Examples of such correspondence are given in the table below. The first three are the
ones treated in this chapter (Proposition 7.3.8), the fourth is the original one studied
in [Dub93]. The fifth and sixth rows correspond to natural topological properties for
which the corresponding language-theoretical properties do not seem easy to state at first
glance.

Property of the d-tape automaton Topological property of the attractor
Is universal Is equal to [0, 1]d

Admits universal prefixes Has nonempty interior
States q, r have a common univ. prefix Rq ∩Rr has nonempty intersection
Accepts a configuration with identical
tape contents

Intersects the diagonal [Dub93]

? Is connected
? Is totally disconnected
Compute language entropy Compute Hausdorff dimension
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Concerning the last row in the table above, we hope to relate the automaton language
entropy with the Hausdorff dimension of its attractor in order to prove that Hausdorff
dimension is uncomputable for such sets (or more precisely, to prove that it is undecidable
if the Hausdorff dimension of a given IFS equals 2). Two possible approaches are either
by establishing some new word-theoretical undecidability results, or by adapting the
reductions of this chapter in such a way that the Hausdorff dimension can be controlled in
the reductions. We also would like to reduce the number of states in our reductions from
3 to 1, in order for the results to hold for the more restricted class of IFS (and not GIFS).

Another perspective of work in the context of multitape automata attractors is the
study of some other “fatness properties”, such as having nonempty interior, having positive
Lebesgue measure and having full fractal dimension. Note that there are some examples
of self-similar sets with empty interior but nonzero Lebesgue measure [CJP+06].
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Conclusion
We conclude the work done in this thesis by stating some perspectives for further research.
Such perspectives have already been given in Section 4.6 about fundamental groups of
Rauzy fractals, in Section 6.6 about several questions concerning the notion of combinatorial
substitution, and in Section 7.5 about some decidability issues concerning self-affine sets,
such as computability of the Hausdorff dimension.

Higher-dimensional Rauzy fractals
Figure 7.1 shows the two 3-dimensional Rauzy fractals associated with two 4-letter
substitutions. The first one, which can be referred to as the “Quadribonacci” fractal, is
suspected to be homeomorphic to a three-dimensional ball. However, no proof of this fact
is known. The two main difficulties that we are facing are:

• We cannot use the techniques used in the two-dimensional case, because they rely
on the fact that the boundaries of the tiles are one-dimensional curves.

• Even if we managed to prove that the boundaries of the three-dimensional tiles are
homeomorphic to two-dimensional spheres, this would not directly imply that the
tiles are homeomorphic to a ball because of counterexamples such as Alexander’s
horned sphere (a set S ⊆ R3 which is homeomorphic to the two-dimensional sphere,
but such that the unbounded component of R3 \ S is not simply connected [Hat02]).

Thus, new techniques have to be developed for the study of such fractals. Despite these
difficulties, we expect that the connectedness of these fractals can be proved in the same
way as we proved the connectedness results in Theorem 3.2.1 and Proposition 5.1.1, by
exhibiting suitable L-coverings (which are a flexible combinatorial tool which can be used
in higher dimensions as well).

Figure 7.1: The Rauzy fractals of 1 7→ 12, 2 7→ 13, 3 7→ 14, 4 7→ 1 (left) and 1 7→ 12, 2 7→
31, 3 7→ 14, 4 7→ 1 (right). They are three-dimensional because their associated Pisot
eigenvalue β ≈ 1.926 is of degree 4 (it is the dominant root of x4 − x3 − x2 − x− 1).
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Combinatorial tools for a more general algebraic framework
The flexibility of dual substitutions has allowed us to prove many results about arbitrary
compositions of substitutions in the irreducible case. Even though a general E?

k theory
has been developed for unimodular substitutions [SAI01], no definition of Rauzy fractals
similar to Definition 1.3.5 (using dual substitutions) has been given for the reducible case.

Can such a definition be given (even for some particular classes only), in
a way that allows proving results about arbitrary compositions of reducible
substitutions?

Several results in this direction already exist:

• the quotient mapping condition is introduced in [ST09] to get some periodic Rauzy
fractal tilings from some reducible Pisot subsitutions;

• some “dual-like” substitutions coming from reducible substitutions are studied
in [EIR06], [EI05], and also in [EEFI07, FIR06, FIR09, AFHI11] for some morphisms
whose incidence matrix is hyperbolic but not Pisot in the strict sense;
• a full theory of dual substitutions in the non-unit irreducible case has been developed

in [MT13].

Bratteli diagrams for 2-dimensional Sturmian subshifts
Giordano, Matui, Putnam and Skau proved in [GMPS10] that for every d > 1, every
minimal Zd-action on the Cantor set is realized by a minimal Z-action, up to orbit
equivalence.
However, it is not known which minimal Z-actions are orbit-equivalent to a minimal

Zd action for some d > 2. A realization result which partially answers this question is
contained in [CP13], where it is proved that for every d > 1 and for every one-dimensional
Toeplitz subshift X, there exists a d-dimensional Toeplitz subshift that is orbit equivalent
to X.
We aim to use the combinatorial tools developed in this thesis in order to prove a

realization result of the same flavor, namely that every 2-dimensional Sturmian subshift
in {1, 2, 3}Z2 is orbit-equivalent to a 1-dimensional subshift in {1, 2, 3}Z by explicitly
constructing a Bratteli diagram encoding the dynamics of the two subshifts up to orbit
equivalence. Such a result would rely on the duality between a substitution σ and E?

1(σ),
and on the fact that every two-dimensional Sturmian sequence can be generated by infinite
compositions of Brun or Jacobi-Perron dual substitutions.
Note that 2-dimensional Sturmian subshifts can equivalently be seen either as codings

of discrete planes, or as codings of two irrational rotations on the unit circle [BV00].

Totally real eigenvalues of products of Brun matrices
By running computer simulations, we can make the following empirical observation about
the eigenvalues of products of Brun substitutions.

For every product σ = σBrun
i1
· · ·σBrun

in
of Brun substitutions for which there

exists a cycle • i1→ • i2→ · · · in→ • in the directed graph of Theorem 2.5.2, the
eigenvalues of Mσ are all real.
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This is a surprising fact because complex and real eigenvalues seem to appear in non-
predictable ways in the case of arbitrary products. Can this observation be proved?

Note that there are some products for which Mσ has totally real eigenvalues but which
do not belong to the language described above, for example σBrun

2 σBrun
3 σBrun

3 .

Decision problems in symbolic dynamics
Several interesting decision problems related with substitutions subshifts can be raised.
For instance:

Is the conjugacy problem decidable for one-dimensional substitutive subshifts?
That is, given two substitutions σ and τ , is it decidable if their associated
systems (Xσ, S) and (Xτ , S) are topologically conjugate?

Partial answers to this question are given in [CKL08, CDKL13], where for example one can
find a characterization of the systems which are topologically conjugate to the Thue-Morse
substitution subshift. Note that the decidability of the conjugacy problem is still unknown
for the class of subshifts of finite type in the one-dimensional two-sided case [Boy08].
The same question can be asked for the higher dimensional Zd-actions generated by

higher dimensional substitutions.
Another interesting question is the periodicity problem for the fixed points of d-

dimensional substitutions in the case d > 2. (This problem is decidable in the one-
dimensional case; see Remark 1.1.4.)
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Abstract
Substitutions are mappings which replace each symbol of a given alphabet by a word over
the same alphabet. They naturally act on infinite sequences of symbols, and produce
highly ordered systems with many properties. This thesis concerns a particular class with
algebraic restrictions, Pisot substitutions, and their related objects of dynamical, fractal
or combinatorial nature.

We begin with the study of some qualitative properties of the two-dimensional patterns
generated by iterating a two-dimensional “dual” version of Pisot substitutions. We then
use these combinatorial tools to study the infinite families of substitutions obtained by
taking arbitrary products over a finite set of Pisot substitutions. We obtain several
applications: dynamical properties of the associated symbolic systems, some language
theoretical characterizations of some topological properties of the associated Rauzy fractals,
some number-theoretical properties of the associated Pisot numbers, and some results
in discrete geometry. Particular focus is set on the substitutions associated with the
Arnoux-Rauzy, Brun and Jacobi-Perron multidimensional continued fraction algorithms.

Next we give explicit constructions to describe all the possible fundamental groups of
planar Rauzy fractals in the case where the group is free of finite rank (i.e., countable).
In the last two chapters, we “step back” from the Pisot algebraic assumption to study

some more general objects arising from the combinatorial tools used in the previous
chapters, focusing on some computational (un)decidability questions.

Résumé
Les substitutions sont des applications qui remplacent chaque lettre d’un alphabet par un
mot sur le même alphabet. Elles agissent naturellement sur des suites infinies de symboles,
et produisent des systèmes très structurés ayant beaucoup de proprétés. Cette thèse porte
sur l’étude d’une classe particulière vérifiant des restriction algébriques, les substitutions
de type Pisot, et leurs objets associés, de nature dynamique, fractale ou combinatoire.

On commence par l’étude de certaines propriétés qualitatives des motifs bi-dimensionnels
engendrés par une version « duale » des substitutions de type Pisot. On applique ensuite
ces outils combinatoires à l’étude des familles infinies de substitutions définies comme
l’ensemble des produits finis sur un ensemble fini de susbtitutions. On obtient des
propriétés dynamiques des systèmes symboliques associés, des caractérisations de certaines
propriétes topologiques des fractals de Rauzy associés, des propriétes des nombres Pisot
associés, et des applications en géométrie discrète. Une attention particulière est portée
sur les substitutions associées aux algorithmes de fraction continues multidimensionnels
d’Arnoux-Rauzy, Brun et Jacobi-Perron.

Ensuite, des constructions explicites sont données pour fournir une description complète
des groupes fondamentaux de fractals de Rauzy planaires, dans le cas où le groupe est
libre de rang fini (i.e., dénombrable).

Dans les deux derniers chapitres, on s’affranchit de la condition algébrique Pisot, pour
étudidier des objets plus généraux provenant des outils combinatoires utilisés dans les
précédents chapitres, en insistant sur des questions d’(in)décidabilité calculatoire.
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