579 research outputs found

    Towards an HLA Run-time Infrastructure with Hard Real-time Capabilities

    Get PDF
    Our work takes place in the context of the HLA standard and its application in real-time systems context. The HLA standard is inadequate for taking into consideration the different constraints involved in real-time computer systems. Many works have been invested in order to providing real-time capabilities to Run Time Infrastructures (RTI) to run real time simulation. Most of these initiatives focus on major issues including QoS guarantee, Worst Case Transit Time (WCTT) knowledge and scheduling services provided by the underlying operating systems. Even if our ultimate objective is to achieve real-time capabilities for distributed HLA federations executions, this paper describes a preliminary work focusing on achieving hard real-time properties for HLA federations running on a single computer under Linux operating systems. Our paper proposes a novel global bottom up approach for designing real-time Run time Infrastructures and a formal model for validation of uni processor to (then) distributed real-time simulation with CERTI

    HLA high performance and real-time simulation studies with CERTI

    Get PDF
    Our work takes place in the context of the HLA standard and its application in real-time systems context. Indeed, current HLA standard is inadequate for taking into consideration the different constraints involved in real-time computer systems. Many works have been invested in order to provide real-time capabilities to Run Time Infrastructures (RTI). This paper describes our approach focusing on achieving hard real-time properties for HLA federations through a complete state of the art on the related domain. Our paper also proposes a global bottom up approach from basic hardware and software basic requirements to experimental tests for validation of distributed real-time simulation with CERTI

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Performance Analysis of Live-Virtual-Constructive and Distributed Virtual Simulations: Defining Requirements in Terms of Temporal Consistency

    Get PDF
    This research extends the knowledge of live-virtual-constructive (LVC) and distributed virtual simulations (DVS) through a detailed analysis and characterization of their underlying computing architecture. LVCs are characterized as a set of asynchronous simulation applications each serving as both producers and consumers of shared state data. In terms of data aging characteristics, LVCs are found to be first-order linear systems. System performance is quantified via two opposing factors; the consistency of the distributed state space, and the response time or interaction quality of the autonomous simulation applications. A framework is developed that defines temporal data consistency requirements such that the objectives of the simulation are satisfied. Additionally, to develop simulations that reliably execute in real-time and accurately model hierarchical systems, two real-time design patterns are developed: a tailored version of the model-view-controller architecture pattern along with a companion Component pattern. Together they provide a basis for hierarchical simulation models, graphical displays, and network I/O in a real-time environment. For both LVCs and DVSs the relationship between consistency and interactivity is established by mapping threads created by a simulation application to factors that control both interactivity and shared state consistency throughout a distributed environment

    A Collaborative Software Infrastructure based on the High Level Architecture and XML

    Get PDF
    A study is made of using the High Level Architecture (HLA) as foundation for distributed applications in the domain of Computer-Supported Collaborative Work. A plug-in, peer-to-peer infrastructure for such applications is proposed, aimed at facilitating development and management of collaborative software. Users of the framework collaborate in groups and sessions, described by a replicated state XML information model. A prototype infrastructure is developed, along with three prototype collaborative applications. Results of performance testing show that a transport system built on HLA compares reasonably well with a socket-based transport system. On the whole, results demonstrate feasibility of the infrastructure and of the objective of extending the HLA to non-simulation applications. Future work to adapt full-scale applications to the collaborative infrastructure is invited

    Dynamically adaptive partition-based interest management in distributed simulation

    Get PDF
    Performance and scalability of distributed simulations depends primarily on the effectiveness of the employed interest management (IM) schema that aims at reducing the overall computational and messaging effort on the shared data to a necessary minimum. Existing IM approaches, which are based on variations or combinations of two principle data distribution techniques, namely region-based and grid-based techniques, perform poorly if the simulation develops an overloaded host. In order to facilitate distributing the processing load from overloaded areas of the shared data to less loaded hosts, the partition-based technique is introduced that allows for variable-size partitioning the shared data. Based on this data distribution technique, an IM approach is sketched that is dynamically adaptive to access latencies of simulation objects on the shared data as well as to the physical location of the objects. Since this re-distribution is decided depending on the messaging effort of the simulation objects for updating data partitions, any load balanced constellation has the additional advantage to be of minimal overall messaging effort. Hence, the IM schema dynamically resolves messaging overloading as well as overloading of hosts with simulation objects and therefore facilitates dynamic system scalability

    Middleware services for distributed virtual environments

    Get PDF
    PhD ThesisDistributed Virtual Environments (DVEs) are virtual environments which allow dispersed users to interact with each other and the virtual world through the underlying network. Scalability is a major challenge in building a successful DVE, which is directly affected by the volume of message exchange. Different techniques have been deployed to reduce the volume of message exchange in order to support large numbers of simultaneous participants in a DVE. Interest management is a popular technique for filtering unnecessary message exchange between users. The rationale behind interest management is to resolve the "interests" of users and decide whether messages should be exchanged between them. There are three basic interest management approaches: region-based, aura-based and hybrid approaches. However, if the time taken for an interest management approach to determine interests is greater than the duration of the interaction, it is not possible to guarantee interactions will occur correctly or at all. This is termed the Missed Interaction Problem, which all existing interest management approaches are susceptible to. This thesis provides a new aura-based interest management approach, termed Predictive Interest management (PIM), to alleviate the missed interaction problem. PIM uses an enlarged aura to detect potential aura-intersections and iii initiate message exchange. It utilises variable message exchange frequencies, proportional to the intersection degree of the objects' expanded auras, to restrict bandwidth usage. This thesis provides an experimental system, the PIM system, which couples predictive interest management with the de-centralised server communication model. It utilises the Common Object Request Broker Architecture (CORBA) middleware standard to provide an interoperable middleware for DVEs. Experimental results are provided to demonstrate that PIM provides a scalable interest management approach which alleviates the missed interaction problem

    Middleware services for distributed virtual environments

    Get PDF
    PhD ThesisDistributed Virtual Environments (DVEs) are virtual environments which allow dispersed users to interact with each other and the virtual world through the underlying network. Scalability is a major challenge in building a successful DVE, which is directly affected by the volume of message exchange. Different techniques have been deployed to reduce the volume of message exchange in order to support large numbers of simultaneous participants in a DVE. Interest management is a popular technique for filtering unnecessary message exchange between users. The rationale behind interest management is to resolve the "interests" of users and decide whether messages should be exchanged between them. There are three basic interest management approaches: region-based, aura-based and hybrid approaches. However, if the time taken for an interest management approach to determine interests is greater than the duration of the interaction, it is not possible to guarantee interactions will occur correctly or at all. This is termed the Missed Interaction Problem, which all existing interest management approaches are susceptible to. This thesis provides a new aura-based interest management approach, termed Predictive Interest management (PIM), to alleviate the missed interaction problem. PIM uses an enlarged aura to detect potential aura-intersections and iii initiate message exchange. It utilises variable message exchange frequencies, proportional to the intersection degree of the objects' expanded auras, to restrict bandwidth usage. This thesis provides an experimental system, the PIM system, which couples predictive interest management with the de-centralised server communication model. It utilises the Common Object Request Broker Architecture (CORBA) middleware standard to provide an interoperable middleware for DVEs. Experimental results are provided to demonstrate that PIM provides a scalable interest management approach which alleviates the missed interaction problem
    • …
    corecore