
MIDDLEW ARE SERVICES FOR

DISTRIBUTED VIRTUAL ENVIRONMENTS

A THESIS

SUBMITTED TO THE SCHOOL OF COMPUTING SCIENCE

OF THE UNIVERSITY OF NEWCASTLE UPON TYNE

IN PARTIAL FULLFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

FengyunLu

February 2006

NEWCASTLE UNIVERSITY LIBRARY

204 26850 6

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Dr. Graham Morgan (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Prof. Gordon Blair (External Examiner)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Dr. Aad van Moorsel (Internal Examiner)

Approved for the School of Computing Science:

Dr. John Lloyd

Head of School of Computing Science

11

ABSTRACT

MIDDLEWARE SERVICES FOR DISTRIBUTED

VIRTUAL ENVIRONMENTS

FengyunLu

Ph.D. in Computing Science

Supervisor: Dr. Graham Morgan

February 2006

Distributed Virtual Environments (DVEs) are virtual environments which allow

dispersed users to interact with each other and the virtual world through the

underlying network.

Scalability is a major challenge in building a successful DVE, which is directly

affected by the volume of message exchange. Different techniques have been

deployed to reduce the volume of message exchange in order to support large

numbers of simultaneous participants in a DVE. Interest management is a

popular technique for filtering unnecessary message exchange between users.

The rationale behind interest management is to resolve the "interests" of users

and decide whether messages should be exchanged between them. There are

three basic interest management approaches: region-based, aura-based and

hybrid approaches. However, if the time taken for an interest management

approach to determine interests is greater than the duration of the interaction, it

is not possible to guarantee interactions will occur correctly or at all. This is

termed the Missed Interaction Problem, which all existing interest management

approaches are susceptible to.

This thesis provides a new aura-based interest management approach, termed

Predictive Interest management (PIM), to alleviate the missed interaction

problem. PIM uses an enlarged aura to detect potential aura-intersections and

iii

initiate message exchange. It utilises variable message exchange frequencies,

proportional to the intersection degree of the objects' expanded auras, to restrict

bandwidth usage. This thesis provides an experimental system, the PIM system,

which couples predictive interest management with the de-centralised server

communication model. It utilises the Common Object Request Broker

Architecture (CORBA) middleware standard to provide an interoperable

middleware for DVEs. Experimental results are provided to demonstrate that

PIM provides a scalable interest management approach which alleviates the

missed interaction problem.

Acknowledgements

I would like to thank my husband, Kier Storey, who gave me lots of support

while writing this thesis. He read through this thesis with me and gave me lots of

useful suggestions.

I would like to thank my supervisor, Dr. Graham Morgan, for the instruction he

has given me throughout my research.

I would like to thank my parents, GangZhen Lu and WanYi He. They always

encourage me when I feel frustrated.

Table of Contents

ACONKNOWLEGEMENT v

1. INTRODUCTION 1

1.1. Interest Management ... 3

1.2. Middleware 4

1.3. Communication Models ... 6

1.4. Contribution of Thesis 6

1.5. Thesis Outline 8

2. BACKGROUND 9

2.1. Distributed Virtual Environment (DVE) 10

2.2. General Properties of DVE . 13

2.2.1. Shared Distributed Environment . 13

2.2.2. Virtual Objects 14

2.2.3. Interaction and Navigation 14

2.2.4. Distributed Users ... 15

2.3. Challenges ofDVE Implementation 15

2.3.1. Bandwidth ... 16

2.3.2. Network Latency 16

2.3.3. Heterogeneous Network 17

2.3.4. Consistency and Responsiveness 18

2.4. Distribute Virtual Environment Architecture 19

VI

2.4.1. Application Layer .. 20

2.4.2. Message Dissemination Layer " 21

2.4.3. Network Layer '" 22

2.4.3.1. The Internet Protocol "" 23

2.4.3.2. Transmission Control Protocol 24

2.4.3.3. User Datagram Protocol 25

2.4.3.4. IP Broadcasting 25

2.4.3.5. IP Multicasting " " " 26

2.4.3.6. Protocol Evaluation 27

2.4.4. DVE Architecture Summary .. " .. " "....... 27

2.5. Middleware ... 29

2.5.1. Remote Procedure Calls """ " " " .. " "" 31

2.5.2. Message-Oriented Middleware " " ".............. 31

2.5.3. Distributed Object Middleware """" " ". 32

2.5.4. Middleware Standards """ " "",, 33

2.5.4.1. ONC and DCE "" .. " " "" .. " "'" 33

2.5.4.2. DCOM .. 34

2.5.4.3. CORBA .. 35

2.5.4.4. JMS .. 36

2.5.5. Middleware Summary .. 36

2.6. Interest Management " .. " " " " " .. ""... 37

2.6.1. Region-based Interest Management Approach 40

2.6.2. Aura-based Interest Management Approach 41

2.6.3. Hybrid Interest Management Approach """"""""""" 41

2.6.4. Missed Interactions Problem .. 42

2.7. Communication Models " "" " .. " "....... 46

2.7.1. Peer-to-Peer Communication Model .. " 47

2.7.2. Centralised Server Communication Model '" 47

2.7.3. De-centralised Server Communication Model 49

2.8. Related Work ... 50

2.8.1. IEEE Standards " ".............. 50

vii

2.8.2. Military Research 53

2.8.3. Academic Research ... 55

2.8.4. Commercial .. 64

2.8.4.1. First-Person Shooter 64

2.8.4.2. Massive Multiplayer Online Role Play Game ... 67

2.9. Summary .. 71

3. PREDICTIVE INTEREST MANAGEMENT 74

3.1. Overview of Techniques .. 74

3.2. Calculations 75

3.2.1. Assumptions .. 75

3.2.2. Predicted Area ofInfluence 77

3.2.3. Collision Window ... 79

3.3. Message Exchange Scheme ... 84

3.3.1. Message Types ... 85

3.3.2. Message Channels .. 86

3.3.3. Message Channel Subscription Policy 87

3.4. Summary .. 91

4. SYSTEM IMPLEMENTATION 94

4.1. Development Issues ... 94

4.1.1. Interaction Models ... 95

4.1.2. Development Technologies 98

4.2. System Design and Implementation ... 102

4.2.1. IDL File .. 103

4.2.2. PIM Server Structure and Implementation 104

4.2.2.1. Message Service Servant 105

4.2.2.2. Message Buffer Unit 108

4.2.2.3. Thread Pool Processing Unit 110

4.2.2.4. PIMProcessing Unit 113

4.2.2.5. Message Supplier 118

Vlll

4.2.3. System Exceptions 121

4.3. Summary 122

5. EXPERIMENTATION.. 124

5.1. Experimentation Environment 124

5.2. Simulators .. 125

5.2.1. World Simulator ... 125

5.2.2. Object Simulator ... 127

5.3. The PIMSystem Experiments ... 131

5.4. Parameter Selection... 143

5.5. Summary 144

6. CONCLUSIONS ... 146

6.1. Thesis Summary 146

6.2. Contribution of Thesis ... 151

6.3. Future Work ... 152

BIBLIOGRAPHY 155

APPENDIX A ... 164

ix

List of Figures

Figure 2.1 Three-Tier DVE Architecture 20

Figure 2.2 DVE Architecture ... 29

Figure 2.3 The DOM Structure .. 33

Figure 2.4 Proportion ofDVE Visible to an Individual................................ 39

Figure 2.5 Problems with Region-based Interest Management 43

Figure 2.6 Problems with Aura-based Interest Management 44

Figure 2.7 Problems with Hybrid Interest Management 45

Figure 2.8 Communication Models ... 46

Figure 2.9 The SubscriptioniUn-subscription Mechanism 55

Figure 3.1 The Triangle Inequality Theorem ... 76

Figure 3.2 Defining Predicted Area of Influence (PAl) 78

Figure 3.3 Infinite UBV Collision Window.. 80-81

Figure 3.4 Defining OUBV ... 81

Figure 3.5 CW Exists but Auras Do Not Overlap ... 83

Figure 3.6 The PIMMessage Exchange Schema 88-89

Figure 4.1 Server/Server and ServerlNode Interaction Models 97

Figure 4.2 PIMSystem Server Structure .. 105

Figure 4.3 Message Buffers .. 110

Figure 4.4 Thread Pool Processing Unit ... 111

Figure 4.5 PIM Processing Unit ... 113

x
L

Figure 5.1 Cubic World ... 126

Figure 5.2 Average Single Server Results .. 134

Figure 5.3 Varying the Number ofPUM Messages per Second 135

Figure 5.4 10 Messages per Second ... 135

Figure 5.5 System Comparison .. 139

Figure 5.6 Scalability Results ... 142

Figure 5.7 Average Scalability Results .. 142

xi

List of Tables

Table 2.1 Network Protocol Properties ... 27

Table 2.2 Middleware Message Model Comparison 30

Table 2.3 Middleware Standard Comparison ... 37

Table 3.1 Lapum Subscriptions .. 91

Table 4.1 Message Type 107

Table 5.1 Drop Rate Deviation .. 139

Table 5.2 Number Of APUMlocal Handled By PIMServers 139

Table 6.1 Purposes ofDVE Layers .. 147

xii

List of Formulae and Theorem

Formula 3.1 PAl Calculation ... 78

Formula 3.2 CW Determination 82

Formula 3.3 Aura Overlap Determination 82

Formula 3.4 AUBV Calculation .. 83

Formula 3.5 Relationship between AUBV and OUBV 84

Formula 5.1 Calculating the Total Volume of Auras 126

Formula 5.2 Calculating the World Size 126

Formula 5.3 Calculating the Length of Diagonal 127

Formula 5.4 Calculating the Upper Bound and Lower Bound ofMRT 127

Formula 5.5 Calculating the MRT ... 128

Formula 5.6 Calculating the Upper Bound and Lower Bound ofMST 129

Formula 5.7 Calculating the MST .. 129

Formula 5.8 Calculating the Drop Rate ... 133

Formula 5.9 Approximate Drop Rate 137

Formula 5.10 Approximate Drop Rate Deviation 138

Theorem 3.1 Triangle Inequality Theorem 77

Xlll

Chapter 1

Introduction

A Distributed Virtual Environment (DVE) is a virtual environment which allows

dispersed users to interact with each other and the virtual world through an

underlying network. In a virtual world, each user has it own virtual

representation, termed "avatar". Users can control their avatar by an input

device, such as keyboard, mouse or HMD (head mounted device). Through

avatars, users can immerse themselves into and navigate through DVEs; users

can interact with other virtual objects and users by exchanging information

through the network.

DVEs have been applied in a wide range of situations. Common applications of

DVEs include:

• Military Simulations

• Training

• Teleconference

• Virtual Classrooms

• Entertainment

• E-commerce

Historically, the majority of DVEs were developed and used in military

simulations, e.g. SIMNET [Macedonia95] and DIS [Cohen94] [SinghaI99]. This

1

was mainly due to the financial costs of hardware which could support DVEs.

However, as hardware became more powerful and affordable, DVE technology

has become increasingly popular in other applications. For example, DVEs can

be applied to training (e.g. fire rescue excises [CF AINET05]), teleconference

[Greenhalgh95], virtual classrooms [IBM05], which provide long-distance

learning opportunities, entertainment (e.g. games [Sweeney99]) and e-commerce

(e.g. virtual shopping malls [ActiveWorlds05]).

A DVE not only has the properties of a single-user virtual environment, but also

the properties of a distributed system. DVEs have the property of distributed

participants, in that the physical location (e.g. country) of participants is not

important (i.e. participants' access and interaction should not be restricted by

their geographical location).

In order to build a successful DVE, the developer not only needs to overcome

the challenges faced in developing a single-user virtual environment, such as the

rendering and collision detection, but also the challenges of building a

distributed system. As the goal of this thesis is to build a middleware to support

a scalable DVE, the challenges of a single-user mode virtual environment are

not within the scope of this thesis.

A successful DVE should provide scalability, consistency and responsiveness.

Scalability requires a DVE to be capable of supporting thousands of dispersed

users via heterogeneous networks simultaneously; consistency requires every

user participating in a DVE to perceive the same virtual world at the same time;

responsiveness requires a DVE to be able to propagate events and respond to

them sufficiently quickly that they appear instantaneous to the users. However,

due to the limitations of network bandwidth and latency, a technique should be

provided to reduce the volume of messages exchanged through an underlying

network in order to improve the scalability, consistency and responsiveness of a

DVE in real-time. Interest management is such a technique. As a result of

2

reducing message transmission, the DVE will have more processing resources

and bandwidth available to support additional users and provide a more

responsive system. This will reduce the likelihood of network congestion,

which, in tum, may decrease the message transmission latency, therefore

improving the consistency of the DVE. In addition to reducing the message

transmission, a technology should be provided to overcome the intrinsic

heterogeneity exhibited over the Internet and ease the implementation of the

network component of DVEs. Middleware can be utilised to fulfil these

requirements.

In addition to the adoption of interest management and middleware, the

communication models adopted by DVE developers influences the scalability,

consistency and responsiveness of their DVE. Three common communication

models are available in distributed systems: peer-to-peer, centralised server and

de-centralised server. The details of these communication models and how they

affect a DVE will be discussed in more detail in Section 1.3 and in Chapter 2.

1.1 Interest Management

Interest management is a technique designed to filter unnecessary information

from being exchanged between participants in the virtual world. The assumption

behind interest management is that a virtual world contains a tremendous

amount of information, of which each individual participant only needs to know

a small proportion at any given time. For example, a participant, who acts as a

soldier in a DVE, may not be required to have knowledge of the state of an

airplane covering terrain several miles away. However, it is necessary for this

participant to receive information regarding the other soldiers nearby. The

information which a participant is required to know is described as the

information it is "interested" in. Therefore, interest management is an approach

3

for determining what information each participant is interested In and

disseminating this information to the relevant participants.

A number of interest management techniques have been proposed. These can be

categorised as three different types of interest management: region-based, aura­

based and hybrid interest management approaches. Region-based interest

management uses spatial subdivision to partition a virtual world into discreet

regions. Participants whose objects reside in the same, or neighbouring, regions

can exchange state update information with one-another. Aura-based interest

management associates a bounding volume, commonly a sphere, with an object

to represent the object's area of interest. A participant will receive state update

information from all objects which fall inside its object's area of influence.

Region-based interest management can be implemented efficiently using tree

structures or spatial hashing. However, it is relatively imprecise and can result in

a large amount of unnecessary information exchanged between objects in the

same region. Conversely, aura-based interest management is a highly-precise

interest management approach. Unfortunately, a naive implementation of this

approach is very computationally expensive, as aura-based interest management

requires every object's aura to be compared for intersection at regular intervals.

Hybrid interest management approaches combine both region-based and aura­

based interest management to attempt to provide efficient, precise interest

management by using aura-based interest management within regions. The

detail of these interest management approaches are discussed in more depth in

Chapter 2.

1.2 Middleware

Middleware is a class of software that resides between an application and the

operating system. A number of different types of middleware exist, but for the

purpose of this thesis, the term middleware IS used to denote

4

networking/distributed systems middleware. Middleware shields the application

developer from the complexity of networking issues and provides them with

services to ease the development of distributed applications. The underlying

purpose of middleware is to assist application processes to transparently

collaborate regardless of differences in processes and network, such as platform,

programming languages, machine data formats and networking protocols.

Therefore, middleware is suitable for connecting users residing in heterogeneous

networks in a DVE.

Middleware provides two kinds of message models: synchronous messaging and

asynchronous messaging. Synchronous messaging requires strict

synchronisation between the sender and receiver, such that the sender process is

blocked until the receiver process has received the message and provided a

response; asynchronous messaging, conversely, does not require the sender and

receiver process to participate simultaneously. In addition to this classification,

middleware can be categorised into Remote Procedure Calls (RPCs), Message­

oriented Middleware (MOM) and Distributed Object Middleware (DOM). RPCs

provide distributed procedure calls that mimic the semantics of local method

invocation. Depending on the implementation, the synchronous and

asynchronous messaging model can be adopted in RPCs, although the former is

more common. Unlike RPCs, MOM is specifically designed to implement the

asynchronous messaging model. A message queue is utilised to store the

messages from clients to a server such that the messages are kept in the message

queue when the server is busy or unavailable. Similar to RPCs, DOM can be

implemented using both the synchronous and asynchronous messaging models.

It incorporates Object-oriented Programming (OOP) concepts, namely data

encapsulation and reuse, to provide the abstraction of distributed objects. The

details of existing middleware are discussed in Chapter 2.

5

1.3 Communication Models

The choice of communication model plays an important role in the design and

implementation of a distributed system. Three common communication models

are available for DVE developers: peer-to-peer, centralised server and de­

centralised server. The peer-to-peer communication model exhibits complete

connectivity between machines in a network, such that messages are transmitted

directly from sender to receiver. The centralised server communication model

utilises a central server to route messages from the sender to the desired

recipients. As this central server is a single point of failure, the de-centralised

server communication model utilises a set of servers to provide additional

scalability and fault-tolerance. The pros and cons of these communication

models in terms of scalability, consistency and responsiveness are discussed in

detail in Chapter 2.

1.4 Contribution of Thesis

This thesis provides a new interest management approach, termed Predictive

Interest Management (PIM) [Lu03]. As previously mentioned, there are three

categories of interest management exist: region-based, aura-based and hybrid

approaches. However, existing interest management approaches overlook the

Missed Interaction Problem. Missed interactions occur when the duration of a

pair of objects' interaction is less than the time taken by the interest

management approach to resolve the interaction between these objects. In this

case, participants may not be aware of the current state or even the existence of

objects with which they should be interacting. PIM is an aura-based interest

management approach designed to alleviate the missed interaction problem by

using an expanded aura to predict an object's future interests. It uses three

different classes of messages, exchanged at different frequencies, to minimize

6

the overhead of any additional message exchange as a result of using larger

auras.

This thesis describes the implementation of a PIM system to support scalable,

interoperable DVEs [Lu05]. Middleware that supports the asynchronous

messaging model is suitable for handling the large volume of message exchange

required by DVEs. In addition, these middleware solutions provide different

services to filter unwanted messages (e.g. the notification service in the

Common Object Request Broker Architecture (CORBA) [OMG05] and the Java

Messaging Service (JMS) in J2EE [Sun05]). However, the message handling

speed of these services are often insufficient to maintain real-time performance

within DVEs. Therefore, this thesis describes a new interest management

middleware, suitable for large-volume message exchange in real-time. The PIM

system is an experimental system, which utilises existing middleware in its

message dissemination layer (see Figure 2.2 in Chapter 2) and implements

predictive interest management to alleviate the missed interaction problem. The

PIM system utilises CORBA, a middleware standard, to provide interoperability.

In addition, the de-centralised server communication model is adopted to

provide a highly-scalable middleware solution for DVEs.

Finally, this thesis provides a scalability evaluation of the PIM system through

four sets of performance measurements. It is shown that the additional message

exchange utilised in predictive interest management to alleviate the missed

interaction does not deteriorate the system performance compared with the

traditional aura-based interest management system. Additionally, the adoption of

the de-centralised server communication model allows the PIM system to

support large numbers of users simultaneously; experiments with up to 6000

simultaneous users have been performed.

7

1.5 Thesis Outline

This thesis is composed of six chapters. Chapter 2 describes background

material, including the architecture of DVEs (application layer, message

dissemination layer and network layer), interest management, middleware,

communication models and related work. Chapter 3 introduces a new theory,

termed Predictive Interest Management (PIM), to alleviate the missed

interaction problem. Chapter 4 describes the implementation of the PIM system,

which utilises the PIM theory as the core technology. Chapter 5 provides the

results of experiments to test the scalability of the PIM system. Chapter 6

presents the conclusion of this thesis and possible future work.

8

--

Chapter 2

Background

This chapter gives an overview of Distributed Virtual Environments (DVEs), the

properties of DVEs and the challenges the developers face to build a scalable

DVE. A general DVE architecture is introduced, which is constructed from

three layers: the application, message dissemination and network layers.

The application layer provides users with a graphical representation of a DVE

and input/output devices such that a user can interact with the DVE; the message

dissemination layer may provide the developers easy access to the network

layers, services to reduce the message exchange through an underlying network,

services to regulate the message exchange frequency, and services to overcome

the heterogeneities between nodes and networks; the network layer provides a

selection of protocols for the developers to suit the requirements of different

types of DVEs, such as military simulation or multiplayer computer games.

Middleware and interest management are two technologies which are suitable

for integration into the message dissemination layer. Middleware is a class of

software which shields the developers from the low-level network

implementation and overcome the heterogeneities between nodes and networks.

Interest management is a message filtering technology which attempts to reduce

message exchange through an underlying network based on given filtering

9

criteria. Three types of interest management approach are described: region­

based, aura-based and hybrid interest management. However, all these interest

management approaches are not sufficient to overcome the missed interaction

problem, which will be discussed in detail later.

The choice of communication model will influence the scalability, consistency

and responsiveness of a DVE. Peer-to-peer, centralised server and de-centralised

server communication models are discussed. Finally, related work and the

contributions of this thesis are provided.

2.1 Distributed Virtual Environment

Virtual Environments (VEs) are virtual spaces generated by computers to

simulate both realistic and imaginary worlds that enable users to navigate and

interact with virtual objects. YEs provide an interactive simulation analogous to

the way that humans communicate with each other and manipulate objects in the

real world. Therefore, spatial embodiments can be generated by the VE

application to represent users and objects inside the virtual world. However,

traditional single-user YEs do not permit dispersed users to interact with one­

another. It is therefore desirable to extend the concept of YEs to permit

dispersed users to interact with each-other to provide a richer and more

interactive experience. The combination of network and YEs, Distributed

Virtual Environments (DVEs), has led to new ways of displaying information

and communicating with dispersed users and machines. In DVEs, dispersed

users can communicate with each other through graphical representations. This

feature of DVEs allows users to share information and cooperate with each other

similar to the way people interact in the real world. Therefore, DVEs find

applications within training, teleconferencing, long-distance education and

entertainment, such as multiplayer gaming.

10

As the applications of DVEs are varied, different researchers have their own

definitions of DVEs, giving rise to different aliases for the systems. The

following are a brief review of some definitions of DVEs:

According to the definition of a DVE by Singhal and Zyda in [SinghaI99], a

networked virtual environment (net- VE) is a software system in which multiple

users interact with each other in real-time, even though those users may be

located around the world. Typically, each user accesses his or her own

computer workstation or console, using it to provide a user-interface to the

content of a virtual environment. These environments aim to provide users with

a sense of realism by incorporating realistic 3D graphics and stereo sound, to

create an immersive experience.

Gibson in [ChurchillOl] described DVEs as: distributed virtual reality systems

that offer graphically realized, potentially infinite, digital landscapes. Within

these landscapes, individuals can share information through interaction with

each other and through individual and collaborative interaction with data

representation.

Snowdon et al gave a more open-ended description of DVEs in [ChurchillOl]: A

eVE is a computer-based, distributed, virtual space or set of places. In such

places, people can meet and interact with others, with agents or with virtual

objects. eVEs might vary in their representational richness from 3D graphical

spaces, 2.5D and 2D environments, to text-based environments. Access to eVEs

is by no means limited to desktop devices, but might well include mobile or

wearable devices, public kiosks, etc.

According to the definitions, DVEs are YEs which allow dispersed participants

to navigate through and interact with a virtual world in a distributed manner.

They allow users to interact with virtual objects, independent of the users'

physical location, providing users a brand new interactive and dynamic

11

experience. For the purpose of clarification, the term object, or virtual object, is

used interchangeably to describe an "entity" which has a physical presence in a

virtual environment. A node is a machine and may host one or more objects

which inhabit a DVE. A node is responsible for providing an interface by which

a user can interact with a DVE. Users can immersive themselves into a DVE

through avatars, which are the users' graphical representation. Users can control

their avatars through input devices connected to their respective nodes. The

movement of avatars are manifested by other users' nodes through message

passing. After receiving a message, a node updates the other user's avatar

according to the information (e.g. position) provided inside this message.

Therefore, user interaction in a DVE is accomplished by message exchange in

the underling network. However, as messages might be lost, damaged or

received out of order when transmitted over a network, if no mechanism is

provided to guarantee message ordering, consistency and reliability, users will

perceive inconsistent views of a DYE.

Due to the distributed nature of DVEs, it is difficult to ensure each user

perceives the same, or similar, events simultaneously. It is also difficult to

ensure the DYE system responds to the users' input and updates its state in real­

time as the number of dispersed users increases. Guaranteeing the consistency

and responsiveness of DVEs in real-time is a major challenge which has driven

research into DVEs. Due to the widespread adoption of the Internet and the

affordability of computer hardware, more people are capable of participating in

DVEs. In addition, as processing power has increased, the content of DVEs has

become richer, which, in turn, has further increased the user-base of DYEs.

Therefore, the scalability of DYEs, in terms of the number of virtual objects and

users that can be supported simultaneously, is of utmost importance. As

mentioned previously, users' interactions are notified by message exchange over

the network. However, large numbers of users participating in a DVE at the

same time will result in a huge amount of message exchange. This may cause

network congestion, overload the machines participating in the DVE or, in the

12

worst-case scenario, cause network-induced failure. The scalability of a DVE

depends largely on the number of messages exchanged between machines.

Therefore, if the number of messages exchanged between machines can be

reduced without influencing the users' interaction, the scalability of the DVE

can be increased. In general, this is a reasonable assumption as each user is

usually only capable of viewing a small proportion of the virtual world at a

given time. As such, each user is only required to receive messages concerning

objects which are within its field of vision. A message dissemination schema,

which is required to determine which messages must be exchanged between

each machine depending on users' requirements, should be provided. In

addition, the selection of an appropriate network architecture is important as

different network architectures provide varying scalability, consistency and

responsiveness characteristics.

2.2 General Properties of DVE

2.2.1 Shared Distributed Environment

Different users should perceive the same virtual environment in a distributed

manner regardless of the geographical distance between participants and

differences in configurations and operating systems between participants'

computers. One way to provide consistency in virtual environments is to use a

reliable server to store all data in a database. Users can acquire and update

objects through the server. Another approach is that every user has a duplicate

database, and users can update the objects controlled by themselves and

broadcast the update to other users within the same VE.

13

2.2.2 Virtual Objects

In DVEs, virtual objects include static and dynamic objects. Static objects are

objects which cannot be changed by or interact with other objects. For example,

the background objects (i.e. the ground, floors, walls, ceilings and doors of

which the world is built from) are static and will not change throughout the run

time of a DVE. Dynamic objects, conversely, can be manipulated by other

objects. There are two fundamental classifications of dynamic objects: avatars

and non-avatars. An avatar is a graphical representation of a user. The

interactive properties of DVEs, which will be introduced in the next Section,

provide all avatars the ability to dynamically change the state of the shared

objects, similar to the way that humans manipulate objects in the real world. The

application software controls non-avatar objects. Their behaviours may be

triggered or changed by events in the DVE, such as avatar interaction, time

regulation and target accomplishment.

2.2.3 Interaction and Navigation

The interaction and navigation provided to users by YEs allow avatars to move

about, pick up and manipulate shared virtual objects, and communicate with

other avatars in the VE. Various input devices are used to accomplish all these

tasks. Users can use a mouse to navigate through a VE by changing the

viewpoint of the avatars, to monitor the speed of avatars, to interact with virtual

objects by picking and moving, and to perform interaction with other avatars,

such as shooting. Users can use a keyboard to communicate with other users by

typing, to control the direction of avatars etc. Although the mouse and keyboard

are the most common input devices used for YEs, the choice of control

mechanisms in YEs are application-dependent. Different input devices provide

different degrees of immersion for users. For example, a joystick or control pad

may be a better choice than mouse and keyboard in some simulations and

games. Head-mounted displays [Bungert05][Milgram99] (HMDs) provide the

14

most immersive experience currently available in YEs. Such devices block out

vision of external entities, allowing users to concentrate solely on the VE. With

the use of stereoscopic vision, the illusion of true 3D vision can be achieved.

The inclusion of analogue feedback devices to determine the orientation of the

users head, allows the VE to adjust the displayed image based on the user's

physical movement. This technology can be coupled with proprietary interactive

devices, such as gloves, to allow users to interact with objects in the VE using

only gestures. A field of research, called Haptic Interaction [GIST05], provides

a force-feedback technology which gives users the illusion of "feeling" the

virtual object through a series of mechanical and electrical sensations through an

input device.

2.2.4 Distributed users

The interaction and navigation features provided to users by DVEs allow users

to interact with one-another and virtual objects. All interactions occur based on

given criteria associated with the virtual world, such as the virtual distance or

the specified interests of a given virtual object or virtual space. Therefore, the

physical location of participants is irrelevant with respect to the interactions

between avatars residing in the same virtual world.

2.3 Challenges of DVE Implementation

Building a scalable DVE requires the developer to have excellent skills and

knowledge in constructing the virtual world (the application layer) and to handle

the high volume of message exchange in an underlying network. This section

only discusses the networking challenges (the message dissemination layer and

the network layer) of building a DVE as the application-layer issues are beyond

the scope of this thesis. Below are the concise descriptions of the challenges in

15

bandwidth, network latency, heterogeneity of networks, consistency and

responsiveness.

2.3.1 Bandwidth

In a DVE, participating users should be able to share the same context: the same

visual, audio and immersive environment. However, it is hard to maintain

context-sharing equality between different users with variable bandwidth. One

way to guarantee context-sharing equality is to restrict the throughput to that of

the lowest user and control the number of users allowed to enter the DVE

simultaneously. This reduces the richness and scalability of a DVE; consistency,

in terms of users experiencing the same context, will be maintained. Moreover,

this wastes the resources available to the users with high bandwidth and fast

hardware configurations. In contrast, if a DVE is designed to utilise the available

resources of different users, it provides different richness levels to users

according to their available resources, although absolute consistency will be

sacrificed. In this case, due to the bandwidth differences, low-bandwidth users

are not capable of sharing the same audio and visual context as the high­

bandwidth users.

2.3.2 Network Latency

Although network latency is an uncertain and unavoidable element in message

transmission, it can be influenced by certain factors. Network traffic can

contribute to the network latency, which can be affected by the frequency of

message transmission and the size of each message. The lower the frequency of

message transmission and the smaller the size of each message transmitted, the

lower the chance of network congestion occurring, and vice versa. Another

factor leading to network latency is the choice of network protocols. For

example, to guarantee delivery, the underlying network architecture must use

16

acknowledgment and error recovery schemes, which can introduce extra

transmission latency, e.g. TCP/IP. To reduce the effect of network latency and

speed up the message transmission frequency, protocols such as UDP/IP can be

used. Such protocols offer higher message transmission speed at the detriment of

delivery reliability, i.e. message loss and messages disordering. With regards to

the development of a DYE, different network protocols should be implemented

to cope with different message transmission requirements. In addition to

network traffic and the choice of protocols, application-level techniques for

DYEs can be deployed to potentially reduce network latency. For example,

extrapolating object's current state from previous messages to predict the

trajectory of that object can be used to reduce the message transmission

frequency, which can reduce the network traffic and potentially the network

latency.

2.3.3 Heterogeneous Network

The Internet connects computers with different hardware configurations running

on different operating systems. Due to these variations in computer

configuration, operating system and network connection, it is difficult to

maintain the same virtual environment for dispersed participants. For example, it

is impossible for a participant, who connects using a modem-connection, to

share the same audio and visual information with a participant, who uses a

cable-connection, as the modem-user is not capable of receiving or sending the

same volume of data as the user with a cable-connection. Heterogeneity in

computers participating in the DYE means that it is not possible to guarantee

that all computers may be capable of maintaining the same speed of message

update as other faster machines in the DYE. This difference in speed may be

attributed to the speed of the processor, the amount of memory available, the

speed of the graphics card installed in the machine, which may not be able to

render the DYE fast enough, and the presence of other processor-intensive tasks

being run concurrently on the machine. Operating systems often differ in the

17

programming languages and libraries they provide. Therefore, a DVE should be

implemented using middleware to shield the developer from network and

platform heterogeneity.

2.3.4 Consistency and Responsiveness

Consistency requires every user participating in a DVE to perceive the same

virtual world at the same time. This involves maintaining the shared-state of

dynamic objects in a DVE in real-time. Responsiveness requires a DVE to be

able to propagate events and respond to them sufficiently quickly that they

appear instantaneous to the users. This is primarily observed as the smooth

animation of dynamic objects in the participants' machines.

Maintaining the shared-state of dynamic objects in DVEs in real-time can be

classified as resolving concurrent access problems in shared resources in a

distributed system. Ignoring the timing factor, a number of mechanisms (lock

utilisation etc.) have been developed to solve the concurrent access problem

successfully. However, maintaining the shared-state of dynamic objects in

DVEs, while guaranteeing the smooth animation of dynamic objects in the

participants' machines in real-time places a non-trivial challenge on the DVE

developers.

One way to maintain the shared-state of dynamic objects is to use a central

server to maintain states of all the dynamic shared objects. All dynamic shared

objects are updated through the collaboration between the central server and the

clients' machines. The advantage of this approach is that it guarantees absolute

consistency of every shared object. However the central server is the bottleneck

of this approach and, as a result, the scalability of the DVE is diminished.

Additionally, due to network latency and the congestion level of the server,

participants may perceive jerky animation in their output devices. Consequently,

the users' immersive experience may be detrimentally affected.

18

Frequent state regeneration is based on the assumption that if the frequency of

message transmission is high enough, some message loss in transmission will

not be detrimental to the smooth animation on the participants' machine, as

subsequent messages should arrive soon enough to compensate for any message

loss. Compared with the central server technique, frequent state regeneration

provides improved scalability and increases the immersive experience at the cost

oflower consistency of dynamic shared objects.

Dead reckoning resides on the opposite end of the consistency spectrum,

offering low-levels of consistency but potentially reduces the volume of data

required to be transmitted, resulting in better scalability and responsiveness.

Dead reckoning is an algorithm to predict the future position of objects based on

limited information so that the frequency of message transmission can be

restricted under a threshold. Each participant's avatar, when displayed in other

participants' machines, is called a 'ghost'. Dead reckoning prescribes that each

avatar implements a dead-reckoning algorithm to predict its own trajectory. If

the deviation of actual movement from the predicted movement of their avatar is

greater than some pre-defined threshold, a participant will send a message to

update its ghost position on the other participants' stations. When a station

receives this message, it uses a convergence algorithm to correct the position or

state of the ghost. By using dead reckoning, variable frequency of message

transmission can be achieved.

2.4 Distributed Virtual Environment Architecture

Developing DVEs is not a trivial task. DVEs differ in infrastructure depending

on their application and purpose. However, according the message transmission

flow, the infrastructure can be generally divided into three different functional

layers (Figure 2.1):

19

II Application Layer I Application Layer I
li i !

II Message Dissemination Layer I Message Dissemination Layer I
II 1 1

II Network Layer Network Layer I

Figure 2.1 Three-Tier DVE Architecture

As can be seen from Figure 2.1, the message dissemination layer is the

intermediate layer which provides certain services for the DVE developers to

facilitate message passing between the application layer and the network layer.

The application layer receives user input and passes it to the network layer

through the message dissemination layer. In the network layer, these messages

are transmitted to the corresponding nodes' network layer such that the

application layer can receive these messages and make appropriate update in the

output device. The following three sections will discuss these layers in detail.

2.4.1 Application Layer

This layer contains the graphics/rendering engine and the input/output control

and processing units. The graphics/rendering engine collaborates with the

Graphics Processing Unit (GPU) to generate the images which are displayed to

the end user; the input/output control and processing units take user input,

process it and translate it into application-dependent DVE events. These events

may cause state updates on one or more objects which will, in turn, be reflected

to the user by the graphics/rendering engine. In addition, after the events

generated, the application layer passes these events into the message

dissemination layer. For example, a user's avatar (a virtual human), participating

in a teleconference, may write text on a blackboard corresponding with the

user's input. This text is reflected on this user's output device as well as

transmitted to the message dissemination layer for further processing.

20

2.4.2 Message Dissemination Layer

This layer is an intermediate layer between the application and network layers.

The purpose of this layer is to provide a platform-independent, protocol­

transparent API (Application Programming Interface) for the low-level network

implementation. In large-scale DVEs, users may participate in a virtual world

from different network architectures. This heterogeneity may manifest itself as,

for example, different byte-ordering between machines, i.e. Big-Endian and

Little-Endian machines. Differences like this require developers to ensure that

the bits are read in the same sequence in the recipient as the sender intended.

Hence, this layer can simplify DVE development by providing facilities to

ensure interoperability with heterogeneous network architectures and platforms.

The message dissemination layer can provide location and discovery services,

which removes the requirement of the application layer to determine the relevant

recipients of a state update message. It can employ filtering mechanisms to

reduce the number of unnecessary messages which are transmitted over the

underlying network.

The application layer may generate a large volume of state updates at potentially

high frequencies. The message dissemination layer can be used to ensure that

messages are transmitted to the appropriate recipients at suitable frequencies

such that events are perceived to occur in real-time, while avoiding overloading

the network and therefore ensuring high-levels of consistency. While too high

message exchange frequencies may cause network overloading, too low

frequencies may result in inconsistencies arising in the state of a DVE between

nodes. In addition, this layer may provide services to regulate message

transmission frequency according to some filtering criteria. For example, given a

distance-based filtering criteria, the frequency of message exchange between

two avatars could be proportional to the distance between them within the DVE.

21

Furthennore, this layer may provide the developers the choice of synchronous

and asynchronous messaging models.

Synchronous messaging is a two-way messaging model in which the sender

process will be blocked until it receives a reply from the recipient.

Asynchronous messaging is a one-way messaging model, which does not

require simultaneous coordination between sender and recipient. The use of the

synchronous messaging model may inhibit scalability as a DVE may be required

to support the transmission of a large volume of messages in real-time. As such,

in order to provide high-levels of scalability, the asynchronous messaging model

should be employed within the message dissemination layer in a DVE.

2.4.3 Network Layer

The network layer should provide network protocols to enable high-levels of

accessibility to a DVE over LANs and public access networks, e.g. the Internet.

According to [Tanenbaum96][Javvin05], network protocols are agreements for

computers and other network devices to exchange infonnation over a network.

The agreements can be summarised as a fonnal set of rules, conventions and

data fonnats that allow computers and network devices to understand each other.

In addition, the network protocols provided in this layer should be able to satisfy

the application-dependent transmission requirements. For example, a

teleconference DVE may require a reliable network protocol to transmit text

messages between users. However, for the transmission of audio or video

messages, an unreliable network protocol should be more appropriate. Network

protocols are generally built on top of services provided by lower-level

protocols and/or hardware.

In general, network protocols can be classified as unicast, broadcast and

multicast. Unicast is tenned as transmitting data from one point to another point,

such as from a sender to a recipient; broadcast is tenned as sending data from

22

one point to all the other points, such as from a sender to all hosts on a network;

multicast is termed as sending data from one point to a group of other points,

such as from a sender to a subset of hosts on a network.

Five popular network protocols, which are commonly utilised in DVEs, are

introduced: The Internet Protocol (IP), Transmission Control Protocol (TCP);

User Datagram Protocol (UDP); IP broadcasting; and IP multicasting. TCP/IP

and UDP!IP can be used as unicast protocols.

2.4.3.1 The Internet Protocol

The Internet Protocol (IP) is the most popular network layer communication

protocol currently used on the Internet. This protocol provides the segmentation

and reassembly (SAR) function to satisfy the bandwidth requirement of the

Internet. If the network cannot support large packets, IP splits these large

packets into small fragments and reassemble the small fragments into the

original packets at the destination. The flexibility of IP comes from the fact that

IP can connect heterogonous nodes and networks together. To be precise, IP can

transmit the packets from the host to the destination ignoring the fact that the

transmission path might include phone line, DSLICable, wireless radios etc; IP

provides a standard communication platform for heterogonous machines

regardless of data/memory format differences, e.g. byte ordering.

However, IP is a low-level protocol and is not suitable for applications to use

directly. For example, IP does not guarantee message delivery, the ordering of

received messages or detect the receipt of damaged packets. Most applications

require more facilities than IP can provide, therefore, different protocols are

built on top of IP.

23

2.4.3.2 Transmission Control Protocol

Transmission Control Protocol (TCP) [Cerf74] [Comer9l] is a connection­

oriented transport layer protocol built on top of IP to provide a best-effort

guarantee of reliable and chronological transmission/receipt of a byte stream

over a network. It fragments the byte stream into discrete packets and passes

each one to the IP layer; the receiver reassembles the packets into the original

byte stream. Communication between hosts is established by creating a point-to­

point connection. These connections are uniquely identified by the hosts' IP

address and the port number (service identifier) which the connection is

established on. The connection is maintained until one of the hosts closes the

connection, or one of the hosts crashes.

To provide best-effort reliability of message transmission, TCP uses

acknowledgement and retransmission schemes. When the destination host

receives a packet, it transmits an acknowledgement to the source host to inform

of the message arrival. If the communication is unidirectional, this may involve

the transmission of a packet containing only the acknowledgement, or in the

case of bidirectional transmission, the destination host may piggyback the

acknowledgement in the next packet it transmits to the source host. If the source

host does not receive the acknowledgement within a threshold time, it will

retransmit the unacknowledged packet again.

TCP contains flow control to best utilise the available bandwidth of both the

source and destination hosts. This tries to avoid the situation in which a fast

sender can swamp a slow receiver with more packets than it can handle. It does

this by restricting the volume of data that can be unacknowledged at any time. If

the amount of unacknowledged data is at some threshold level, new packets

cannot be transmitted until acknowledgements have been received; if the

outstanding packets timeout, retransmission occurs.

24

2.4.3.3 User Datagram Protocol

User datagram protocol (UDP) [Cerf74] [Comer91] [IntemetSociety05] is an

unreliable, connectionless transport layer protocol. Unlike TCP, there is no

connection maintenance between hosts, no acknowledgement transmission

obligation and no flow control. The purpose of this protocol is to satisfy

situations where delivery speed is considered to be more important than

reliability. For example, in a teleconference, the loss of some audio/video

messages will not detrimentally influence the quality of the whole meeting;

conversely, the overhead of providing best-effort reliable delivery of huge

amounts of audio/video messages in real-time would increase network

bandwidth consumption due to message retransmission, which would deteriorate

the overall performance of the teleconference.

2.4.3.4 IP Broadcasting

Hardware broadcasting allows the delivery of a single packet to all hosts on the

network or subnet without requiring the repeated transmission of the packet by

the sending host. With most hardware, this is achieved by sending packets to a

reserved broadcast address; all hosts residing on the same networklsubnet

recognize the broadcast address and accept all packets to that address. Hosts on

the network benefit from broadcasting by two ways: first, when hosts require

information from the network without knowing the exact address of host who

can provide the information; second, when a host wants to provide information

to a large set of hosts in a timely manner. However, the chief disadvantage of

broadcasting is that every broadcast packet consumes resources on all hosts.

When a host receives a broadcast packet, the network interface card is not

capable of discarding the packet and the Operating System (OS) must process it

even if no local application is interested in the broadcast packet; computer

resources are wasted.

25

IP broadcasting is an Internet abstraction of hardware broadcasting. According

to [MoguI84], under the IP broadcasting protocol, the datagram is routed by

normal mechanisms, just like the normal unicast datagram, until it reaches a

router attached to the destination IP network, at which point it is broadcast.

2.4.3.5 IP Multicasting

Unlike hardware broadcasting, where a packet is received by all hosts on a

network, multicasting [Comer91] permits a host to transmit a packet to a

selected group of hosts on a network. When a host receives a multicast packet,

the network interface card can choose to accept or discard the packet based on

the multicast address, without needing to pass it to the OS. When a group of

hosts wishes to communicate using multicasting, they must configure their

network cards to accept packets on a particular multicast address. Once the

configuration is complete, all members of the group will receive any packets

transmitted to the multicast address.

IP multicasting is the Internet abstraction of hardware multicasting. It allows the

transmission of an IP datagram to a group, which consists of zero or more hosts

identified by a single IP/multicast address. A multicast datagram is delivered to

all members of its destination host group with the same "best-effort" reliability

as regular unicast IP datagram, i.e. the datagram is not guaranteed to arrive at all

members of the destination group or in the same order relative to other

datagram. The membership of a host group is dynamic, i.e. hosts may join and

leave groups at any time. There is no restriction on the location or number of

members in a host group. A host may join more than one group at a time.

Furthermore, a host is not required to be a member of a group to send datagrams

to it.

26

2.4.3.6 Protocol Evaluation

One of the requirements of building a scalable DVE is to ensure the accessibility

of the DVE. This places restrictions on the network protocols the developers can

use if they are required to enable dispersed users to participate in their DVE over

the Internet. In order to allow these users to participate in the same DVE, the

network layer should utilise network protocols which are widely supported over

the Internet. Therefore, as can be seen from Table 2.1, TCP/IP and UDP/IP are

the most appropriate choices for the developers. Additionally, in order to

alleviate inconsistency between users, a network protocol, which provides best­

effort guarantees for packet delivery and order, should be selected. In summary,

TCP/IP is the most suitable network protocol to support large-scale DVEs over

the Internet.

Tep/IP UDPIIP IP Multicast IP Broadcast

Unicast '.f '.f

Broadcast ..j

Multicast ..J

Message Ordering ..J

Acknowledgement V

Internet Support ..J ..J PARTIAL

Table 2.1 Network Protocol Properties

2.4.4 DVE Architecture Summary

In this section, three abstract layers (application, message dissemination and

network layers) are described in detail. Different types of DVEs place different

requirements on the message dissemination and network layers.

Military simulations generally take place on the same LAN. This provides low­

latency and high bandwidth message transmission and supports hardware

multicasting and broadcasting. Therefore, this property relieves the service

27

requirements of the message dissemination layer and removes many restrictions

on the choice of network protocols in the network layer.

In Computer Supported Collaborative Work (CSCW), users are dispersed over

the world but the number of users who can participate simultaneously is often

limited. Therefore, the message dissemination layer should be able to provide

services to overcome the heterogeneities between networks and to discover the

location of users. In order to allow dispersed users to participate in this type of

DVE, the network layer should use a protocol which is commonly supported

over the Internet and provides best-effort guarantees for message receipt and

ordering to maintain consistency. As TCP/IP meets these requirements, it is the

most appropriate protocol to be utilised in CSCW. However, as the number of

users is comparatively small, the message dissemination layer is not required to

provide a message filtering service as bandwidth usage should be relatively

small.

In Massively Multiplayer Online Games (MMOGs), large numbers of dispersed

users, in the order of thousands, are able to participate together in a networked

game. In order to support this number of participants simultaneously, message

filtering technology must be implemented within the message dissemination

layer to reduce the bandwidth usage. In practice, many current MMOGs

artificially restrict the number of players who can interact with one-another to a

manageable amount, e.g. 2-32 players. This inadequacy in current MMOGs

could be overcome with the use of sophisticated message filtering technology.

As MMOGs are required to operate over the Internet, they share the same

requirements of their network layer as CSCW. As such, MMOGs should adopt

TCP/IP.

Although different types of DVE have different requirements in their message

dissemination and network layers, message filtering technology can be adopted

in any type of DVE. Therefore, in order to build a scalable DVE, message

28

filtering technology should be implemented in the message dissemination layer.

Interest Management, a popular message filtering technology, filters unwanted

message exchange in the underlying network between nodes according to the

users' "interests". In CSCW and MMOGs, network heterogeneity should be of

primary concern in the message dissemination layer. In addition, heterogeneity

has a large influence on the choice of network protocol in the network layer.

Middleware shields the DVE developers from the issues of network

heterogeneity. It can be integrated into the message dissemination layer,

delegating the low-level network issues, such as protocol interoperability, to the

middleware developers. Therefore, the network layer can utilise the protocols

supported by the middleware. Figure 2.2 shows an architecture which a

developer can use as a template to develop a complete DVE.

Input/Output Control and Processing Unit

I Graphics/Rendering Engine I
Interest Management

I Middle ware I
I Unicast I Broadcast I Multicast I

Figure 2.2 DVE Architecture

2.5 Middleware

Middleware is a class of software residing between an application and the

operating system. It shields the application developer from the complexity of

networking issues and provides them with services to ease the development of

distributed applications. The underlying theory of middleware is to assist

application processes to transparently collaborate regardless of differences in

processes and network, such as platform, programming languages, machine data

formats and networking protocols. Middleware provides two types of messaging

models: synchronous and asynchronous messaging.

29

• Synchronous messaging is a two-way middleware messaging protocol

that is best suited for tightly coupled client-server applications. The

client's process will be blocked until it receives a reply from the

corresponding server, which implies the successful delivery of the

request message. Client and server simultaneous attendance is essential

in the synchronous messaging protocol.

• Asynchronous messaging is a one-way middleware messaging protocol,

which does not require simultaneous, coordinated participation between

the client and server. Under this messaging protocol, the client process

does not require a reply from the server process.

Based on the evolution of middleware in [Ruh99], five types of middleware can

be defined: Data Access, Remote Procedure Call (RPC), Transaction Processing

Monitors, Message Oriented Middleware (MOM) and Distributed Object

Middleware (DOM). Data Access Middleware provides easy-to-use connectivity

to database servers. Transaction Processing Monitors provide support for data

integrity in mission-critical distributed applications, where the term transaction

is used to describe a group of changes which either succeed together or do not

occur at all. The following subsection focuses on the development of messaging

models. Therefore, it concentrates on the three remaining types of middleware,

which are categorised according to the messaging protocols they support in

Table 2.2.

Mlddleware Synchronous Messaging Asynchronous Messaging

Remote Procedure Calls (RPCs) Yes Limited

Message-Oriented Mlddleware (MOM) Limited Yes

Distributed Object Mlddleware (DOM) Yes Yes

Table 2.2 Middleware Message Model Comparison

30

2.5.1 Remote Procedure Calls (RPCs)

The major contribution of RPCs is to provide distributed procedure calls that

mimic the semantics of local procedure calls, giving users the illusion that the

procedure resides in the same computer. In RPCs, an Interface Define Language

(lDL) is adopted to define a contract between clients and servers. The IDL

compiler generates interface code for multiple programming languages. The

application-to-middleware layer interface code is called stub, which is

responsible for marshalling (packing) and unmarshalling (unpacking) data

to/from the network layer. Three types of message exchange protocols are

provided in RPCs:

• Request

• Request-reply

• Request-reply-acknowledge

RPCs usually utilise synchronous messaging protocols. However, asynchronous

messaging protocols are achievable using multiple threads that have limited

exception-handling facilities. Due to the complexity of implementing the

asynchronous mechanisms, RPCs are utilised mostly in synchronous request­

reply client-server architectures. In addition, different vendors' RPC

implementations often use different data representations, message formats etc.,

which limits their interoperability.

2.5.2 Message-Oriented Middleware (MOM)

Unlike RPCs, MOM is specifically designed to implement the asynchronous

messaging protocol. MOM uses two specialised types of asynchronous

communication:

• Message Queuing

• Publish/Subscribe

31

In the message queuing model, the MOM system provides a message queue

between sender and receiver; if the receiver process is not available or is busy,

the messages sent by the sender process are kept in a local queue until they are

forward to the receiver process. In this case, MOM technology eliminates the

dependency on requiring the simultaneous participation of senders and receivers.

In this design, messages can be delivered to the destination, even if the receiver

process is not available. However, if the message delivery frequency on the

sender side is much higher than the message consumption frequency on the

receiver side, congestion problems might occur due to the growing size of the

message queue.

In the publish/subscribe model, participants act as either publishers or

subscribers. Subscribers register to channels to receive messages regarding a

subject of interest; publishers send subject-tagged messages to channels.

Therefore, channels decouple publishers and subscribers and disseminate

messages to registered subscribers without the need for publishers to have

knowledge of their messages' recipients.

An issue with MOM is that, as no standard has been defined by any

organisation, interoperability among different vendors' MOM products is

limited or unavailable. Standards are, however, currently being established in

distributed object middleware for MOM, such as the CORBA Notification and

Event services and Java Messaging Service (JMS), which will be described

briefly later.

2.5.3 Distributed Object Middleware (DaM)

DOM not only provides synchronous and asynchronous messaging protocols,

but it also applies concepts from object-oriented software engineering to

distributed computing. The essence of the object-oriented paradigm is that

objects maintain state and communicate with other objects via message passing,

32

which can be incorporated into distributed computing paradigms. In addition,

due to the encapsulation mechanism and reusability of object-oriented

characteristic, distributed objects' location and implementation transparency can

be achieved. Like RPC, DOM utilises an Interface Definition Language (IDL) to

define a messaging contract between client and server. According to the

interface defined for the target object, the IDL compiler generates code for

marshalling (packing) data into standard format and unmarshalling (unpacking)

data from the message streams exchanged between client and server. Depending

on the IDL compiler used, code in different programming language can be

generated. Hence, DOM can achieve programming language transparency. For

example, a C++ implemented object in the client side can invoke methods of a

Java remote object in the server side. On the client side, the Distributed

Component Object Model (DCOM) uses the term proxy to represent this code,

while the Common Object Request Broker Architecture (CORBA) uses the term

stub. On the server side, DCOM uses the term stub; in CORBA, this is called the

skeleton. According to this structure, the actual communication is as described

in Figure 2.3.

I Client application I I Server application I

I I
"tt..ark

Proxy/Stub Stub/Skelton

Figure 2.3 The DOM Structure

2.5.4 Middleware Standards

2.5.4.1 ONC and DCE

Open Network Computing (ONC) and Distributed Computing Environment

(DCE) are the most broadly supported RPC middleware standards. Both ONC

and DCE support point-to-point and broadcast mode. In point-to-point mode, the

33

request is sent to a specific server; in broadcast mode, the request is sent to a set

of servers or all servers available in the same network. Users can select from the

supported transport layer protocols to suit their requirements. One of the features

of ONC is transport layer protocol-independence while DCE is oriented around

the use ofTCP and UDP transport-layer protocols.

2.5.4.2 DeOM

DCOM [Microsoft05] is a set of RPC-based extensions to Component Object

Model (COM), a dominant component architecture developed by Microsoft to

provide a language-independent standard mechanism for packaging program

components. COM was originally designed to facilitate Object Linking and

Embedding (OLE), which is a framework for assembling and managing

compound documents. A compound document is a media-rich document which

may contain, for example, a combination of text, images, video, audio and

spreadsheet data. Recently, COM has become the core for a number of

technologies developed by Microsoft, including, but not restricted to, OLE.

DCOM allows COM objects to be distributed by providing a protocol called the

Object Remote Procedure Call (ORPC). This protocol is built on top of DCE's

RPC and interacts with COM's run-time services. A DCOM server is capable of

hosting a number of objects at runtime. Each object utilises different interfaces

to represent different functionalities. A DCOM client gains access to one of the

server objects' interfaces by creating an interface pointer, which is used to

reference the distributed object instances within the context of a client's

programming language. According to the server object interface, clients can

invoke methods on that object as if the remote object was residing in the same

machine as the client.

34

2.5.4.3 CORBA

CORBA [OMG05] is the vendor-independent architecture designed by the

Object Management Group (OMG) to facilitate communication between

heterogeneous distributed computing environments. The flexibility of CORBA

comes from its standardised internal communication protocols, GIOPIIIOP

(General Inter-ORB ProtocoVlnternet Inter-ORB Protocol) [Ruh99], which are

built on top of TCP/IP, allowing different vendors' ORBs to communicate with

one-another. Furthermore, CORBA, through the use of Interface Definition

Language (IDL), allows developers to defme an interface to an object in a

programming language-independent manner. An IDL compiler, which is

provided by the ORB vendor, takes the IDL representation of an object and

automatically generates the interface and additional supporting classes for the

object in the desired programming language. Therefore, the implementation

details of the object can be separated from the interface and hidden from the

client. A client can invoke methods defined in the interface, as if it were a local

object, regardless of the physical location of the object, the programming

language the object was implemented in and the hardware/software

characteristics of the machine the object resides upon. GlOP/HOP and IDL

provide a standard framework that enables interoperability between different

vendors' ORBs.

As mentioned previously, although CORBA is a DOM standard, the MOM

publish/subscribe model is implemented in the CORBA Notification and Event

services [OMG05]. The Event Service is a primitive implementation of the

publish/subscribe service, which allows publishers to put events into an event

channel which subscribers receive. The subscribers and publishers are not

required to have any knowledge of each other. A completely decoupled

communication model is established through the utilisation of event channels.

The Notification Service can be considered to be a mature extension of the

Event Service. The Event Service itself provides no quality of service

35

monitoring or persistence. The Notification Service retains all the features of the

event service, but provides additional support for content-based filtering and

quality of service (QoS) monitoring; QoS properties such as reliability and

priority can be used to indicate the delivery characteristics of events. Further

details can be found on [OMG05].

2.5.4.4 JMS

The Java Message Service (JMS) [Sun05] defines a standard for MOM by

combining Java Enterprise Edition (J2EE) technology with MOM. JMS provides

a reliable, flexible service for the asynchronous exchange of data and events.

The JMS API provides a common API and a framework that enables the

development of portable, message-based applications in the Java programming

language. Work is being undertaken to provide interoperability between JMS

and other MOM, such as the CORBA Notification Service. However, although

JMS is platform independent, it is a Java language-specific API. This limits the

interoperability and flexibility of JMS.

2.5.5 Middleware Summary

A number of middleware standards are available. The synchronous messaging

model results in the client process being blocked. As this will compromise

scalability, it is necessary for a middleware solution for DVEs to support the

asynchronous messaging model. In addition, as it is desirable for DVEs to be

able to support heterogeneous networks and platforms, it is necessary for a

middleware solution to be highly-interoperable. Table 2.3 shows a comparison

between different middleware standards.

36

Middleware Standard Middleware Model Asynchronous Vendor

Messaging Interoperability

ONCandDCE RPC Limited No

DCOM DOM Yes No

CORBA DOM Yes Yes

CORBA Notification/Event Service DOMIMOM Yes Yes

JMS MOM Yes Language-Specific

Table 2.3 Middleware Standard Comparison

From Table 2.3, it can be seen that DCOM, CORBA, the CORBA

Notification/Event Service and JMS provide asynchronous messaging. DCOM

is a vendor-specific Microsoft technology, which is not interoperable with other

vendors' middleware. JMS is platform-independent, but language-specific. The

CORBA Notification/Event Services are high-level concepts, whose

performance varies depending on the CORBA vendor's implementation. In

addition, the filtering and QoS monitoring in the Notification Service may result

in delays in message delivery. However, CORBA offers interoperable

asynchronous messaging with low-latency reliable delivery of messages, and

therefore it fulfils the middleware requirements of a scalable DVE.

2.6 Interest Management

Recently, considerable research effort has been undertaken to scale up the

number of users DVEs can support while maintaining mutually consistent views

in real-time. A DVE scales up if thousands of geographically dispersed users

can interact with each other simultaneously and the concurrent conflict of

manipulating objects can be avoided. Imagine N physically scattered nodes

sharing the same DVE, with each node receiving messages from the other N-J

nodes participating in the DVE at regular frequencies. Depending on the number

of nodes and bandwidth limitation, the volume of messages transmitted

37

concurrently may overload the underlying network; transmission latency might

be increased as a result of network congestion. Furthermore, network congestion

may be so severe that the entire DVE system crashes as state update messages

can not be delivered. It is worth mentioning that even if the network can survive

the large amounts of message exchange, every node needs to cope with the other

N-J nodes' messages which are transmitted at regular frequencies; a large

proportion of which each node may not be interested in.

Past research [Abrams99] has shown that up to 99% of messages transmitted

within a broadcast DVE are irrelevant to any participant. Moreover, if the

processor allocates a large proportion of resources to deal with the unwanted

messages, the other processes contributing to the DVE may be starved of

resources, e.g. the process responding to user input, the process for rendering the

DVE and the process for sending the host object's state update messages to

other nodes. In this case, even though the messages from other participants' state

are received on time, due to a lack of processing resources, a mutually consistent

view cannot be maintained, which compromises the immersive experience for

users. Mechanisms are required to scale up DVEs and maintain mutually

consistent views in real-time. Interest management is one of these approaches

developed to accomplish this.

It has been observed that although the size of a DVE is limited by the graphical

designer's imagination, the interaction between participants and the virtual

environment, and the interaction between individual participants, are restricted

to certain degrees. For example, the computer screen restricts the visual

perception of a participant sharing a DVE, while the audible perception of a

participant is bounded by a certain degree of measurement, such as the distance

between participants' avatars. Therefore, the interactions of participants can be

limited to the boundaries of the avatars' audio-visual perception. Consequently it

may not be necessary for participants to be aware of the existence of each other

in a DVE if their avatars are not close enough to one. Unwanted messages

38

between participants can be filtered out without influencing the participants '

perception of a DVE.

According to the description above, message filtering is an efficient method to

improve the scalability, consistency and responsiveness of a DVE. Interest

management is an approach to determine which messages are transmitted to

and/or received by nodes based on some specified criteria, which, for the

purpose of clarity, will be termed Interest Expressions (IEs) . Different virtual

environments have their own application-dependent constructions which can be

exploited to define distinct IEs for their participants. If a participant's avatar, A,

fulfils the requirements of the IE of another participant's avatar, B, B is said to

be interested in A as A has fallen into B's area of influence. Interest management

is required to resolve the interests between objects based on the up-to-date

messages transmitted between nodes.

There are several existing interest management approaches that have been

suggested to provide the filtering capability for any DVE. These approaches can

be categorised into region-based, aura-based and hybrid interest management.

Further message filtering can be accomplished based on the participants

particular IEs .

DVE

Figure 2.4 Proportion of DVE Visible to an Individual

39

2.6.1 Region-based Interest Management Approach

The region-based interest management approach divides a DVE into different

regions. Region sizes are application-dependent and can vary from region to

region. For example, if the virtual world is a library containing four floors:

reception and computer cluster in the ground floor, biology books and meeting

rooms in the first floor, computing science books in the second floor and other

subjects and meeting rooms in the third floor. The designer of this virtual world

can divide into four same size regions and each region is corresponding to one

floor; or the designer can divide this virtual world into different size region on

room basis. Each region is considered to represent the area of influence for all

participants it contains. When an avatar enters a region, the avatar's IE will be

all objects (other avatars, event-driven objects etc.) inside this region. The

advantage of the region-based interest management approach is that it does not

require detailed IE management/calculation; hence, the resolution of interests

between objects consumes less CPU resources. One of the disadvantages of this

approach is that, because it only provides rough message filtering, more

messages may be received and processed than are needed. For example, object A

and object B are inside the same region. However, as the size of this region is

relatively large, object A will receive object B's messages even if object B is too

far away from object A to interact with one-another. Another disadvantage is

that a virtual environment can suffer from what is known as crowding or

clumping. If the number of avatars inside a region is too large, the message

filtering capability provided by this approach will deteriorate to a level that may

cause network congestion. For example, if all the objects in a DVE are in the

same region, this approach can not provide any message filtering facility. To

avoid this problem, it is necessary to determine the appropriate region size on an

application-dependent basis.

40

2.6.2 Aura-based Interest Management Approach

Auras were described with respect to interest management in DVEs in the

Spatial Model of Interaction [Benford94]. The aim of the Spatial Model of

Interaction was to utilise the properties of space to mediate interaction between

objects in a DVE. According to [Benford94], Aura is defined to be a sub-space

which effectively bounds the presence of an object within a given medium and

which acts as an enabler of potential interaction. In addition to aura, focus and

nimbus are used to calculate the level of awareness between objects whose auras

overlap. To be precise, the more the observed object, A, is within the observer

object, B's, focus, the more aware B is of A; the more A is within B's nimbus,

the more aware A is of B. When objects' auras overlap, message exchange

between the objects occurs. Therefore, there is no need to regionalise a virtual

world. However, there is a requirement for all nodes to exchange positional

update information relating to the objects they host in order to identify when

aura collision occurs. The frequency of message exchange must be sufficient to

ensure that aura collision may be determined in a timely fashion to allow nodes

to purposely disseminate messages as and when aura collisions occurs.

2.6.3 Hybrid Interest Management Approach

After describing the region-based and aura-based interest management

approaches, the size of regions and auras directly affects the filtering capability

of an interest management approach. Hybrid interest management approach

utilises both regions and auras to divide the virtual world. Hybrid approach

offers an optimisation compared with pure aura-based interest management, as

the inclusion of regions reduces the computational complexity of performing

aura collision detection. This is because it is only necessary to compare the auras

of objects which share the same region, or are in neighbouring regions. This

approach also offers an improvement in efficiency compared with pure region­

based interest management, as it can reduce the amount of data required to be

41

transmitted within a given region. Depending on the application specification,

the designer can choose the most suitable spatial division approach (region, aura

or both) to filter the irrelevant information for the specific objects (avatars, static

objects, etc.) in a DVE.

2.6.4 Missed Interactions Problem

In existing interest management approaches, messages are exchanged between

nodes hosting objects within each-others' influence areas. However, these

approaches are not designed for the situation in which objects coexisting in the

same DYE have highly variable speed (e.g. foot solders and fighter aircraft).

There may be a delay in resolving the membership of nodes participating in the

same DVE and informing the relevant nodes of interactions; this delay may be

sufficiently high that it is difficult or impossible for the interest management

approach to guarantee that nodes will manifest interactions between high speed

objects and their own. This is termed the Missed Interaction Problem.

In the region-based interest management approach, a message will only be

received by nodes hosting objects which reside within the same, or

neighbouring, region as the sender. Nodes hosting objects participating in the

virtual world identify in which regions their objects belong and send messages

to a well-known address (possibly a server, group of servers, or a group

multicast address) that supports message dissemination for that particular region.

Therefore, a region must be of sufficient size as to ensure objects have the

ability to purposely disseminate messages in one region before entering another

region. When an object traverses a region boundary a DYE is required to update

region membership (identify which regions an object belongs to). If there is a

possibility that an object can traverse a region in less time than it takes to realize

regional membership changes then a node hosting such an object may be unable

to disseminate messages effectively.

42

When considering an object that represents a fighter aircraft, the size of a region

may be appropriately measured in kilometres due to both the speed of the object

and the size of its field of vision. However, an appropriate region size for a

much slower-moving object, such as a foot soldier, would be measured in

perhaps tens or hundreds of meters. If region size was determined using the top

speed of a fighter aircraft (Figure 2.S(i)), the presence of foot soldiers may result

in unnecessary message exchange within a given region. In Figure 2.S(i), the

dash line represents the underlying message dissemination between the node

hosting object obja and all other nodes hosting objects in the region. The size of

the region results in the soldier objects having to transmit messages between

one-another, even though they are separated by distances too large for them to

exert an influence on another. Additionally, large regions may contain a very

large number of objects, potentially reSUlting in the network being congested or

overloaded. Conversely, if region size is more suited to foot soldier objects

(Figure 2.S(ii)), then a fighter aircraft may traverse region boundaries with such

frequency that region membership may not be resolved in a timely fashion

resulting in missed interactions. Therefore, when objects coexist within the same

virtual world and can traverse the virtual world at greatly varying speeds,

relying on a region-based approach alone may not be appropriate.

~~~~ ..... • 1-

-A 

.~ 

(i) ROfIion .i ... baud on lop 'P"ed 
of. f'8ht.r plan • . 

(ti) Resion .w. ba.ed on lop 'Peed 
or. rool.oldior 

Figure 2.5 Problems with Region-Based Interest Management 

In aura-based interest management, there is a requirement for all nodes to 

exchange positional update information relating to the objects they host in order 

43 



to identify when aura collisions occur. The frequency of message exchange must 

be sufficient to ensure that aura collision may be determined in a timely fashion 

to allow nodes to purposely disseminate messages as and when aura collisions 

occur. There is the possibility that aura collisions may occur but objects are 

unaware of this as such a collision may not exist for a sufficient amount of time 

to enable a DYE to update the group membership details before the objects 

move away from each other. Consider again the example of a fighter aircraft 

object and a foot soldier object. If the fighter aircraft flies over the foot soldier 

and initiates an attack on the soldier, the DYE must detect when aura collision 

occurs and enable message exchange between the appropriate objects . The aura 

of the fighter aircraft object may only collide with the aura of the foot soldier 

object for such a small period that it may not be possible to resolve the 

appropriate object group membership in a timely fashion . A missed interaction 

problem (Figure 2.6 (i)) may rise. A solution to this would be to extend the 

fighter aircraft's aura to enable such interaction. However, expanding the aura 

(Figure 2.6 (ii)) may result in the fighter aircraft potentially influencing many 

more objects than is necessary and may result in scalability problems as the 

node hosting the fighter aircraft would be required to participate in redundant 

message exchange with many nodes. 

(I) Non-acp ..... d Aur. rOl' 
F\aIt.Air<ndt 

(II) IlXpMdod AUTO rOO' Fi.,.. 
Aircnft 

Figure 2.6 Problems with Aura-Based Interest Management 

Although hybrid interest management combines the advantage of aura-based 

and region-based approaches, there is still an issue as to what region sizes are 

appropriate and the ability to determine aura collisions in a timely fashion. The 

44 



hybrid approach still suffers from many of the problems inherent in both region­

based and aura-based interest management. 

(z} 1I,.t1n4t."C1.~ 

'MlhUqc:Jltll°1l 

(II) II,,"; IdaCIIC w.. .. 
maaWllhJrMUllqIWII 

Figure 2.7 Problems with Hybrid Interest Management 

The hybrid interest management approach is responsible for determining which 

regions objects should be in, meaning that high-speed objects may result in 

either large region sizes or difficulties in updating region memberships on time 

(Figure 2.7(ii)). Given that region-membership can be established in a timely 

fashion, this approach is still responsible for determining which objects' auras 

overlap within given regions. This can still suffer from high-speed objects, as 

aura collisions may not be determined quickly enough to invoke message 

exchange between nodes before their hosted objects have become disjoint again 

(Figure 2.7(i)). Consequentially, hybrid interest management can not address the 

missed interaction problem caused by the highly variable speed of objects in 

DVEs. 

Since the existing interest management approaches can not resolve the missed 

interaction problem, a new interest management approach, termed Predictive 

Interest Management, is described in Chapter 3 to alleviate the missed 

interaction problem. 

45 



2.7 Communication Models 

To reiterate, in a DYE, dispersed participants interact with each other and the 

virtual environment by exchanging the objects' state update messages in an 

underlying network. Each node is responsible for sending its controlled object's 

state update messages to, and receiving other objects' state update messages 

directly or indirectly from, other relevant nodes. The choice of communication 

models determines the transmission paths of messages in a DYE; therefore, it 

will influence the participants' immersive experience in different ways: 

1 Consistency 

2 Scalability 

3 Responsiveness 

The design of the communication model normally relies on the type of DYE 

being created, e.g. LAN-based simulation or Internet-based MMOG. 

Communication model issues include determining how the nodes communicate 

with one another, the overall geographic layout of a network and how it 

connects to other networks. 

J 
" 

(b) C.II' .... 1ilM'd ",·\"Or (e) dt-cfn'nllilitd .. ,., .• ,. 

Figure 2.8 Communication Models 

46 



2.7.1 Peer-to-Peer Communication Model 

The peer-to-peer communication model (Figure 2.8 (a» involves direct 

communication between nodes on a network. Each node takes the responsibility 

of directly receiving messages from and sending messages to all other nodes in a 

DVE. In this kind of network, the network latency of message passing between 

nodes is minimal, as messages do not have to pass through any intennediate 

nodes. When a new node joins a DVE, it must communicate with every node 

currently participating in the DVE. However, if a DVE consists ofN nodes, each 

node has to send to and receive from N-J nodes. As N becomes large, the 

computational expense of dealing with the number of messages being sent and 

received will greatly affect the perfonnance of the DVE. This may result in a 

reduction in responsiveness (e.g. user input) as a large proportion of processor 

cycles must be dedicated to message management. Consistency may also be 

affected as messages may be held in an inbound message queue for a large 

amount of time before they are processed, resulting in large delays before object 

update states are displayed to users. Due to the large number of messages 

transmitted, the underlying network might be overloaded. Furthennore, a 

scalable DVE should allow interaction between heterogeneous machines 

residing in different networks. However, if a machine participating in a DVE is 

not powerful enough to manage the volume of messages being exchanged, it 

may become congested and, potentially, crash. 

2.7.2 Centralised Server Communication Model 

In the centralised server communication model, a dedicated machine, a DVE 

server, connects all the others client nodes in the network together. The physical 

distance between nodes in a DVE built on top of a centralised communication 

model is not important; the logical view can be displayed as Figure 2.8(b). In 

this kind of network, communication only occurs between the DVE server and 

47 



clients, there is no direct message passing between clients. Client nodes send 

their own object's state update messages to the server as well as receive other 

objects state updates information from the server. The server receives objects' 

state messages from clients, updates its internal representation of the objects 

states (e.g. object state table), and sends the required objects' state to the 

relevant clients. In the centralised server communication model, the concurrent 

issues of updating the shared objects state inside the virtual world can be 

handled easily using the lock mechanism. For example, the server issues a lock 

permitting the manipulation of the shared object state to one client and may 

either reject other clients' requests, or force other clients to wait, based on the 

first in first out (FIFO) order queue. After the client sends back a message to 

indicate the new state of the shared object with the lock, the server updates the 

object states and sends messages to all other clients to declare the new state of 

that object. If there are other clients waiting for the lock, the server will allocate 

the lock to the client with the earliest outstanding request. Consistency of the 

objects' state can be maintained satisfactorily. 

However, compared with the peer-to-peer communication model, the centralised 

server communication model will introduce extra latency in message passing. In 

addition, when the number of clients increases, the server will receive a huge 

number of messages, which it must transmit to the relevant clients. Moreover, 

the server may have additional computational overheads involved in managing 

and maintaining a DVE, which a single machine may not be capable of 

performing in real-time as the number of participants increases. The single 

server is a bottleneck on the performance of the DVE system. The scalability of 

a DVE, in terms of the number of clients that can be supported, and complexity 

of the virtual world, in terms of the number of objects that populate the virtual 

world, will be limited by the centralised server communication model. 

Moreover, due to the deteriorated performance of the server, the frequency of 

the messages clients receive from the server will decrease. Therefore, when a 

client node receives an object state update message, the object's movement may 

48 



appear erratic to the user. The responsiveness of the virtual world will be 

damaged by the delayed message arrival, compromising the users' immersion. 

2.7.3 De-centralised Server Communication Model 

Unlike the centralised server communication model, a de-centralised server 

communication model utilises multiple DVE servers to bring all geographically 

dispersed clients together. The logical view of this architecture is displayed in 

Figure 2.8( c). Each server is responsible for a group of clients and the physical 

locations of clients are not important. Inter-communication between servers is 

required to transmit messages among relevant clients. Indeed, the de-centralised 

network can be viewed as a network that links different centralised networks 

together. Each server not only needs to manage receiving messages from and 

sending messages to the corresponding clients, but also needs to cope with the 

message passing between servers. Compared with the centralised server 

communication model, due to the utilisation of mUltiple servers, the number of 

clients and objects that can be supported by a DVE will increase, which, 

sequentially, improves the scalability of a DVE. 

The de-centralised server communication model may introduce further message 

transmission latency when compared to the centralised server communication 

model, as messages may be routed through additional intermediate server before 

reaching their destination. However, as the number of messages which must be 

delivered increases, the message delivery speed in the de-centralised server 

architecture will be faster than the delivery speed exhibited by the centralised 

server architecture as the computational overhead of message dissemination will 

be distributed between the servers participating in a DVE. This will result in the 

faster update of objects' state in the client side, which will enhance the 

consistency and responsiveness of the DVE. 

49 



2.8 Related Work 

The focus of research into DVEs has been divided into three distinct categories: 

military, academic and commercial DVEs. Although all three categories still 

receive a large amount of interest, the majority of investment received has 

shifted from military applications to commercial DVEs [Smed02]. Below is a 

brief description of some DVE systems from IEEE standards to commercial 

DVEs. 

2.8.1 IEEE Standards 

Distributed Interactive Simulation (DIS) 

In 1983, the Defense Advanced Research Projects Agency (DARPA) sponsored 

the SIMNET (SIMulation NETworking) project to develop a "low-cost" 

distributed military endeavour for training small units to fight as a team. 

According to [Singhal99], there were three basic components in the SIMNET 

networking architecture: an object-event architecture, the notion of autonomous 

simulation nodes (simulator) and an embedded set of predictive modelling 

algorithms called "dead-reckoning". The object-event architecture modelled the 

virtual world as a collection of objects that interact with each other in the 

underlying network by message (event) passing; the notion of autonomous 

simulation nodes implies a node may control one or more objects in the virtual 

world and is responsible for sending messages related to its controlled objects 

and receiving messages from other objects; dead reckoning is a predictive 

algorithm to extrapolate objects' positions, based on previously received 

positional and motion data, designed to allow the reduction of message 

exchange frequency with minimal detrimental effect on the consistency of the 

simulation. A message describing the motion of an object is transmitted by an 

object's controlling node when the deviation between its actual position and the 

extrapolated position using the dead reckoning algorithm is greater than some 

50 



threshold. The receiving nodes will update the object's position and follow a 

convergence path for the object from its current position to the new position 

indicated by the update message. 

Building on the successes of SIMNET, the need to connect heterogeneous 

distributed simulations together led to the development of a consistent 

framework. DIS, IEEE 1287 standard, was designed to link various types of 

distributed simulations to create highly interactive, realistic and complex virtual 

worlds. It was a platform-independent structure allowing heterogeneous 

machines to interact with one-another. In addition to the three basic components 

inherited from the SIMNET network architecture, DIS introduced the Protocol 

Data Unit (PDU) to provide a standard message structure for networked 

simulations and define the rule of issuing PDUs. There were 27 types PDUs 

defined by the IEEE 1287 standard, however, for most DIS-compliant 

simulations, only 4 PDUs were used by nodes to interact with each others. 

High Level Architecture (HLA) 

As DIS matured, the Department of Defence (DoD) was seeking an approach to 

reuse and interoperate the existing simulations in order to reduce the tremendous 

amount of resources expended on simulations. New simulations would only be 

built if no existing simulation model could satisfy the new requirements. The 

concept of HLA was born. According to [Kuh199], HLA was built on the 

assumptions: 

1. No single simulation can satisfy the requirements of all users. 

2. No simulation developers can comprehend all simulated domains. 

3. No one can predict the utilisation and combination of simulations. 

4. Future technology and tools must be incorporated. 

The HLA was a software architecture rather than a particular implementation or 

set of tools. In order to understand HLA, some basic concepts and the 

relationship between them are required to be described: 

51 



• Federate: a single simulation which is combined to form a simulation 

system. 

• Federation: a simulation system which is created from a number of 

constituent federates. In addition to federates, each federation contained 

the Runtime Infrastructure (RT!) and Federation Object Model (FOM). 

- The RTI was software to support federates to execute together. 

- The FOM described the objects and interactions involved in the 

federation execution. 

In a federation, federates can not communicate with each other without agreeing 

with a specified FOM. Before interactions occur between federates, each 

federate must convert its internal simulated entities to HLA objects as specified 

in the agreed FOM. After the simulated entities have been translated to HLA 

objects, federates interact with the RTI with the FOM format data; the RTI sends 

this data to federates which have the same FOM. In this case, under the HLA 

architecture, federates can subscribe to receive data from and publish data to 

certain federates through the RTI. Federates do not need to know of the 

existence of each other. All data transmission between federates are delivered 

through an underlying network in such a way that a federate sends FOM data to 

the RTI and it is the RTI's responsibility to distribute the data to the other 

federates with the identical FOM. The volume of data received by each federate 

will be reduced. 

As mentioned previously, HLA was a software architecture designed to promote 

interoperability between different federates. Therefore, the simulations' 

designers are obliged to obey the HLA rules which govern how federates 

interact with one-another during a federation execution and describe the 

responsibilities of federates and federation designers. In addition, the FOM is 

application-dependent. If the original federates are used in a new federation, the 

original FOM must be extended to add new attributes. For example, a federate 

simulating a car is subscribed to and publishes to the car position data. Consider 

52 



that this federate is going to be used in a new federation, consisting of other 

federates, simulating different kinds of cars: race motorcycles, trucks and buses. 

In addition to the position attribute of those federates, race motorcycles may 

have speed attributes, trucks may have attributes to represent the number and 

type of goods being transported, buses may have an attribute for the number of 

passengers. If a federate updates the position and number of goods attributes in 

a truck, the original car simulator will be notified of the update of the positional 

attribute of the truck, but not the update of numbers of goods as the car 

simulator is not 'interested' in this additional information. Therefore the HLA 

architecture provides a meta-model for all FOMs, called Object Model Template 

(OMT) which prescribes the allowed structure of every FOM. Furthermore, the 

HLA design provides an interface specification for the interaction between 

federates and the RTI in order to avoid interference of the implementation of 

federates or the R TI change. 

2.8.2 Military Research 

SIMNET 

In addition to the system design described in Section 2.8.1, SIMNET 

[Macedonia95] applied other network technologies to ameliorate scalability. The 

peer-to-peer communication model was exploited to allow simulators to 

exchange state update messages. Each simulator had its own copy of the world 

database and was responsible for maintaining its state. Ethernet multicasting is 

used to assign different multicast addresses to different exercises. No interest 

management approach was used in SIMNET; the main technology used to 

reduce the network traffic was dead-reckoning. 

NPSNET (1, 2, 3, Stealth) 

The NPSNET series were virtual environments, developed by Naval 

Postgraduate School, Monterey, CA to support military simulations in the US 

53 



Department of Defense (DoD). NPSNET-l [SinghaI99] was demonstrated at 

SIGGRAPH 1991 as part of the Tomorrows Realities Gallery on three 

workstations. Communication was implemented using an NPS-invented ASCII 

protocol for exchanging information between workstations. NPSNET -1 used no 

dead reckoning and transmitted update messages at frame rate. The simulation 

itself lacked any form of collision detection, drastically reducing its realism 

[Zyda93]. The lack of realism in the simulation of NPSNET-l was one of the 

goals outlined in NPSNET-2. An additional goal in the development of 

NPSNET -2 was to provide compatibility with SIMNET, as the cost of SIMNET 

was prohibitively expensive ($350,000 per copy). NPSNET-3 [Zyda93_2] 

introduced separate threads for rendering and networking. This was intended to 

maintain the graphics display rate, regardless of any network communication. It 

used dead-reckoning to reduce the network traffic. NPSNET -Stealth [SinghaI99] 

was a side-project built on NPSNET-l which was intended to read SIMNET 

terrain databases and network protocols. It was operational in March 1993 and 

was the only workstation-based VE compatible with SIMNET. All the 

previously described NPSNET systems were built on the peer-to-peer 

communication model with no interest management. 

NPSNET-IV 

NPSNET-IV [Macedonia95] partitioned the virtual world into different fixed­

sized two-dimensional (2D) hexagons. It was built on top of the peer-to-peer 

communication model and exploited multicasting to reduce the overhead of 

duplicate message transmission. Each hexagon had its own multicast group and 

each avatar's area of influence corresponded with the hexagon in which it 

resided. However, an avatar, in addition to subscribing to the hexagon in which 

it resided, was required to subscribe to the six neighbouring hexagons. When an 

avatar moved from one hexagon to another, according to the direction of 

movement, it un-subscribed from three hexagons but subscribes to a further 

three (Fig. 2.9). To clarify, the red hexagon is the hexagon in which an avatar 

(black dot) resides and must therefore be subscribed to. In addition, the yellow 

54 



hexagons are the hexagons which the avatar must unsubscribe from, and the 

purple hexagons are the hexagons the avatar is required to subscribe to. The 

avatar could send data to and receive data from the hexagon in which it resides 

and its six neighbouring hexagons . The subscription/un-subscription mechanism 

had the effect of decreasing latency caused by joining and leaving the multicast 

group associated with a hexagon. However, the disadvantage of this approach is 

that it was unsuitable for large number of objects residing in the same hexagon. 

Figure 2.9 The Subscription/Un-subscription Mechanism 

Avatar = black dot, red = residence hexagon, 

yellow = unsubscribed hexagon, purple = subscribed hexagons. 

2.8.3 Academic Research 

RING 

In RING [Funkhouser95], the virtual environment was partitioned into different 

size cells whose boundaries were comprised of the static, axis-aligned polygons 

of the virtual world. A visibility-based algorithm was implemented as an interest 

management approach to determine the cell-to-cell visibility. The de-centralised 

server communication model was adopted as the network structure. Every node 

was in charged of one entity, which had a geometric description and a 

behaviour, in the virtual environment. Each server acted as the message 

55 



arbitrator and redirector, based on the cell-to-cell visibility algorithm. Therefore, 

each node merely received messages from other nodes whose entities were 

inside cells which are visible from the cell its entity resided in. 

SPLINE 

SPLINE [Barrus96] used the concept of locales, which are essentially regions, to 

divide the virtual world. Different locales were linked together to construct the 

virtual environment. Every locale contained the network ID (IP address) of its 

neighbouring locales. SPLINE adopted a peer-to-peer communication model. 

The region-based interest management approach was adopted. It was 

implemented on a locale basis and every locale was associated with an IP 

multicast address. Inside a locale, an avatar could communicate with other 

avatars using the reserved IP multicast address. Hence, avatars in the same 

locale received messages from each other whether they were interested in each 

other or not. The area of influence was confined to the locale in which avatars 

were situated. When an avatar moved to a neighbouring locale, the avatar's 

information was sent to the other nodes occupying the locale. Although message 

passing was reduced, the locale-based approach could not cope with the 

situation of increased avatar density in the same locale. To illustrate, if 

thousands of avatars resided in the same locale, thousands of messages would be 

exchanged through an underlying network at the same time. 

DIVE 

In the Distributed Interactive Virtual Environment (DIVE) network software 

architecture [Frecon98], the virtual world was partitioned into smaller regions 

(worlds) with each node containing a duplicated database of the regions its 

avatar resided in. A world represented a separate virtual space, which was 

disjoint from other worlds, with its own set of objects, actors (avatars), and 

views. A gateway object, serving as a portal to another world, was used to 

connect the disjoint virtual worlds. Group communication, based on peer-to-peer 

multicasting, was implemented to exchange state updates inside the same world. 

56 



A multicast address was assigned to a world so that a user could send messages 

to or receive messages from other users inside the same world. However, a 

group based on a world experiences large granularity and density problems. One 

multicast address might not be enough to support the message exchange of all 

users in the same world. In order to reduce this granularity, a light-weight group 

was implemented as a sub-group of the world to multicast messages to users in 

the same light-weight group and its sub-groups. Users could join and leave a 

light-weight group in an application-dependent manner, rather than the DIVE 

system specifying the membership criteria. Therefore, the DIVE system 

provides more flexibility to DVE developers. To illustrate, an aura-based 

interest management schema can be deployed on top of the DIVE network 

architecture; an Aura Manager (server) can be used to detect the aura 

intersection of avatars in a certain region, or the aura collisions can be 

determined on a per-node basis. Additionally, the DVE developers can apply 

application-dependent mechanisms, based on region-based interest management, 

to divide a world into sub-regions. 

MASSIVE-l 

In MASSIVE-l [Greenhalgh95], auras were the unit of interest management. 

The network architecture of MASSIVE-I utilised a mixture of client-server and 

peer-to-peer communication models. The collision between objects' auras 

indicated message exchange between the relevant nodes might occur. The size 

of every aura could be altered to simulate situations in the real world. Like 

DIVE, MASSIVE-l used gateways as portals to connect different worlds or 

different locations within the same world. Upon entering the virtual world, a 

user (client) contacted the relevant local aura manger (server) and declared its 

avatar's information (e.g. different auras sizes and shapes). When a collision 

between objects' auras was detected, the responsible local aura manager sent the 

relevant interface reference (IP address) to inform the involved users that their 

avatars had collided; therefore the users built a peer-to-peer communication 

channel independently inside the same world. Message exchange was controlled 

57 



by the calculation of the mutual levels of awareness through the focus and 

nimbus. 

MASSIVE-2 

MASSIVE-2 [Greenhalgh96] inherited the awareness calculation of MASSIVE-

1. However, scalability was enhanced through the introduction of third party 

objects, which were defined as an extension to the spatial model. In addition, 

MASSIVE-2 implemented dynamic hierarchies of multicast groups as the 

network architecture, instead of peer-to-peer connection as in MASSIVE-I. A 

third party object was an independent object (which may be a spatially-defined 

region) that affected the awareness of other objects. A third party object was 

represented by a group in MASSIVE-2. Each group was associated with one or 

more multicast address for distributing state and update messages for different 

media. A virtual world was mapped onto a nested hierarchy of group objects so 

that multicast groups could be organised in a flexible and dynamic manner. The 

receiving member of a group could determine the awareness level of the 

transmitting member of the same group through the awareness calculations, but 

the parent group could only receive the aggregate view (an abstract view) of the 

sub-group. For example, in a virtual world, ten passengers inside a train can 

hear, see and talk to each other. The train acts as the third party object. People 

external to the train merely perceive shadows inside the train as it passes by. The 

communication between the passengers and their exact number are hidden from 

the non-passengers. MASSIVE-2 supported full interaction with the contents of 

the virtual world through a third party object. 

MASSIVE-3 

MASSIVE-3 [GreenhalghOO] extended the concept of locales from the SPLINE 

system to subdivide a virtual world. In addition to locales, MASSIVE-3 

introduced another concept, aspects, as the sub-division of a local. Every locale 

contained a base aspect, which specified all links to neighbouring locales and all 

58 



links to the other aspects of that locale. Aspects were the fundamental units of 

interest management in MASSIVE-3. Each aspect corresponded with an 

environment database. Each environment database was fully replicated on each 

application which was interested in it (i.e. each node maintained a local copy of 

its environment's database). The decision as to which aspects/locales should be 

replicated could be selected using a number of techniques, for example, replicate 

all aspects/locales within a given distance of the client's current locale. 

Each aspect could be assigned a cost value. This could be used to restrict either 

rendering or replication to being below a certain cost. The client-server network 

architecture was adopted in MASSIVE-3 using unicast TCP/IP, as TCP/IP 

provides flow and congestion control at the network level, which allowed 

support for heterogeneous computers and networks; this was one of the design 

purposes of MASSIVE-3. MASSIVE-3 used a separate thread for sending 

messages. Messages/events which were to be sent were placed in an outbound 

queue. As such, as TCPIIP manages flow control, the sender could determine it 

had a slow receiver as its outbound queue would grow. At this point, the sender 

could apply some application-level adaptation to reduce the amount of 

communication required. Considerable effort was put into MASSIVE-3's 

consistency management, which attempted to ensure that shared object updates 

were perceived in the same order on all nodes participating in the DVE. Three 

different kinds of consistency schema (ownership transfer, centralised update 

and CIAO-style updates) were available in MASSIVE-3. These were user­

selectable so that the appropriate schema could be chosen for the available 

network connection. 

PARADISE 

PARADISE [SinghaI99], the Performance ARchitecture for Advanced 

Distributed Interactive Simulation Environments, was initiated in 1993 in the 

Distributed Systems group of Stamford University. The purpose of the system 

was to reduce the bandwidth used within DVEs at the time. It used IP multicast, 

59 



assigning a different multicast address to each active object. However, as the 

early graphics-capable workstations available to the group did not support 

hardware multicast, an application-level multicast simulator was used on a LAN. 

Hosts transmitted updates for local objects in a similar manner to SIMNET and 

DIS. Additionally, a hierarchy of area of interest (AOI) servers collected 

information subscriptions from each host. The servers monitored the positions of 

objects and notified hosts about which objects' multicast groups they should 

subscribe to. 

PARADISE, differing from SIMNET, treated all objects, including the terrain, 

as first-class entities capable of transmitting state updates. PARADISE also 

attempted to optimise its message exchange schema to recognise that objects 

need to transmit state updates at different frequencies: rapidly-changing objects 

should transmit state updates more frequently than slowly-changing objects. To 

support rapidly-changing objects, an improved Dead Reckoning algorithm, 

called Position History-Based Dead Reckoning (PHBDR) was developed, which 

transmitted smaller update packets and was more accurate when objects move 

wildly: the situation which caused DIS to transmit state updates at near frame­

rate. PARADISE supported mUltiple independent communication flows per 

object, with each flow enabling differing level of accuracy remote dead­

reckoning. Additionally, PARADISE also provided a form of message 

aggregation, combining information about groups of objects based on both their 

virtual position and type. 

In order to better deal with slowly changing objects, PARADISE attempted to 

use reliable multicast protocols to eliminate the frequent "heartbeat" messages 

present in DIS. Log-Based Received-Reliable Multicast provided a lightweight 

reliable multicast service that included a persistence mechanism. This allowed 

nodes joining an existing DVE to retrieve the current state of slowly changing 

objects directly from a system of logging servers. 

60 



BrickNet 

BrickNet [Singh95] [SinghaI99] was a software toolkit to support graphical, 

behavioural and network modelling of virtual worlds. It intended to accomplish 

the virtual collaboration required in design or learning applications. Each client 

subscribed to a server in a DVE, which could not be dynamically changed 

during the lifetime of the DVE. Servers were implemented to mediate the 

communication and requests for shared objects between clients. If a client 

expressed an interest in a shared object in its own virtual world, it requested the 

subscribed server for the ownership of the shared object. If the shared object was 

owned by another client, the server would put the request into a queue until all 

the previous requests have been performed. The shared object update 

information was sent to other relevant clients through servers. 

NetEffect 

NetEffect [Das97] was intended to provide highly scalable media-rich 

distributed virtual worlds which could support several hundreds or thousands of 

participants. A DVE in NetEffect was hosted on a number of servers. NetEffect 

subdivided the virtual world into communities, with each community 

representing some physical space in the virtual world, such as a room. A server 

may host one or more communities. A client connected to the corresponding 

server depending on which community it wishes to be part of. The client 

maintained its connection to this server until it wished to leave its current 

community and join another, at which point it may be required to disconnect 

from its current server and connect to the server hosting its new community. 

Communication was based on the "need-to-know" principal, in that 

communication occurs only within communities. As such, there was no need for 

inter-server communication as a community was hosted on a single server. As a 

user moved within the DVE, it transfers between different communities, which 

resulted in the client machine disconnecting from and connecting to servers 

dynamically. NetEffect allowed point-to-point audio communication, which 

61 



involved two clients directly connecting to one-another and transmitting an 

audio-stream to avoid forming bottlenecks at the servers. To further reduce 

bottlenecks at servers, NetEffect periodically checked the density of clients in 

each community. The system dynamically transferred some communities from 

heavily loaded servers to those with lower loads in an attempt at load-balancing. 

VNet 

VNet [Singhal99] was a client/server Java-based DVE which used VRML. It 

was one of the first networked VRML-based worlds. It used rudimentary spatial 

interest management and provided both graphical representation and textual 

chat. Textual chat was displayed between all objects located within 30 meters of 

each-other. Communication occured using an application-level protocol called 

VRML Interchange Protocol (VIP) built on top of TCP/IP, which was used to 

send VRML field change information across the Internet. 

Mercury 

Mercury [Bharambe02] [Bharambe04] was a completely distributed content­

based publish-subscribe protocol proposed for use in DVEs. It used a high-level 

SUbscription language to express the content of the publications and 

subscriptions a node makes. This language was essentially a subset of SQL. 

Mercury attempted to avoid the bottlenecks associated with the centralised 

server communication model, while avoiding the scalability restrictions of 

broadcast-based DVEs. It endeavoured to yield good scalability by distributing 

the responsibility of matching game events to player interests. Mercury divided 

this responsibility among nodes by partitioning them into groups, called attribute 

hubs. Each attribute hub was in charge of a special attribute in the overall 

schema. For example, the virtual world can be divided by its dimensions (e.g. x, 

y); two attribute hubs can be created, in charge of the x-coordinates and y­

coordinates respectively. Inside each attribute hub, the coordinate can be 

subdivided into ranges based on the number of nodes in that attribute hub. 

Nodes inside an attribute hub were logically arranged in a circle and connected 

62 



to each other using successor and predecessor pointers. Subscriptions were 

routed through one of the attribute hubs and stored in one or more nodes in the 

hub, termed rendezvous points. Publications were routed through every attribute 

hub. These publications were then routed through all rendezvous points within 

this hub until all the subscriptions to this publication were fulfilled. If 

subscriptions and publications matched, publications were delivered to nodes 

which issued the subscriptions. 

ATLAS 

ATLAS [Lee02] provided the DVE developers with a network framework. It 

supported region-based, aura-based, specific user interests and inter-region­

based interest management to filter the unnecessary messages in various DVE 

applications. Each region and shared object was assigned multicast addresses. A 

server subscribed to each region's multicast address in order to maintain the 

membership of participants in each region and the state of the virtual world. 

ATLAS supported two network architectures: client/server and peer/server. The 

peer/server architecture allowed consistency management to be done by the 

server and communication among users to be performed directly by themselves 

using multicast. However, as multicasting is not fully supported over the 

Internet, the client/server structure was provided for real-world deployment. 

MOVE 

MOVE [Lopez02], Multi-user Oriented Virtual Environments, was a 

client/server publish/subscribe 3D collaborative environment. It was mainly 

deemed for educational purposes, such as virtual classrooms. In MOVE, each 

region of the virtual world, for example a classroom, was called a "Place". A 

portal object was used to link different places together. MOVE was built on top 

of a component groupware framework, called ANTS, which used JMS/Elvin 

notification service to handle message transmission through the underlying 

network. Aura-based interest management was adopted in the server as a 

filtering approach to reduce the message receipt from other relevant clients. 

63 



OpenPING 

OpenPING [Okanda05], Open Platform for Interactive Networked Games, was a 

reflective middleware supporting the development of adaptive networked 

games. Rather than focusing on the scalability, persistency and responsiveness 

of DVEs, this middleware platform addressed flexibility, maintainability and 

extensibility. OpenPING used the notion of computational reflection, whereby a 

system has a self-representation, or meta-representation, to enable itself to adapt 

to a changing platform environment. OpenPING provided a plug-in framework 

which could support interest management. It also provided three event channels: 

reliable, Application Level Framing (ALF) and unreliable. This allowed the 

appropriate event channel to be selected according to the changing states of the 

application and platform environment. 

2.8.4 Commercial 

2.8.4.1 First-Person Shooter 

First-Person shooter (FPS) games are an extremely popular computer games 

genre. These games are played from a first-person perspective, in which the 

player's view of the virtual world is perceived through the eyes of the game's 

character. These games have evolved from single-player games to real-time 

world-wide multiplayer experiences. FPS games usually have a short duration 

and allow a relatively small number of players (usually not more than 32) to 

play against one-another in a single game. 

Doom 

The earliest quintessential networked game, the first-person-shooter (FPS), to 

become widely popular was Doom [Id05] [Sweeney99]. Doom was released in 

two forms: a shareware version containing the first chapter of the game and the 

64 



network game was released on the Internet, whereas the full version of the 

game, containing two more chapters and additional multiplayer maps, was 

available to paying customers. The networked component of the game was very 

restricted. A fixed number of players could enter a dungeon and compete to see 

who could kill the others the most: a death-match game. The game would only 

allow players to join before the dungeon was initiated. Once the game was 

underway, no new players could join, and no player could leave without 

destroying the game. Doom performed its networking using either TCP/IP or 

UDP/IP - the choice was up to the network administrator who installed the 

game. Both networking versions operated using the peer-to-peer communication 

model. They synchronized their inputs and timings with one-another, and 

performed the exact same calculations on the exact same inputs. Due to this 

synchronization property, the chance of network-induced failure increased 

linearly with the number of players. Additionally, because the timings and 

frames were synchronized, it was difficult to support a wide variety of machine 

speeds. 

Quake 

Due to the restrictions of peer-to-peer communications, the next generation of 

networked computer games replicated the client/server model. In Quake [Id05] 

[Sweeney99], developed by Id Software, the server made all game-play 

decisions. The machines connected to the server were regarded as dumb 

rendering terminals. Their responsibility was to forward keystrokes to the server 

and wait for a response to instruct them as to how to update their view of the 

virtual world. This architecture enabled widespread Internet gaming to become a 

reality, as game servers sprang up all across the Internet. However, the 

responsiveness of the game was directly related to the distance, and therefore the 

network delay, between the client and the server, offering unfair advantages to 

players who were situated close to the server. 

65 



Quake II 

Following from the success of Quake, the client/server model was extended with 

Quakeworld and Quake II [Id05] [Sweeney99]. Predictive logic was introduced 

into the client to lessen the burden on the servers hosting games. Technologies 

like dead reckoning, a position prediction, extrapolation and convergence 

algorithm, were introduced to reduce the perceived lag to users. Although the 

dead reckoning was rudimentary, using only linear interpolation, it had a 

tremendous effect on the smoothness of the animation for users. Also, due to the 

shift of some calculation from the server to the client, the bandwidth 

requirements of the game were reduced, allowing the game and servers to 

handle more clients simultaneously. 

Unreal Tournament 

Further developments were achieved with later FPS games, such as Unreal 

Tournament [Epic05] [Sweeney99] by Epic Games. Unlike the FPS games 

which came before it, Unreal Tournament provided very little single-player 

content; instead it provides a game which was designed from the ground-up as 

an Internet FPS. Unreal Tournament was based on the client/server model. The 

Unreal Tournament engine introduced an object-oriented scripting language to 

express object and avatar (termed actor) behaviour, and networking 

requirements, which decoupled application code from networking code. The 

scripting language was quite sophisticated, allowing the creation of user-defined 

object types. It provided the ability to transmit both reliable and unreliable 

messages, using TCP/IP and UDP/IP respectively. The scripting language 

allowed the calling of remote procedure calls, termed function call replication, 

to allow programmer-defined communication to be achieved without hard­

wiring the code to a specific network protocol. 

In Unreal Tournament, the server was viewed as being the authoritative game 

state. The problem of ensuring that the clients view a consistent world with the 

66 



server is tenned state replication. Due to bandwidth limitations, it was not 

possible to replicate the state in the server on the clients in real-time. As such, an 

approximation to the server's game state was provided by the clients. 

Essentially, the clients executed the same operations on the game objects as the 

server, albeit on variables which may deviate from those stored on the server. 

The different aspects of the game state were prioritised, with a larger proportion 

of bandwidth dedicated to AlI-controlled objects (tenned bots) and actors than 

superficial animations in the game. The developers of the Unreal engine 

recognised that not all actors need to be replicated on all clients at any given 

time. Interest management is adopted. Therefore, Unreal Tournament could 

support heterogeneous platfonn over a network. Additionally, not all state 

variables within the server need to be replicated. For example, the state variables 

used by the server to control bots need not be replicated on the client machines. 

Essentially, the server maintained a huge set of variables and function calls, of 

which only a fraction needed to be replicated on the clients to provide a decent 

approximation to the server's game state. 

2.8.4.2 Massive Multiplayer Online Role Play Game 

Massively Multiplayer Online Role Play Games (MMORPGs) are a highly 

popular games genre. These games usually take place in a fantasy world in 

which the player creates an online representation of themselves, an avatar. The 

players interact and join forces with one-another to fight hordes of monsters. 

Through fighting monsters, the player's avatar receives experience which causes 

their character's statistics to improve. The player usually collects virtual money, 

which can be used to purchase equipment such as weapons and annor to 

improve their character's abilities. These games encourage social groups to be 

fonned, tenned guilds, between players with common interests. As the purpose 

of MMORPGs is to improve the player's character, a game's duration is 

unbounded, providing the illusion of a continuous pervasive virtual 

environment. 

67 



Diablo 

Diablo [Money97] [KuoO 1] [Blizzard05] was an online Role Play Game (RPG) 

published by Blizzard Entertainment in 1997. It was immensely successful, 

selling over 2.1 million copies. In Diablo, each player is required to build hislher 

own character, which they strengthen and develop through countless hours of 

play. 

In order to increase the message transmission speed and the character update 

speed, the peer-to-peer communication model was adopted in Diablo, storing 

character information on each player's computer. There are two disadvantage of 

this approach. Firstly, although the network latency associated with the peer-to­

peer architecture is comparatively low, this approach is not scalable, which is 

shown by the fact that the game could only support parties of up to 4 players. 

Secondly, players could alter the characters stored on their computer using tools 

freely available on the Internet, making them much more powerful. 

Additionally, as messages were sent between players' computers directly, it was 

possible for dishonest players to modify the game themselves to alter the 

messages which were sent to the other players. For example, players were able 

to send a message which would result in every other player's characters 

instantaneously dying. The rampant cheating which occurred in Diablo damaged 

the confidence and enjoyment of the honest players. As such, in the inevitable 

sequel, Blizzard had to address the problem of cheating in order to win back the 

players' confidence. No interest management is implemented in Diablo. 

Diablo II 

Diablo II [Money97] [KuoO 1] [Blizzard05] was designed to address the cheating 

problem and released by Blizzard entertainment at June 2000. Blizzard provided 

two modes in the Diablo II to satisfy different players: the peer-to-peer model as 

in Diablo and the secure client-server model in which players' characters were 

stored on secure servers, termed "The Realms". In the client-server model 

68 



[Ng02], each server maintains a unique game state, which is not shared among 

other servers. No inter-server communication is implemented in Diablo II. 

Players could either play with other players via the Realms, in what was 

intended to be a cheat-free environment, or they could play via the peer-to-peer 

architecture, which was just as susceptible to cheating as the original Diablo. 

However, characters hosted on the Realms could not be used for peer-to-peer 

gaming and, similarly, locally-hosted characters could not be used to play with 

people via the Realms. In addition to the increased security, Blizzard increased 

the maximum party size from 4 to 8 players. In order to maintain the cheat-free 

property of the Realms, Blizzard was forced to release update patches for Diablo 

II every 4-6 weeks, which players were required to download and install before 

they could continue to play. These patches not only fixed any known bugs or 

security holes, but often contained additional content or improvements to the 

game. However, the Realms became a high-profile target for hackers. In 

December 2000, just 6 months after its release, the Realms were hacked. 

Players' items were stolen and many of the top players' characters were deleted. 

As with the original game, no interest management was implemented in Diablo 

II. 

Ultima Online 

Ultima Online [Ultima97] [Origin05] was released by Origin Systems III 

September 1997. The client/server communication model was adapted to 

support thousands of players simultaneously on various game servers, known as 

"shards". Each shard acts as a central repository for the state of the game and all 

game logic is executed on the shards. Each player is required to send 

"commands" relating to their character (walk, take objects, fight) to the server. 

Failing to send a command in time may cause the death of the character, its 

injury or other types of damages. Therefore, players with high-latency or low­

bandwidth Internet connections may be more disadvantaged than their faster 

opponents. To reduce the bandwidth usage and improve the performance of the 

69 



server, Ultima Online divides the game world into multiple continuous zones 

[Ng02], whereby information is only provided to a player about objects within 

the player's zone. Region-based interest management is implemented in Ultima 

Online. Different zones may be hosted on different shards. To avoid player 

perceiving delays when a player traverses across neighbouring zones, and 

therefore connects to a new shard, neighbouring shards mirror boundary content. 

EverQuest 

EverQuest [EverQuest99][Kushner05] was a MMORPG released by Sony 

Online Entertainment in November 1999. The client/server model was 

implemented as the ground of the networking architecture. EverQuest divided 

the entire virtual world into distinct zones. Each individual zone was maintained 

by a game server. A player may connect to any zone (a game server) to join the 

game and may travel from one zone to another freely. 

However, this structure became too inefficient to handle the new content the 

game developers were releasing. Therefore, Sony utilised a new technique to 

manage the computing resource, termed just-in-time computing. In the just-in­

time system, the computer resources were allocated dynamically based on player 

demand. For example, a player is running through a corridor when they come to 

a door. By opening that door, the player triggers actions on several machines. If, 

say, a dungeon lies behind the door, Sony's system looks up the data and 

software that describe that dungeon on one computer, finds some idle processing 

resources within its cluster of dedicated servers, probably on a different 

machine, and runs the software on it. Sony's servers download the dungeon's 

data to the player's computer "just in time" to meet the user's requirements. 

70 



2.9 Summary 

A Distributed Virtual Environment (DVE) is a virtual environment which allows 

dispersed participants to navigate through and interact with the virtual world in a 

distributed manner. The general properties of a DVE (shared virtual 

environment, virtual objects, interaction and navigation, and distributed users) 

and the challenges (bandwidth, network latency, heterogeneity, and consistency 

and responsiveness) to build a scalable DVE were briefly discussed in Section 

2.1 and Section 2.2 respectively. 

In general, a DVE is constructed from three different layers: the application 

layer, the message dissemination layer and the network layer. The application 

layer presents users with a graphical representation of the DVE allowing users to 

interact with the virtual world and other users through input/output devices; the 

message dissemination layer may provide services to ease access to the network 

layer for developers, to overcome heterogeneity between nodes and networks, 

and to regulate message passing to better utilise available bandwidth; the 

network layer provides appropriate network protocols for the DVE developers. 

Due to the different requirement of different types of DVEs, such as military, 

CSCW and MMOG, the message dissemination layer and the network layer 

should provide the appropriate services and network protocols. Five popular 

network protocols are described in Section 2.4.3. As for the message 

dissemination layer, middleware and interest management are suitable for 

integration into this layer regardless of the types of DVEs. 

Middleware shields the developers from the complication of low-level 

networking, providing platform and language independence. Three types of 

middleware (RPC, MOM and DOM) and five standards (ONE, DCE, DCOM, 

CORBA and JMS) of middleware were discussed. It was found that, although 

the CORBA Notification and Event Services, which are the MOM 

71 



implementation in CORBA, provides interoperable, reliable, asynchronous 

messaging, these services are not suitable for use in scalable DVEs as current 

implementations are not able to support the volume of message exchange 

required. Furthermore, additional message delivery delays may be introduced 

due to the advanced features of the Notification Service, such as QoS 

monitoring. Therefore, CORBA is most suitable as it provides low-latency, 

interoperable, reliable, asynchronous messaging. 

Interest management is a message filtering technology for reducing message 

exchange through an underlying network without compromising the users' 

immersive experience in DVEs. Region-based interest management divides the 

virtual world into different regions; users inside the same or neighbouring region 

can exchange information through an underlying network. Aura-based interest 

management provides each object an area of influence; objects can exchange 

information when their areas of influence overlap with each other. Hybrid 

interest management is the combination of the region-based and aura-based 

interest management. However, existing interest management approaches are 

not guaranteed to resolve objects' interests sufficiently quickly to initiate 

message exchange before the objects' interaction has ended. If the duration of a 

pair of objects' interaction is short, it is possible that the objects' interaction will 

have ceased before the interest management scheme detected it; this situation is 

termed a Missed Interaction. 

The choice of communication models will influence consistency, scalability and 

responsiveness of DVEs. It was found that the peer-to-peer model offered weak 

scalability, but was capable of delivering messages fastest. However, it was 

likely to lead to the largest bandwidth usage; increasing the number of 

participants may lead to network overloading, which consequentially affects the 

consistency and responsiveness of a DVE. The centralised server model was 

found to offer better scalability and reduce the network bandwidth consumption. 

However, a centralised server could become a bottleneck if the number of 

72 



participants increased, which in turn affects the consistency and responsiveness 

of a DVE. In addition, a central server is a single point of failure. The de­

centralised server model was found to offer best scalability. Each server is 

potentially less likely to become a bottleneck than in the centralised server 

model. However, this model provides these features at the cost of the highest 

message transmission latency. Compared with the peer-to-peer and centralised 

server models, this model offers better scalability, consistency and 

responsiveness as the number of participants increase. 

Subsequently, a broad selection of related work was discussed in Section 2.8, 

including two IEEE standards, six military simulation systems, fourteen 

academic research systems and eight online computer games. Some of these 

systems (e.g. NPSNET-l,2,3, Bricknet and Doom) did not implements interest 

management at all; other systems (NPSNET-IV, DIVE and EverQuest) have 

implemented various interest management approaches. However, all of these 

existed systems do not provide interoperability and are susceptible to missed 

interactions. 

73 



Chapter 3 

Predictive Interest Management 

This chapter provides a description of Predictive Interest Management (P/M), an 

aura-based interest management approach for alleviating the missed interaction 

problem in DVEs. 

3.1 Overview of Technique 

The missed interaction problem, which was described in Chapter 2, occurs in 

DVEs if objects have highly variable speed (e.g. foot solders and fighter 

aircraft). The delay in resolving the required message exchange of nodes 

participating in the DVE, and informing the relevant nodes an interaction has 

occurred, may be sufficiently high that it is difficult or impossible for existing 

interest management systems to guarantee that nodes will manifest interactions 

before the interactions have ceased. 

If an interest management approach can inform the relevant nodes that an 

interaction between their hosted objects may potentially occur, this will, 

theoretically, solve the missed interaction problem. Predictive Interest 

Management (P/M) is such an aura-based interest management approach. The 

reason for utilising auras instead of regions is that aura-based interest 

74 



management provides a much more accurate expression of the interests and 

interactions within a DVE than region-based interest management. PlM uses 

Predicted Areas of Influence (PAIs) to enlarge objects' auras such that future 

interactions between auras can be detected so that the relevant nodes can be 

informed on time. However, as discussed in Chapter 2, enlarged auras may lead 

to unnecessary message exchange between nodes. Therefore, a Collision 

Window (CW) and its associated values (see Section 3.2.3) are used in PlM to 

regulate the message exchange frequency between nodes such that the message 

exchange frequency is proportional to the distance between the objects, i.e. 

message exchange frequency will increase as objects are more closer to each 

other. 

PlM utilises three kinds of messages in its message exchange schema which are 

transmitted at different frequencies: Position Update Message (P UM) , Admin 

Position Update Message (APUMadmin) and Local Admin Position Update 

Message (APUMocal). The PAl and CWare used to determine which types of 

messages should be exchanged between nodes and, in the case of APUMocal 

messages, the frequency at which the messages are exchanged. 

3.2 Calculations 

The definition of PAl and CW is based on three assumptions. In this section, 

these three assumptions will be discussed in details before describing the PAl 

and cwo 

3.2.1 Assumptions 

Assumption 1: An aura of an object describes a virtual space enclosed by a 

sphere. The radius of an aura is specified on a per-object basis and is defined at 

object creation time, with each object having a single aura and the position 

75 



vector of an object identifying its aura's centre. Objects have the ability to 

influence each other when their auras collide. This influence is exerted via the 

exchange of messages between the nodes hosting these objects. 

Assumption 2: Each object has a constant highest speed. The reason for 

defining a constant highest speed is that a PAl can be defined at object-creation 

time such that an object can exert its influence over other objects that fall into 

this area of influence. 

Assumption 3: The future time, used to calculate a PAl, is measured under the 

hypothesis that objects travel toward each other in a straight line. This 

assumption is based on the Triangle Inequality Theorem [Lengye102] (Figure 

3.1 & Theorem 3.1), which proves that the sum of any two sides of a triangle is 

longer than the third side using the vector property shown in Theorem 3.1; and 

therefore that the shortest distance between two points is a straight line. It 

follows that, therefore, the earliest possible collision between two objects occurs 

when the two objects move in a straight line towards one-another at maximum 

speed. Although it is likely that the objects will not have collided at this time 

(e.g. one or both objects change their velocity), it offers a practical estimated 

time that ensures that potential collisions are not missed. The velocity of an 

object is a vector (VI. V2, ••• , v,J which can represent both the direction and the 

speed the object is travelling in. In three-dimensional space, this would be 

represented by a three-dimensional vector v (vx, vy, vJ. 

Q 

P+Q 

Figure 3.1 The Triangle Inequality Theorem 

76 



Theorem 3.1. Given any two vectors P and Q: 

liP + QII ~ I!PII + IIQII 

Lemma 3.1 Cauchy-Schwartz Inequality 

IP·QI =5IIPIIIIQII 

Note: 

(J)P'Q is dot product of vector P(px, py, pJ and Q(qx, qy, qJ, 

which results in the scalar: 

P'Q=px<lx+ Pyqy+ pz<!z 

(2) IIPII represent the magnitude of vector P(px, py, pJ, which is 

the scalar: 

Proof of Theorem 3.1 (Triangle Inequality) 

Given that IIP+QII represents the magnitude of the vector P+Q: 

liP + QII2 = (P + Q)·(P + Q) 

= p2 + Q2 + 2 p.Q 

Using Lemma 3.1 to attain an inequality 

~ p2 + Q2 + 2 I!PIIIIQII 

= (IIPII + IIQII)2 

Taking Square Roots arrives at the desired result 

3.2.2 Predicted Area of Influence 

A Predicted Area of Influence (PAl) identifies the extent of an object's aura, 

given the maximum distance the object may travel in a straight line in any 

direction (Figure 3.2) over a given period of time. 

77 



Aura attime tclt+fX .... 
Distance travelled ./ t---.---,-
between tclt and tclt+~/ 

Aura at time tclt 

Predicted area~, 
ofinRuence \. 

'\'" 

" 
""'''''~ 

'" 

Figure 3.2 Defining Predicted Area of Influence (PAl) 

The period used to identify a PAl is bounded by the current local node time, say 

telt, and some future time (telt+ft, whereft is a constant, defined system-wide). 

By this method, the distance that an object, say obh, travels in a straight line 

identifies the radius of a sphere that encloses all the areas of virtual space 

reachable by obh between telt and telt+ft, with the position vector of obh at 

time telt defining the centre of this sphere. Extending this radius by the radius of 

obj/s aura defines a sphere that describes the PAl for obh. When determining a 

PAl, an object is modelled travelling at its highest speed, Vm, in a straight line at 

time telt and continues at this speed and direction until telt+ft. This presents a 

PAl that is guaranteed to contain the aura of an object for all possible 

movements this object can make between telt and telt+ft. Assuming the highest 

speed remains constant for an object throughout its lifetime, a PAl can be 

calculated and fixed at object-creation time. The radius of PAl can be calculated 

using the formula below: 

Radius(PAl) = Radius(Aura) + ft * Vm 

Formula 3.1 P AI Calculation 

However, the use of PAIs may cause scalability problems, as the node hosting 

an object may be required to participate in redundant high fidelity message 

78 



exchange with many other nodes. As a result, the node may be overloaded by 

the superfluous messages thereby detrimentally affecting the users' immersive 

experience due to slow input/output response of the DVE. Therefore, it is 

necessary that the redundant messages received by each node be limited to some 

level to reduce the impact of potential scalability problems. In the next section, 

Collision Windows (CWs) are introduced to calculate the message exchange 

frequencies between objects to provide a scalable solution to the missed 

interaction problem. 

3.2.3 Collision Window 

When the PAIs of two objects collide, but their auras do not, there is a 

possibility that such objects may influence each other and subsequently 

exchange messages at some point in the near future. A Collision Window (CW) 

is defined as a period of time within which the auras of two objects may collide. 

However, the establishment of a CW does not guarantee that an aura collision 

will occur. Once a CW has been established, there are three values which must 

be considered: Upper Bound Value (UBV), Optimistic Upper Bound Value 

(OUBV) and Approximate Upper Bound Value (AUBV). 

Upper Bound Value (UBV) Determination 

The UBV of a collision window is infinity (Figure 3.3), as both objects may: 

79 



• Remain stationary 

PAfI 
PAIl 

Stationary Objects 

• Move in parallel to one-another 

Parallel Movement Objects 

• Move in opposite to one-another 

Opposite Movement Objects 

80 



• Cross each other's path without intersecting each other 

,./,., 

/'/ 

'-'-
'" 

Crossing Path Objects 

Figure 3.3 Infinity UBVCollision Windows 

Optimistic Upper Bound Value (OUBV) Determination 

Assuming two objects are travelling towards each other in a straight line at their 

respective top speeds provides an OUBV, which is the shortest time for two 

objects' auras to collide. According to the definition of PAl, at the instant a CW 

is established, OUBV is the time ft (Figure 3.4). Additionally, because ft is 

defined globally, the OUBV of each object pair is the same. 

Earliest time for tw~ objects' auras collide 

--------, , .;. .............................. .1 
OUBV=ft 

Figure 3.4 Defining OUBV 

81 



Using collision detection techniques based on the intersection of spheres, it is 

possible to identify if a CW exists between two objects. This technique is 

computationally cheap compared to collision detection between polygons, as we 

only need to determine if the distance (sd) that separates the objects is less than 

the sum of the radii of the PAIs associated with the objects. The formula below 

can be applied to determine whether a CWexists between obja and obh. 

Formula 3.2 CW Determination 

Once a CW has been established between two objects, further calculations can 

be performed to determine whether these two objects' auras collide with each 

other. Collision detection techniques can be applied to identify whether the auras 

overlap, i.e. the distance that separates two objects is less than the sum of the 

radii of each object's aura. 

Formula 3.3 Aura Overlap Determination 

Approximate Upper Bound Value (AUBV) Determination 

If a CWexists but the objects' auras do not overlap (Figure 3.5), an Approximate 

Upper Bound Value (AUBV) is required to be calculated in order to predict the 

minimum time taken for the auras of these objects to collide. The assumption 

that these objects are modelled travelling towards each other in a straight line at 

their maximum speeds is applied. 

82 



, , 
PAIl i 

~ 
jPAIl 

~ 
sd-(Radius(Aural)+Radius(Aural» 

Figure 3.5 CW Exists but Auras Do Not Overlap 

A UB V may be derived by first calculating the distance between the edges of the 

two objects' auras and dividing it by the sum of the two objects' maximum 

speeds. 

AUBV = sdab - (Radius(Auraa) + Radius(Aurab» 

Vma +Vmb 

Formula 3.4 (a) AUBV Calculation 

Formula 3.4 (a) is the most straightforward way to calculate the AUBV. 

However, According to Figure 3.4, when two objects' PAIs touch, Vma+Vmb can 

be re-written as: 

v + V = (Radius(PAla) + Radius(PAlb» -(Radius(Auraa) + Radius(Aurab» 
ma mb ft 

Therefore, AUBV can be represented using the formula: 

AUBV = sdab -(Radius(Auraa) + Radius(Aurab» * ft 
(Radius(PAIa) + Radius(PAIb» - (Radius(Auraa) + Radius(Aurab» 

Formula 3.4 (b) AUBV Calculation 

83 



Also, according to the Formula 3.4 (b), a relationship formula can be 

constructed as below: 

sdab ~ Radius (PAIJ + Radius(PAlb ) ~ AUBV ~ ft ~ AUBV ~ OUBV 

Formula 3.5 Relationship between AUBV and QUBV 

AUBV provides a basis for predicting the appropriate frequency for message 

exchange between two objects within a CW before their auras overlap. If two 

objects move towards one-another, Sdab will decrease causing AUBV to become 

smaller; conversely, if the objects move away from one-another, Sdab will 

increase causing AUBV to become larger. This variable frequency of message 

exchange between nodes reduces the impact of redundant messages overloading 

the underlying network and compromising the users' immersive experience in 

DVEs. 

3.3 Message Exchange Scheme 

With respect to a pair of PAIs and a CW, there are three different situations that 

may occur between a pair of objects in a DVE which should result in different 

message exchange frequencies: 

(1) CW does not exist ~ PAIs do not overlap ~ lowest message 

exchange frequency should be applied to the respective nodes or the 

mediator. 

(2) CWexists but auras do not overlap ~ PAIs overlap but auras do not 

~ higher message exchange frequency should be applied to the 

respective nodes or the mediator. 

(3) CW exists and auras overlap ~ PAIs and auras overlap ~ highest 

message exchange frequency should be applied to the respective nodes 

or the mediator. 

84 



According to the descriptions of the situations above, three types of messages 

with different exchange frequencies are defined in Section 3.3.1. Two message 

channels are introduced in Section 3.3.2 as the transmission media for nodes or 

the mediator to exchange different frequency messages. In Section 3.3.3, 

according to the objects' intersection degrees, these objects may be required to 

subscribe or unsubscribe from each other's corresponding message channels and 

receive the appropriate frequency of messages. 

3.3.1 Message Types 

Three different kinds of messages are introduced as the basis of the PIM 

message exchange scheme: 

1. Positional Update Messages (PUMs) 

PUMs are messages transmitted at a regular frequency, which construct 

the basic mechanism for high fidelity message exchange in a DVE. Each 

PUM identifies the position vector of the objects that a node hosts and 

carries the unique identifier of the node that sent it. This message may be 

extended to include additional information, such as orientation, velocity, 

acceleration etc. 

2. Local Admin Positional Update Messages (APU~ocal) 

APU~ocal carry the unique identifier of the node and the position vector 

of the residing objects. It is exchanged between the relevant nodes at a 

variable frequency. This is the core message designed to alleviate the 

missed interaction problem in DVEs. 

3. Admin Positional Update Messages (APUMadmin) 

Compared with PUM and APU~ocal, APUMadmin are exchanged at the 

lowest frequency. APUMadmin contain the aura radius, PAl radius and 

vector position information for all the objects a node hosts and the 

unique identifier of that node. Essentially, APUMadmin contains the 

85 



information required by PIM to determine the recipients and frequencies 

of PUM and APUMocal. 

3.3.2 Message Channels 

In the message exchange scheme, the notion of message channels is applied for 

disseminating messages. A message channel is a medium for delivering certain 

types of messages to the appropriate recipients. A message channel may be 

registered with the PIM message exchange scheme, allowing publishers/senders 

to place messages on message channels. Subscribers/receivers register to one or 

more message channels and receive messages placed on these message channels. 

Two message channels are defined in the message exchange schema: 

• Admin Channel (AC) - Used to disseminate APUMadmin to all nodes. All 

nodes subscribe and publish to this message channel. 

• Local Channel (LC) - Created on a per-node basis to provide a mechanism 

for passing APUMocal and PUMbetween nodes without the need to publish such 

messages to all nodes. 

Each node must register with the AC to send/receive APUMadmin to/from other 

nodes at a consistent low frequency. This ensures that the interactions between 

uninterested objects can be re-estimated at a given, low frequency to initiate the 

appropriate message exchange between nodes as and when their objects become 

interested in one-another. For example, the objects hosted on nodes na and nb 

respectively are not interested in each other at time to. Under the PIM message 

exchange schema, this will be represented as the PAIs of these objects not 

overlapping at time to. However, because the objects in a DVE are dynamic, it is 

difficult to guarantee after a certain time, say t/, that the objects controlled by na 

and nb are not interested in each other (i.e. PAIs overlap or auras overlap). The 

time interval used to define the APUMadmin frequency may be appropriately 

measured as a percentage ofJt. The reason for this is that it insures APUMadmin 

86 



are exchanged during the predicted period (ft) so that the required message 

exchange between nodes can be determined on time. 

Each node is associated with two different lists in the LC: the PUM list (Lpum) 

and the APUMtocal list (Lapum). Each list contains the set of nodes currently 

subscribed to a node's PUM or APUMtocal messages and the frequency to 

exchange these messages respectively. To illustrate, given that n is the set of all 

nodes subscribed to the DVE, and ni e n. Lpumi and Lapumi represent the PUM list 

and the APUMtocallist for node ni. Lpumo:::: {n/5, n/,5} indicates that nodes n] and 

n2 are registered to receive PUM messages from node no with the message 

exchange frequency at 0.5 second; Lapumo:::: {n/, n/5, nJ02.2} specifies that nodes 

n3, ns and nJO are registered to APUMtocal messages from node no with the 

message exchange frequency at 1, 1.5 and 2.2 second respectively. 

3.3.3 Message Channel Subscription Policy 

Nodes are not compulsorily subscribed to other nodes' Lpum and Lapum. However, 

if nodes do subscribe to each other in the LC, they subscribe to either each 

other's Lpum or Lapum exclusively. The rationale for this is that when nodes 

subscribe to each other's LC, one ofthe following situations will occur: 

• The PAIs of objects belonging to the relevant nodes overlap, but the 

auras do not. 

• The auras of objects belonging to the relevant nodes overlap. 

The following example demonstrates how the different message types are 

utilised in PIM As previously mentioned, every node must be constantly 

subscribed to the AC, regardless of their subscriptions to any Le. However, for 

the clarity of this example, only the highest-frequency message type subscribed 

to is indicated in each individual diagram in Figure 3.6. 

87 



1. CW does not exist 

...... -.-

(1) APUMadmin Exchange 

2. CWexists 

(2) APUMlocal Exchange Starts (3) APUMlocal Exchange 

(4) PUM Exchange (5) APUMlocal Exchange 

88 



3. CW ceases to exist 

•.... -----------8 

(6) APUMadmin Exchange 

Figure 3.6 The PIMMessage Exchange Schema 

To clarify, objJ and obh are two objects controlled by nodes na and nb 

respectively. As can be seen from (1) in Figure 3.6, before the PAIs of objJ and 

obh overlap (and therefore the CW does not exist), the messages exchanged 

between nodes na and nb are APUMadmin in the AC only. In (2), when PIM 

detects these two objects' PAIs overlap (CW exists), APUMocal exchange starts 

between nodes na and nb. Nodes na and nb should subscribe to each other's Lapum. 

In (3), as the distance between these two objects reduces, the frequency of 

exchanging APUMocal is higher than the exchange frequency in (2). In (4), objJ 

and obh move close enough so that their auras overlap; na and nb should 

unsubscribe from each other's Lapum and subscribe to each other's Lpum. 

Therefore, the message type exchanged between these nodes changes from 

APUMocal to PUM. The frequency of message exchange will change from a 

variable lower frequency (APUMoca/) to a constant high frequency (PUM). In 

(5), both objects move far away from each other. Their auras no longer overlap, 

but PAIs are still intersecting; the membership of Lpum and Lapum should be 

exchanged. Nodes na and nb should unsubscribe from each other's Lpum and 

instead subscribe to Lapum. The APUMocal exchange frequency decreases as both 

objects' distance increase. In (6), both objects' PAIs are no longer overlap (CW 

89 



does not exist), nodes na and nb unsubscribe from each others' Lapum and the 

messages exchanged between them are only APUMadmin. 

In the previous example, according to Formula 3.4 & 3.5, two considerations 

must be made. As previously discussed, the transmission frequency of 

APUMadmin is a proportion ofjt. As such, it is possible for AUBV to be greater 

than the frequency of transmitting APUMadmin. In this case, it is not necessary to 

transmit APUMtocal messages as APUMadmin will be sufficient for the PIM 

message exchange schema to determine the required messages exchange 

between nodes. In addition, it is possible for AUBVto be less than the frequency 

of PUM transmission. In this case, nodes will unsubscribe from each others' 

APUMtoca/list and subscribe to each others' PUMlist. 

The frequency of exchanging APUMtocal for a pair of nodes is based on the 

calculation of the highest exchange frequency among their respective controlled 

objects. To demonstrate, given objaJ and obja2 are controlled by node na, 

whereas ObjbJ, obh2 and obh3 are controlled by node nb. The PAIs of object pairs 

(objaJ, obh2) and (Obja2, objbJ) overlap but their auras do not. Using AUBVm
n to 

represent the AUBV of objm and objn, AUBVal 3=2 and AUBVal 1=3, therefore, 

the APUMtocal exchange frequency between nodes na and m is 2 second per 

APUMtocal. 

The previous frequency definition example is based on one-to-one node 

situation. However, in DVEs, it is necessary to consider the one-to-many nodes 

case. 

90 



Table 3.1 Lapum Subscriptions 

As can be seen from Table 3.1, nodes n2, n3, n6 and nI9 subscribed to node n/s 

APUMoca/list; this is represented as LapumI= {n/, n/, n/, nIl}. Accordingly, the 

APUMocal lists related to nodes n2 and n3 correspond to Lapum2= {n/, n/, nil 

and Lapum3= {n/, n/, nIl} respectively. Therefore, the frequency for node nI to 

publish APUMocal is the lowest AUBV (2 seconds per APUMocal). The reason 

for this is that if another AUBV was used (e.g. 5 instead of 2 seconds per 

APUMocal), nodes n2 and n3 would not receive APUMocal from ni at a high­

enough frequency to guarantee accurate aura prediction. Therefore, in the case 

of multiple nodes subscribed to a node's Lapum, the lowest AUBV should be 

selected as the node's APUMocal publish frequency in the Le. 

3.4 Summary 

This chapter described Predictive Interest Management (PIM), which is aura­

based interest management approach to alleviate the missed interaction problem. 

In PIM, a Predictive Area ofInfluence (PAl), which is an enlarged aura, is used 

to include all the possible movements of an aura over a predefined future time. 

A Collision Window (CW), which is defined as a period of time within which 

the auras of a pair of objects may collide, and its associate values UBV, OUBV 

91 



and AUBV were introduced to regulate the message exchange type and 

frequency between nodes. 

PlMs message exchange scheme was discussed. Three types of messages 

(Positional Update Message (PUM), Local Admin Position Update Message 

(APUMocal) and Admin Position Update Message (APUMadmin» and two 

message channels (the Admin Channel (AC) and the Local Channel (LC» were 

defined in the message exchange scheme. To elaborate, given two objects hosted 

on different nodes: 

(1) CW does not exist => PAls do not overlap => the nodes are subscribed to 

theAC only. 

(2) CW exists 

a. PAls overlap but auras do not => the nodes should subscribe to 

each other's APUMocallist (Lapum) in the LC; Approximate Upper 

Bound Value (AUBV) between the hosted pair of objects should 

be calculated to provide the appropriate exchange frequency for 

APUMocal messages in the LC; 

b. Auras overlap => the nodes should unsubscribe from each other's 

Lapum in the LC and subscribe to each other's PUMlists (Lpum); 

c. Auras no longer overlap but PAls still do => the nodes should 

unsubscribe from each other's Lpum in the LC and subscribe to 

each other's Lapum. 

(3) CW ceases to exist => the hosted objects have passed by each other => 

PAls no longer overlap => the nodes should unsubscribe from each 

other's LC. 

To clarify, PlM can be proved to solve the missed interaction problem provided 

network latency is bounded below some threshold value, i.e. all messages will 

be received by their respective recipients within this threshold time. This 

property can be leveraged by PlMby ensuring that the value ofJuture time (ft) 

used to calculate an object's Predicted Area oflnfluence (PAl) is greater than or 

92 



equal to this threshold value. Given that all messages will be received withinfi, 

PIM can guarantee to avoid any missed interactions. However, this property 

does not exist in real-world networks, e.g. the Internet. Network transmission 

delays are often relatively uniform but can, as a result of network congestion or 

failure, become infinitely large. As such, PIM can not be proven to solve the 

missed interaction problem over the Internet, but can be said to alleviate it. 

93 



Chapter 4 

System Implementation 

This chapter describes the design and development of the PIM system. Prior to 

the description of the PIM system implementation, some related development 

issues are introduced. The interaction models, which include the server/server 

and the server/node models, are introduced to describe the message exchange in 

the PIM system; the development technologies, which include descriptions of 

Java and CORBA are discussed. Following, the design and implementation of a 

PIM server, which is constructed from five components (Message Service 

Servant, Message Buffer Unit, Thread Pool Processing Unit, PIM Processing 

Unit, Message Supplier), and the system exceptions are described in detail. 

4.1 Development Issues 

The PIM system, which is an experimental system, adopts the de-centralised 

server communication model, middleware to satisfy the networking 

requirements and predictive interest management to improve bandwidth 

utilisation and alleviate the missed interaction problem. In this section, the de­

centralised server communication model is further decomposed into two 

interaction models: the server/server and server/node interaction models. The 

development technologies applied in the PIM system (Java as the system 

94 



implementation language and CORBA as the middleware to handle the 

networking issues) are discussed. 

4.1.1 Interaction Models 

In the de-centralised server communication model, which was discussed in 

Chapter 2, the server that a node is subscribed to, and the location of nodes and 

servers, is not important. Nodes could subscribe to the logically or 

geographically closest server. 

• Logical Server 

A server, implemented as a logical server, controls a certain region in a 

virtual world but may be located physically far away from the nodes 

sharing its region of the virtual world. When an object is detected inside 

a server's region, the node, to which the object belongs, should subscribe 

to that server regardless of the physical distance between the server and 

the node. 

• Physical server 

A server, implemented as the physical server, should be subscribed to by 

nodes for which it is the geographically closest server. For example, 

nodes locate in the UK should subscribed to a UK server; nodes locate in 

America should subscribed to an American server. This kind of server is 

responsible for the whole virtual world, rather than a specific region in a 

DVE. It updates the status of objects which belong to nodes subscribed 

to it, and disseminate these objects' information to the other DVE 

servers. 

The choice of server implementation depends on the system design and purpose. 

This decision may involve a number of application-dependent criteria. However, 

in both case, servers are responsible for receiving messages from and sending 

the relevant messages to their subscribed nodes. 

95 



The PIM system adopts the physical server model. The reason for this is that 

dynamic subscription (grouping) is time consuming and, therefore, it might be 

impractical to implement logical server for distributed virtual environments with 

variable speed objects. To clarify, if a server is implemented as a logical server, 

the virtual world is divided into different regions or the virtual world is 

constructed from a set of disjoint smaller virtual worlds, termed sub-worlds. 

Each server is responsible for the interaction between objects inside the same 

region/sub-world. In this case, nodes which control objects in a DVE can be 

considered as a member of a group which share the same environment. Because 

objects can leave and join a region/sub-world, the membership of that 

region/sub-world may change frequently. The delay associated with leaving, 

joining and informing other nodes in the same region/sub-world makes the 

logical server implementation unsuitable to solve the missed interaction 

problem. Conversely, in the physical server implementation, the membership of 

nodes in a server remains consistent unless existing nodes unsubscribe from, or 

new nodes subscribe to the server. This property makes the physical server 

implementation an appropriate approach for the PIM system. 

Based on the physical server implementation, two interaction models are 

provided in the PIM system: the server/node and server/server interaction 

models. In the server/node interaction model, messages from nodes are sent to 

their server at a constant time interval; the required messages are transmitted 

from a server to its subscribed nodes at an appropriate frequency. In the 

server/server interaction model, servers are required to subscribe to each other 

when they join the PIM system via a web server, which acts as a naming service 

server providing the other registered servers' network information, e.g. IP 

address, upon request. Servers can subscribe to and unsubscribe from each other 

during the lifetime of a DVE. Each server forwards its subscribed nodes' 

messages to the other servers whose subscribed nodes are interested in these 

96 



messages. For clarification, the server/node interaction model and the 

server/server interaction model are presented in Figure 4.1. 

Figure 4.1 Server/Server and ServerlNode Interaction Models 

Ex-Sj= an existing server i, N-S=a joining server 

The server/server interaction model: 

- A new server joins the existing PIM system: 

1. N-S server registers itself to the web server and requests the existing 

servers' network information. 

2. N-S server subscribes to the other existing servers. In response, the 

existing servers subscribe to N-S server. 

- Internal servers message exchange: 

3. Messages with fixed/variable frequency exchanged between existing 

servers residing in the same network. 

4. Messages with fixed/variable frequency exchanged between existing 

servers residing in different networks. 

The server/node interaction model: 

5. Message exchange between nodes and their subscribed server. 

97 



4.1.2 Development Technologies 

This section justifies the choice of Java as the implementation language and 

CORBA as the middleware to handle networking issues. 

Java 

Java was chosen as the implementation language of the PIM system. According 

to [Reilly99], Java is a revolutionary language which combines object-oriented 

programming, portability, garbage collection and is specially designed for 

networking and the Internet. 

• Object-oriented language 

Programming languages can be divided into two types: procedural 

languages and object-oriented languages. In procedural languages, like C 

and Pascal, each procedure is a block of code which can have data 

passed to it and can return results. In this case, data and code are 

separated. This feature of the procedural languages makes it hard for the 

debugger to track down which procedure has gone wrong. Java is an 

object-oriented programming language, in which each object contains 

both data (variables) and code (methods). Each object is an instance of a 

class, which defines the variables and methods the object contains. 

Compared with procedural languages, putting data and code in the same 

class facilitates abstraction making it easier to implement and debug 

programs. 

• Portability 

Many programming language, like C++ and C, are compiled into 

platform-specific machine language. Therefore, the source code of the 

same program is required to be re-compiled for each individual platform, 

often requiring platform-specific alterations to the code. Although the 

98 



execution speed of such programs is fast, this property restricts the 

portability of these programming languages. This also raises questions of 

the future use of such applications, as many modem operating systems 

struggle to execute legacy applications without the use of emulators. 

Conversely, interpreted programming languages are not compiled at all. 

Instead, they are evaluated by a run-time environment in real-time during 

execution. Programs in such languages are generally slower than 

compiled programs, but they are truly platform independent. In Java, the 

source code of a program is compiled into platform-neutral virtual 

machine code, called Java bytecode. Running on an interpreter, called 

the Java Virtual Machine (NM), Java can convert the bytecode into 

machine code directly. Unlike purely interpreted languages, Java 

bytecode can be efficiently converted into machine instructions in real­

time, providing performance faster than purely interpreted languages. 

Therefore, provided the target platform supports the JVM, the source 

code can be compiled once and run anywhere. Java is an evolving 

language, in which a number of new features are added in each new 

release. However, Java is not arbitrarily extended and backwards 

compatibility is guaranteed, as part of the JVM specification, such that 

Java programs written to previous Java specifications must be able to 

execute correctly on later JVM release. This property makes Java 

suitable for heterogeneous distributed network environments. 

• Garbage collection 

In some programming languages, like C++ and C, the programmer is 

required to manage the memory usage of the program. Programmers are 

required to allocate and de-allocate memory for data and objects 

manually. When programmers forget to de-allocate memory, the amount 

of free memory available will decrease. This problem is called a memory 

leak. In Java, the JVM handles the memory allocation and de-allocation 

for the programmer, called automatic garbage collection. This frees the 

99 



programmer from the concern of avoiding memory leaks, thus allowing 

the developers to concentrate more on high-level issues. 

• Networking and Internet support 

Java was designed from the ground-up to support networking. The Java 

API provides extensive network support, from sockets and IP addresses, 

to URLs and HTTP. Compared with C++ and C, it's extremely easy to 

write network applications in Java. Java also includes support for more 

high-level network programming, such as remote-method invocation 

(RMI), CORBA and Jini. These technologies make Java an attractive 

choice for large-scale distributed systems. 

CORBA 

In Chapter 2, different technologies and DVE systems have been briefly 

discussed. A number of existing DVEs have utilised IP multicasting as a basis of 

their message exchange protocols. The reason for this is that multicasting can 

potentially reduce the number of messages transmitted through an underlying 

network. In a DVE, audio and video messages consume a massive amount of 

bandwidth. Multicast can lower the bandwidth consumption, as well as the 

latency of message transmission, by reducing the number of duplicate messages 

transmitted. Therefore, it is suitable for large-volume message exchange in a 

rich DVE. However, unlike unicast, multicast is not completely supported in 

Wide Area Networks (WAN) or over the Internet; routers which do not support 

multicast may drop multicast packets. In order to solve this problem, multicast 

packets can be wrapped inside unicast packets. When a router, which does not 

support multicast, receives one of these wrapped multicast packets, it can 

forward these packets to a router which supports multicast or understands this 

packet format, e.g. MBONE [Savetz96]. In addition, multicasting only offers a 

limited number of unique multicast addresses, the number of addresses available 

to a particular DVE application may not be sufficient to fulfil the networking 

100 



requirements of an interest management schema. When multicasting is 

implemented within a LAN or LAN segment, the decision as to whether a 

machine should receive a message is made by the recipient only; no knowledge 

of group membership is required for the sender or any routing hardware. 

However, when multicasting is implemented over a more complex network, 

such as a WAN or the Internet, a message may need to travel through a number 

of intermediate networks and routers in order to reach its recipients. In this case, 

although the sender still does not require any knowledge of its message's 

recipients, any routing hardware responsible for delivering the message must 

know which networks to forward the message to. With this in mind, there may 

be a substantial delay between a node deciding to join or leave a multicast group 

and this change in group membership filtering through all the routing hardware 

responsible for the delivery of messages. As such, multicasting may not be 

suitable for highly-dynamic communication groups over the Internet. 

The Common Object Request Broker Architecture (CORBA) shields the 

application developer from the complexity of networking issues so that 

developers can concentrate on application issues. The underlying CORBA 

protocol, the Internet Inter-ORB Protocol (HOP), which is built on top of 

TCPIIP, provides the unicast network communication to guarantee full support 

over WANs or the Internet. Furthermore, the PIM system is designed to solve 

the missed interaction problem in DVEs with highly variable speed objects. The 

PIM system introduces extra messages (APUMocal) to notify the relevant nodes 

when their objects' auras will intersect so that the missed interaction problem 

can be alleviated. However, due to the overhead of additional messages, the 

scalability in the PIM system may be influenced. Therefore, the PIM system is 

purely an experimental system to test the scalability and message drop rate in 

the system. No audio or video messages are transmitted in this system. Hence, 

unicast is suitable for the implementation of the PIM system. In addition, to 

simplify the PIM system, each node hosts only one object. As Java is the most 

appropriate programming language for distributed systems, JacORB, a Java-

101 



based open source CORBA ORB, was adopted to fulfil the PlM system 

networking requirement. 

4.2 System Design and Implementation 

The PlM system implements predictive interest management as its core 

algorithm to filter the irrelevant messages exchanged between nodes and 

alleviate the missed interaction. Each server in the PlM system implements the 

message dissemination layer and the network layer in the DVE architecture; 

each node simply sends and receives message from the server it is subscribed to. 

Therefore, there is no description of the PlM nodes implementation in this 

chapter. 

Before further describing the PlM system, some terminologies must be defined: 

• Local Server: The physically closest PlM server to a given node; 

• Local nodes: Nodes subscribed to a given server; 

• Local Object: An object participating in the DVE and hosted on a given 

node; 

• Remote Server: Another PlM server, with respect to a given server; 

• Remote nodes: Nodes subscribed to a remote server; 

• Remote Object: An object participating in the DVE and hosted on a 

remote node; 

• Object reference: A reference to an instance of a class in an object­

oriented programming language, such as Java; 

• PUM subscriptions: The PUM subscriptions of a node are the set of 

nodes whose object's auras intersect the aura of this node's object; 

• APUMlocal subscriptions: The APUMJocal subscriptions of a node are the 

set of nodes whose object's PAIs, but not auras, intersect the PAl of this 

node's object. 

102 



Servers and nodes are required to understand the fonnat of the messages they 

send to each other. A node must register itself with, and obtain a node ID from, 

its local server. After obtaining the node ID, this node is able to view the world 

infonnation in the local server and decide which world it wants to join. If the 

node has created a new virtual world, it can register this virtual world with the 

local server. If other nodes are interested in this virtual world, they can register 

themselves to this virtual world. After deciding the virtual world, a node 

registers its object to its local server and specifies the world in which the object 

should be registered within. If the registration is successful, the server sends the 

objects' infonnation to the other remote servers and a confinnation message to 

that node. When a node tries to un-register its object from a world, it is required 

to send an object removal indication to the server. If the node wants to leave the 

DVE completely, it must send a node un-subscription message to its local 

server. 

In order to describe the design and implementation of the PIM system, an IDL 

file is discussed to introduce the messages types exchanged between servers and 

between a server and a node. Following, the implementation of a PIM server and 

the exceptions thrown in the system are discussed in detail. 

4.2.1 IDL File 

As mentioned in Chapter 2, CORBA, through the use of the Interface Definition 

Language (lDL), allows the developer to define an interface to an object in a 

programming language-independent manner. Modules and interface are naming 

scopes, which allow the developer to define the structure and operations of a 

distributed application. A module in IDL maps to a package in Java and an 

interface in IDL maps to a Java class. The set of operations offered by an 

interface can be extended by declaring a new interface that inherits from the 

existing one. 

103 



An IDL file, called messageservice.idl (see Appendix A), is defined to specify 

the "contract" between the servers and the "contract" between nodes and their 

local server. When referring to module names, the Java naming convention for 

packages is utilised, wherein a module hierarchy is defined such that "ms.idl" 

means that the module idl exists within the module ms. Inside the module 

"ms.idl", an interface and three modules are specified in the messageservice.idl. 

The interface "uti!" defines the message types exchanged within the PIM 

system. The module "exceptions" defines the possible exceptions which can be 

thrown by the server and caught by the node. The module "clients" defines an 

interface called MessageServiceUser, which inherits from the interface "uti!" 

and declares the operations which can be invoked by the server on a node. The 

module "servers" defines an interface called MessageService, which inherits 

from the interface "uti!" and declares the operations which can be invoked by 

the nodes and remote servers on a server. 

4.2.2 PIM Server Structure and Implementation 

A PIM server is constructed from five components: the Message Service 

Servant, the Message Buffer Unit, the Thread Pool Processing Unit, the PIM 

Processing Unit and the Message Supplier. The arrows in Figure 4.2 represent 

the flow of data from one component to another. The Message Service Servant 

provides the CORBA interface for the PIM system so that the DVE participants 

(local nodes/remote servers) can invoke the operations specified in the IDL. A 

local node and a remote server are represented as Nand S respectively in Figure 

4.2; the node N; and remote server Sk represent a local node with ID i and a 

remote server with ID k respectively. In addition, the Message Service Servant 

receives messages from either the local nodes or remote servers and directs them 

into the relevant inward message buffers in the Message Buffer Unit. The 

inward message buffers of the Message Buffer Unit store not only PUMIAPUM 

messages directed by the Message Service Servant, but also the APUMocal 

subscriptions determined by the PIMProcessing Unit. After the Message Buffer 

104 



Unit receives PUMIAPUM messages, it invokes the Thread Pool Processing 

Unit to construct a Request (message) for further processing. Once the Request 

from the Thread Pool Processing Unit is received by the PIMProcessing Unit, it 

processes the Request based on the criteria specified in predictive interest 

management in Chapter 3. According to the result, the PIM Processing Unit 

updates both the APUMtocal subscription of the corresponding outward message 

buffers in the Message Buffer Unit and the message delivery frequency in the 

Message Supplier. Finally, the Message Supplier will deliver the related 

messages in the outward buffers to the local nodes and remote servers. In Figure 

4.2, the Subscribe Channel and the Publish Channel are message channels which 

allow internal servers to exchange messages. The admin channel allows servers 

to exchange APUMadmin at the lowest frequency; the local channel allows servers 

to exchange APUMtocal and relevant PUM messages. 

lncImdul1nodt', 
obj.ct upckt .. &: 
inWe1nptrati.on -. 

Objem' updlUi 
fhln.eU"lw.m ..... 

The PIM System 

Mess. Strnc8 SanDt 
(CORBA Intotf.,o) 

Outward meuages buffeR 

1nter'ttYlfnlllOtt 
obj.ct.' updW &: 
iDitiainliltntion ...... 

['~~~',~;~'_~~;_~;;!'J ('1\ 
~ Admin Channel "'~----Ilf---'" 

"<~ 
1m.,ernt'locll. 
obj.cU·upttUt& 
iniIW nptnlioD 
coa8rlMlion 

Figure 4.2 PIMSystem Server Structure 

4.2.2.1 Message Service Servant 

Each node must register its objects to a server before it joins a DVE. This 

process is represented by attaining the server's reference and invoking the 

subscription methods in the IDL file. When the Message Service Servant, which 

handles remote method invocation, receives a subscription message from a 

node's object, it will parse the information into the corresponding message 

105 

COReA 
tnt.dt.ct 



buffers and instructs the message buffers to construct an enter request, termed 

Renter. The server will then instruct the Message Supplier to send a new object 

notification to the other servers. This is a reliable, high-priority message, which 

is sent immediately, rather than being buffered and sent at a fixed time interval. 

This ensures that the entrance of a new object into the virtual world is 

recognised by all servers in the DVE in a timely fashion. If an APUMadmin is 

received containing a message about a new object before the corresponding new 

object notification message is received, then any messages regarding this new 

object will be discarded by the receiving server. As such, it is necessary to 

ensure that new object notification is sent as soon as possible to avoid a missed 

interaction between the new and existing objects. 

In the PIM system, eight message types are defined in the messageservice.idl for 

the purpose of assisting message exchange. Table 4.1 outlines the name and 

contents of each message types. Among these message types, the asterisk 

message types are assistant message types, which are not transmitted in the 

underlying network directly. Instead, these message types are parts of other 

message types. Furthermore, as can be seen from the contents in the table, the 

aggregation message includes an array of other message types; the number of 

data packets being sent in the underlying network is reduced. This is beneficial 

because each packet must contain a header storing, for example in TCPIIP, the 

sender and receiver's network address and port number, CRCs (for error­

checking), acknowledgements and the length of data being transmitted. 

Additionally, if a packet is smaller than the minimum size required for a valid 

frame (a packet wrapped inside a header, including start and stop bits added for 

network hardware transmission), it may be necessary to add data to the frame to 

ensure it is the minimum size, termed "padding". With these considerations, the 

utilization of larger packet-sizes uses the available network bandwidth more 

efficiently than sending mUltiple small packets. 

106 



Message Type Contents 

(I)Sing/ePumMessage(SPM) Node_id, objecUd, world_id and position 

(2)Sing/eApumMessage(SAM) Ms_id, world_id, node_id, objecUd, pia, aura and position 

(3)AggregaledPumMessage(APM) * An array of SinglePurnMessage 

(4)AggregaledApumMessage(AAM) * An array of SingleApurnMessage 

(5)MserviceToUserPumMessage(MTUPM) * Msjd, worldjd and Sing\ePurnMessage 

(6)AggregaledMTUPumMessage(AMTUPM) An array of MserviceToUserPumMessage 

(7)MSExchangeAdminApumMessage(MSEAAM) Ms_id, world_id, maxSupplierld and an array of AggregatedApumMessage 

(8)MSExchangePumMessage(MSEPM) Ms_id, world_id, maxSupplierld and AggregatedPurnMessage 

Table 4.1 Message Type 

Messages Sent from Node to Server 

Each node must send its hosted object's messages, called SPM (PUM), to its 

registered server. When the server receives a SPM from a node, it will construct 

a SAM (APUMocad on behalf of that node. The frequency of delivering the SAM 

on the local channel depends on the intersection degree of the related objects. 

Each PIM server is responsible for transmitting PUM messages from its local 

objects to the other PIM servers, provided the remote server hosts an object 

interested in the PUM messages. 

Messages Sent from Server to Server 

The MSEPM is designed for exchanging PUM messages of the registered 

objects to the other servers in the PIM system. The main component of MSEPM 

is the APM, which combines a number of SPMs into one. The length of the APM 

is not fixed to the number of objects registered to the server, therefore further 

reducing bandwidth usage. If the server has not received a new SP M from a 

node before it constructs a new MSEPM, the server will continue constructing 

the new MSEPM, but excluding this object's information, rather than waiting for 

the arrival of an up-to-date SPM from that node. This not only helps to reduce 

the time taken to construct the MSEP M, but also helps to save the network 

bandwidth. In addition to the MSEP M, servers exchange MSEAAMs at a lower 

frequency. The MSEAAM is mainly composed of AAMs, which are an array of 

107 



SAMs. However, contrary to the APM, the length of an AAM is fixed at the 

number of local objects registered on the corresponding PIM server. 

Messages sent from Server to Node 

When a server receives SPMs from its local nodes or MSEPMs from the remote 

servers, it constructs an AMTUPM and sends it to a local node. An AMTUPM is 

composed of an array of MTUPMs, which are constructed using SPMs. The size 

of an AMTUPM is flexible and depends on the PUM subscriptions of a node. 

4.2.2.2 Message Buffer Unit 

In order to uniquely identify an object, the PIM system uses an object ID which 

is composed of three parts: an object ID issued by hosted node, a node ID issued 

by the local server and a server ID, which was allocated by the web server. 

Conceptually, the Message Buffer Unit contains two components: inward 

buffers and outward buffers. However, in the actual implementation, the inward 

and outward buffers are combined. Each server has buffers to store PUMs 

related to its local objects. Nj in Figure 4.3 (a) represents the PUM message 

buffers of a local node with ID i. In addition to the PUM message buffers, each 

local node is capable of converting the information contained in PUMs to 

construct an APUMtocal. 

Each server has message buffers for both itself and the remote servers. A 

diagram of a server's message buffers is represented in Figure 4.3 (b). MSj 

represents the message buffers of a server with ID i. Each MSj has a set of PUM 

buffers, APUM buffers and NodeRecord buffers. MSj can represent either the 

local server's message buffers or a remote server's message buffers: 

108 



• If MSi represents the message buffers of the local server, the PUMbuffer 

is an empty set. The reason for this is that the PUM messages are already 

stored in the Nodes' message buffers; it is unnecessary to waste memory 

to repeatedly store PUM messages. APUM buffers are used to store 

APUMtocal messages constructed from the PUM messages, which are 

stored in the nodes message buffers. 

• If MSi represents the message buffers of a remote server. Both PUM and 

APUM buffers are intended to store the latest PUM and APUMtocal sent 

by the remote server with ID i, respectively. 

Figure 4.3 (c) depicts all the message buffers in a server. 

APUMadmin are constructed from an array of APUMtocal. Therefore, it is 

unnecessary to have separate message buffers to store APUMadmin. An 

APUMadmin can be constructed from the available APUMtocal messages in the 

NodesRecord buffers. Similarly, APUMtocal messages can be extracted from an 

APUMadmin message. 

Regardless of the representation of MSi, the NodesRecord buffers are used to 

store the APUMtocal subscriptions of each node subscribed to MSi. The purpose 

of the NodesRecord message buffers is to discard APUMtocal messages from 

being processed in the PIMProcessing Unit when: 

• An APUMadmin containing information about a new object is received 

before the new object's entrance notification. In this case, a consistency 

issue may occur. To clarify, an object, On, belongs to a node which 

subscribed to a server with ID 0, say So. When On registers with So, a 

new object entrance notification will be issued to all servers in the DVE, 

includes itself. The reason for issuing the new object entrance 

notification to So is to introduce a delay in processing this entrance 

notification to compensate for the network delay of in transmitting this 

entrance notification to the other servers. In So, subsequent APUMadmin 

109 



messages disseminated to other servers might contain this new object's 

positional update information. However, due to network and processing 

delays, some remote servers may not have received and processed the 

new object's entrance notification before receiving an APUMadmin 

message including the state of this new object. If no mechanism to 

prevent the new object's information from being processed, an 

inconsistency will occur. 

• An APUMadmin containing information about an object which no local 

objects are interested in is received. 

Node Menage Buffer. 

lIiINtN. ~~z NtNtoz l\Iol\lo.z N, 
PUM APUM Node.Record 

PUM .--- r-- ~~~. ~~ .. ~~. ~~-~ N·D N·D N·I I I I I I 
NID N/D NIl I I I I I 
N·D N·D N·I I I I I I PIMServerM ... age Buffo" 

MS. MS, MS. MS • . . . . . 
NID NID Nil I I I I I ~~~ ~ . 

(8) (b) (C) 

Figure 4.3 Message Buffers 

4.2.2.3 Thread Pool Processing Unit 

The previous section introduced two types of message buffers (NIMSi) in the 

PIM server and explained the source of these messages. The Thread Pool 

Processing Unit acts as the first stage in consuming these messages. The reason 

for implementing thread pools is to avoid the server blocking, while restricting 

the number of threads competing for processing resources. To clarify, the PIM 

server receives APUMadmin messages from other servers in first in first out 

(FIFO) order; if there was no thread pool implemented, the server would be 

required to receive and process the first APUMadmin before it could consume 

further APUMadmin messages; the server would be blocked until the processing 

110 



has finished. This would have a detrimental effect on system responsiveness and 

therefore on the throughput rate of messages. To avoid the server blocking until 

message processing has completed, multiple threads can be dispatched to deal 

with message processing. This allows the main server thread to continue 

processing without having to wait for message processing to finish. However, if 

a new thread is created to deal with each received message, this could cause a 

large number of threads being created and deleted during run-time. However, 

there is a cost associated with creating and deleting a thread, which may slow 

down the server if a large number of threads are created and deleted in rapid 

succession. Additionally, if there are a very large number of threads competing 

for a processing resource, each thread will spend a very large proportion of time 

waiting to access the processor(s). A solution to this is to use a thread pool: a 

fixed number of threads to perform a set of computations. 

Enter Thread Pool ApU1n.!ifl'in Thread Pool ApumlOClll Thread Pool 

Figure 4.4 Thread Pool Processing Unit 

In the PIM system, three different thread pools are implemented to construct 

three types of messages to avoid the blocking problem: 

• The Enter Thread Pool 

• The APUMadmin Thread Pool 

• The APUMlocal Thread Pool 

The Enter Thread Pool is designed to construct an Enter Request (Renter) when a 

local/remote object's information is received by the server for the first time. The 

Enter Thread Pool can be triggered to construct a Renter message by two entities: 

N; and MS;(O$.i5n). When a server receives a notification of local/remote object 

111 



joining a DVE, signals are sent from Ni to the the Enter Thread Pool to indicate 

the arrival of joining local objects; otherwise, signals are sent from MSi to the 

Enter Thread Pool to trigger the creation of RenIer. The APUMadmin Thread Pool is 

designed to handle APUMadmin messages. When MSi receives an APUMadmin, it 

will be extracted to an array of APUMocal. These APUMocal messages will 

overwrite the existing APUM message buffer values and trigger the APUMadmin 

Thread Pool to construct an APUMadmin Request (Radmin). The APUMocal Thread 

Pool is required to create an APUMtocal Request (Rlocal) when MSi receives an 

APUMtocal. The corresponding APUM message buffer value is overwritten. 

Although these three thread pools have their own attributes and differing 

functionalities, due to the similarity of the thread pools, e.g. fixed numbers of 

threads, waking up by events and putting back to the pool after accomplishing a 

task, it is good programming practice to use the same structure to implement all 

three thread pools. An interface, called Request, is defined and passed as a 

parameter to the constructor of each thread pool. RenIer, Radmin and Rlocal inherit 

from Request but provide their own properties. In this case, passing an argument 

to indicate the types (Enter, Apumadmin and Apumlocal) allows three thread pools 

to be created using the same source code. 

In addition to thread pool implementation, it is necessary to consider the 

situation where there are no threads available when a new task arrives. Under 

these circumstances, the thread pool may choose to discard or accept the new 

task. If the task is not considered important by the system and it is received at a 

relatively high frequency, the discard policy can be used to speed up processing; 

otherwise, an accept policy should be adopted to guarantee the completion of 

task. There are two solutions that can be utilised to implement the accept policy: 

• Block the calling process, wait for one of the threads to become available 

and perform the task, then release the calling process. 

• Put the task into a waiting queue, allow the calling process to continue, 

and then perform the task when a thread becomes available. 

112 



The second solution is more efficient than the first, as it does not result in the 

message receiving thread blocking until a processing thread becomes available. 

Therefore, in the thread pool processing unit, a waiting queue is utilised to 

accept tasks and place them into a buffer when all threads are busy. 

4.2.2.4 PIM Processing Unit 

As can be seen from the Figure 4.5, Request is designed to invoke the related 

operations in the PIM processing unit depending on the Request type delivered 

by the thread pool processing unit. The enter table is used to store the basic 

information of joining nodes (e.g. whether they are either local nodes or remote 

nodes). The LocalNode list, used to store a set of LocalNode objects, is 

designed to assist the subscription engine to perform the subscription/un­

subscription operations. Each LocalNode stores three different lists (PUM, 

APUMtocal and APUMadmin) to identify its subscription status with respect to 

other nodes, which will be discussed in detail later. The arbiter is a mechanism 

designed to determine the subscription status of two nodes depending on their 

object's intersection degree. Finally, the subscription engine performs the 

subscription and un-subscription operations between nodes according to the 

result produced by the arbiter. 

PIM 

r..!l 

= Subscription Unsubscription 
~ I Rc.ter ~ I 

C'" 
En 'ler Table !oil 

("I I APUMIIiflIIiIl I I APUMIIiflIIiIl I ""I 
Q 

~ r- oS· 
Ii I Rlocal L ocaIN 0 de List t:t. 

I I I I 0 !oil 
~ APUMs.:.c/JI APUMs.:.c/JI " I~ rl Arbi'ler r ~ I I I I ~ FUM FUM 0;9. 
~ 
CD 

Figure 4.5 PIM Processing Unit 

113 



Enter Table 

In the PIM Processing Unit, an enter table is utilised to record the number of 

nodes subscribed to each server. The enter table is implemented using a hashing 

function, with each server's message service ID acting as a key to uniquely 

identify a list. Each list simply includes the IDs of the nodes subscribed to that 

server. When the PIM processing unit receives a RenIer, it is required to 

determine the subscription type between the joining node and the relevant 

existing nodes. This is achieved by iterating through the corresponding lists in 

the enter table. Each relevant node is passed, along with the joining node, to the 

arbiter, which will return the SUbscription type of this pair of nodes. If the RenIer 

is issued by a local node, the iteration is required to go through all lists in the 

enter table. However, if the RenIer is issued by a remote node, only the list with 

the local server message service ID is iterated through. In both cases, a 

NodesReeord message buffer is created in the corresponding MSi message 

buffers to record the APUM subscription of that node. 

LocalNode List 

The Loea/Node list stores a set of Java objects, called Loea/Node. When the 

PIM processing unit receives a RenIer, if the Renter is issued by a local node, a 

Loea/Node object corresponding with this local node is created. Three lists 

(PUM, APUMocal and APUMadmin) are initialised in a Loea/Node to assist the 

subscription engine in handling the subscription/un-subscription requirements. 

Each list stores a set of Java objects called InterestNode, which are created by 

the subscription engine. Each InterestNode corresponds to a node in a DVE and 

has a flag to indicate the subscription type between the joining local node and its 

related node. If the flag indicates the subscription type in the InterestNode is 

PUM, this InterestNode will be inserted into the PUM List; if the flag is 

APUMocal, this InterestNode will be inserted into APUMocallist; otherwise this 

InterestNode will be inserted into the APUMadmin list. Unlike the PUM list and 

APUMadmin list, the APUMocal list is a minimum-oriented priority queue. The 

114 



reason for using a minimum-oriented priority queue is to provide the APUMtocal 

message supplier fast access to the highest APUMtocal frequency. 

Arbiter 

When the arbiter receives a Request, it utilises predictive interest management to 

determine the subscription of objects. This can be expressed by the following 

pseudo-code: 

SubscriptionType typeDetermine(Obj,. Obj,. Time(Pum» 

SUM (R_Pai) = Radius (PIA(obj,» + Radius(PIA(obj,»; 

SUM (R_Aura) = Radius (AURA(obj,» + Radius(AURA(obj,»; 

SUM(dis) = distance (POS (obj,). POS (obj,»; 

Time (AUBV) = «SUM(dis) - SUM(R_Aura»/(SUM(R_Pai) - SUM(R_Aura») * FUTURE_TIME; 

(Formula 3.1) 

if (SUM(dis) > SUM(R_Pai» 

return Apumadmln; 

else if (SUM(dis) ~ SUM(R_Pai) && SUM(dis) > SUM(R_Aura» 

if (Time (AUBV) ;" Time (Apum.dmio) ) 

return ApUmadmin; 

else if (Time (AUBV) < Time (Apum.dmio) && Time (AUBV) > Time (Pum» 

return APUMlocal; 

else 

return PUM; 

else 

return PUM; 

There are three parameters passed to the arbiter: the reference of the registrar 

object, the reference of the registrant object and the PUM delivery frequency of 

the registrar object. The registrar object must be a local object; the registrant 

object may be either local or remote. The reason for that is that the PIM server is 

only responsible for delivering its local objects' up-to-date information to 

115 



objects interested in it. The responsibility for delivering any remote objects' 

messages lies with its respective server. 

The LocalNode, corresponding to a local node, can be used to record the 

subscriptions of different message types. The purpose of the arbiter is to 

determine the Subscription Type (ST), which can be obtained by calculating the 

following four values related to the registrar and registrant objects: the sum of 

their PAIs' radii; the sum of their auras' radii; the distance between them; and 

their Approximate Upper Bound Value (AUBV). According to PlM, three cases 

are required to be considered: 

• The distance between the objects is larger than the sum of their PAls' 

radii; the ST is Apumadmin. 

• The distance between the objects is greater than the sum of their auras' 

radii but less than or equal to the sum of their PAls' radii. In this case, 

the ST depends on the A UB V. If the A UB V is larger than or equal to the 

Apumadmin exchange frequency, the ST is Apumadmin; if the A UB V is 

greater than the registrar object's PUM delivery rate but less than the 

Apumadmin exchange frequency, the ST is Apumlocal; otherwise, the ST is 

PUM 

• The distance between the objects is less than the sum of their auras' 

radii; the ST is PUM. 

Subscription Engine 

The subscription engine is composed of two parts: subscription component and 

un-subscription component. When the arbiter obtains the ST, it will pass the ST 

along with the registrar object and registrant object to the subscription engine. 

Based on this information, the subscription engine performs the subscription and 

un-subscription of different message types between these objects. The 

subscription/un-subscription components co-operate with the message suppliers. 

The details of this co-operation are discussed in the message suppliers section. 

116 



The subscription/un-subscription of message type is based on the co-operation 

between the subscription engine and the registrar object's related LoealNode 

object. To clarify, if this is the first time the arbiter has passed the ST of the 

registrar and registrant objects, the subscription component in the subscription 

engine will add the registrant object into the corresponding list in the registrar 

object's LoealNode depending on the ST between them. However, if these 

objects already have a subscription between one-another, the subscription engine 

may be required to instruct the subscription and un-subscription components to 

adjust the subscription between the registrar and registrant objects depending on 

the value of ST. A new object, termed InterestNode, is defined to represent the 

registrant object. Each InterestNode object contains a flag to indicate the 

message type the registrant object should receive from the registrar object. The 

purpose of this is to ensure the required sUbscriptions and un-subscriptions occur 

in all related message suppliers. For example, the arbiter passes a pair of objects, 

obia and obh, for the first time to the sUbscription engine and the ST is PUM 

The subscription engine will create an InterestNode corresponding with obib and 

set its message type flag to be PUM Subsequently, it will put the InterestNode 

into the PUM list of the LoealNode corresponding to obia. Later, the arbiter 

passes the same registrar and registrant objects to the subscription engine. The 

subscription engine will compare the previous message type with the current 

message type. If both of the message types are the same, no sUbscription/un­

subscription will be performed. However, if the current message type differs 

from the previous one, which is now, for example, APUMocal, the subscription 

engine will instruct the un-subscription component to remove the corresponding 

InterestNode from the PUM list and un-register it from its related message 

suppliers. Then, the subscription component will insert the InterestNode into the 

APUMocallist and register it with the corresponding message supplier. 

In addition to the co-operation with LoealNode object, the subscription/un­

subscription components change the APUMocal subscriptions in the 

117 



NodesRecord buffers in the message buffers. This ensures that unnecessary 

messages are filtered by the servers thereby avoiding unnecessary processing. 

4.2.2.5 Message Supplier 

The final component of the PIM system is the message supplier, which is 

composed of the PUM message supplier, APUMocal message supplier and 

APUMadmin message supplier. Each message supplier delivers different types of 

messages at different frequencies. A detailed description of each message 

supplier is provided below: 

PUM message supplier 

The main function of the PUM message supplier is to deliver the relevant PUM 

messages to the local nodes and the remote servers in the PIM system. A list, 

called MS list, containing elements corresponding with all PIM servers in a DVE 

is defined in the PUM message supplier. The elements of this list are Java 

objects, called PumSupplier. PumSupplier stores a server's object reference and 

a list of LocalNode references, which were previously created within the PIM 

processing unit. Using a remote server's object reference, a local server can 

transmit the PUM messages to the remote servers. A thread is used in the PUM 

message supplier to iterate through the MS list to deliver the PUM messages to 

the corresponding server in turn. If the PumSupplier's object reference is the 

local server, rather than sending the PUM messages to itself, the PUM messages 

are sent to the local nodes. The PUM messages are delivered to the local node in 

an aggregation message, which combines the PUM-interested nodes' message 

into a single AggregatedMTUPumMessage, to optimise the network bandwidth 

usage. If a local node is not interested in any other nodes' PUM messages, no 

messages are sent to it. To achieve this, the PUM list stored in the LocalNode 

assists in filtering unnecessary message transmission. If the PumSupplier's 

object reference corresponds to a remote server, the list of LocalNode object 

ll8 



contains the local nodes which are interested in the remote server's local nodes. 

An AggregatedPUMMessage is created to transmit these PUM messages to the 

remote server. 

The frequency of delivering PUM messages to either local nodes or remote 

servers depends on the processing speed of the server. During the lifetime of the 

local server, the PUM message supplier runs in the background, waiting to 

deliver PUM messages, as they become available, to their corresponding 

nodes/remote servers. When the first PUM messages are received from the local 

nodes, the message service servant wakes the PUM message supplier, causing 

the PUM message delivery process to begin. PUM messages are delivered at 

high frequency, e.g. 3 messages per second. Therefore, if such a PIM server has 

one thousand local nodes, it must be capable of processing 3000 PUM messages 

per second. If these messages are delivered using a single thread, a substantial 

delay may exist between the time a message is received by a server and the time 

the PUM messages are delivered to their desired local nodes/remote servers. 

Therefore, a thread pool is used in the PUM message supplier to assist the PUM 

message delivery and reduce the delay imposed by the system processing. 

APUMlocal message supplier 

As described in Chapter 3, different local nodes have different APUMtocal 

exchange frequencies. One possible way to implement this is to create a thread 

for each local node and transmit the APUMtocal to the interested nodes at the 

corresponding highest AUBVfrequency. However, from an engineering point of 

view, it is impractical to design a DVE system which has thousands of threads 

competing for processing resource concurrently. Another possible 

implementation is to use a thread pool to check the highest AUBV frequency of 

each local node. If the time to transmit a local node's APUMtocal is due, the next 

available thread will deliver this APUMtocal to all its required recipients. 

However, as mentioned previously, there are already four thread pools in the 

PIM server: three thread pools in the thread pool processing unit and one in the 

119 



PUM message supplier. As APUMocal message delivery frequency is lower than 

PUM frequency, to reduce the multi-threading resource competition overhead, 

rather than having multiple threads, a single thread is used in the PIM server to 

deliver the APUMocal for all the local nodes. 

In order to enable a single thread to deliver the messages in a timely fashion, a 

minimum-oriented priority queue prioritised by time is implemented using an 

ordered list to store the highest A UB V frequency values for each node. Let S = 

{N/, N/, N/o, Ni}, where the superscript and subscript represent the highest 

AUBV frequency and the node 10 respectively. The highest AUBV frequency 

within S is 5 seconds. Therefore the highest-priority value in the minimum­

oriented priority queue corresponds to the highest A UB V frequency from S. The 

priority queue, P, for S would be: P= {N/, N/, N/. N/}, where the superscript 

represents the difference between the previous element's AUBV and the current 

element's AUBV, termed the displacement time value. The first element in the 

priority queue's displacement time value is an absolute value, rather than a 

displaced value. In this example, the APUMocal message supplier thread will 

check the first element in the list. If the value is 0, the APUMocal message 

supplier thread will deliver the APUMocal message to its corresponding nodes. 

The thread will then remove this element from the queue and re-insert it into the 

queue based on its current highest A UB V value. The thread will then check the 

first element, and repeat the process previously described. If the first element's 

displacement time value is greater than 0, the thread sleeps for the duration of 

the displacement time and then delivers the APUMocal to the relevant nodes. 

This avoids the delivery thread busy waiting and helps to ensure that the PIM 

system's performance is acceptable. 

The PIM system will re-evaluate the A UBV values of a node when messages are 

received. If the A UBV value of a node becomes more frequent, it is necessary to 

re-insert the node into the priority queue in the APUMocal message supplier to 

ensure that messages are transmitted frequently enough to alleviate the missed 

120 



interaction problem. If, however, the PIM system re-evaluates a node's AUBV 

value and determines that it has become less frequent, the node is not re-inserted 

into the priority queue straight away. This is because inserting into an ordered 

list priority queue is time consuming. Therefore, in order to enhance 

performance, rather than frequently modifying the priority queue, messages are 

sometimes transmitted sooner than is absolutely necessary. Once the message 

has been delivered, the most recent AUBV value is used to schedule the next 

delivery of the node's APUMtocal. 

APUMadmin message supplier 

As described in Chapter 3, compared with PUM and APUMtocal message 

transmission frequency, APUMadmin message transmission is the lowest 

frequency. This allows a single thread to be used in the APUMadmin message 

supplier to deliver the APUMadmin messages to all servers. The transmission 

frequency of APUMadmin messages is sufficiently low that a single delivery 

thread should not exacerbate the message delivery delay imposed by the PIM 

server. The APUMadmin message supplier thread iterates through a list of PIM 

servers' object references and delivers an MSExchangeAdminApumMessage to 

each server in a DVE at an application-defined constant rate. 

4.2.3 System Exceptions 

There are four network exceptions defined in the messageservice. idl file. 

Following is a list of these exceptions and the conditions in which they are 

thrown: 

• W orldN otExist 

i) A node tries to register its object to a non-existent world; 

ii) A node tries to remove a non existent world. 

• ObjectNotExist 

i) A node tries to remove an object which does not exist. 

121 



• PermissionDenied 

i) A node tries to remove a world which it did not create; 

ii) A node tries to remove an object which does not belonged to it. 

• SubscriptionExceeded 

In the PlM system, in order to guarantee the performance of each server, 

a maximum subscription limitation is set. When a node tries to register 

itself to a local server and the maximum node subscription limit has been 

reached in the local server: 

i) If there are no remote servers in a DVE, or the registration request is 

received before the remote servers have completed subscribing to the 

local server, a SubscriptionExceeded exception is thrown by the 

server. 

ii) If there are remote servers already in a DVE, it will redirect the 

registration requirement to one of the remote servers. If all other 

remote servers have reached the registration limit, a 

SubscriptionExceeded exception is thrown by the server. 

4.3 Summary 

This chapter described the PlM system's design and implementation. Prior to 

describing these issues, the interaction models and development technologies 

were discussed. The interaction models described the message exchange 

between servers (server/server) and between servers and nodes (server/node); 

the development technologies include Java as the programming language and 

CORBA as the middleware to handle networking issues. 

In the PlM system, each server is constructed from five components: the 

Message Service Servant, the Message Buffer Unit, the Thread Pool Processing 

Unit, the PlM Processing Unit and the Message Supplier. The Message Service 

122 



Servant provides a CORBA interface to enable the local nodes and remote 

servers to invoke the operation it defines. In addition, it receives requests from 

the local nodes and remote servers and passes them to the corresponding 

component. The Message Buffer Unit contains the node message buffer and 

PIM server message buffer, which act as inward and outward buffers. The 

Thread Pool Processing Unit constructs different types of Requests from the 

Message Buffer Unit to the PIM Processing Unit for further processing. The 

PIMProcessing Unit determines the objects' intersection degrees and, therefore, 

the message types exchanged between local nodes and other servers. The 

Message Supplier delivers the appropriate messages to the local nodes and 

servers. 

123 



Chapter 5 

Experimentation 

This chapter describes the PIM system experiments, which were conducted on a 

shared resource of approximately 20 machines on the same LAN segment. Each 

server is hosted on one of the machines and the nodes are distributed evenly 

between a set of non-server machines. Each node controls one object. 

Following, the world and object simulators are introduced, which simulate a 

virtual world and the movement of an object respectively. Finally, four different 

experiments are described, concentrating on four particular aspects: purpose, 

methods, results and analysis. 

5.1 Experimentation Environments 

The experiments are based on the GIGA cluster in the School of Computing 

Science at Newcastle University. The cluster has approximately 20 machines on 

the same LAN segment. Each machine has a 2GHz Intel Xeon processor 

(equivalent of 2x2GHz Pentium 4 processors with Hyper Threading) with 1GB 

RAM running Red Hat Linux 7.2. 

The PIM servers are located on different machines, termed server simulators, on 

the same LAN segment. Nodes may be co-located on different machines, called 

124 



client machines, which reside in the same LAN segment as the servers. By using 

the client machines, synthetic networking traffic for nodes is created. Each node 

hosts one object. Node numbers are increased by increments of 500 from 500 up 

to 6000, with measurements taken at each increment. The reason for that is that 

the numbers of nodes simultaneously handled by a server is limited by the 

processing power of the server. This will be discussed further in the later 

experiments. 

Nodes are distributed as evenly as possible between server machines and client 

machines. Each experiment's duration was one hour to ensure the initialisation 

overhead of each node did not skew the results. However, the machines used for 

this experiment are a shared resource. As such, the performance of the machines 

and the available network bandwidth can vary considerably depending on the 

number and nature of the processes running on each machine at the time each 

experiment was performed. 

5.2 Simulators 

Each node has two simulators: world simulator and object simulator. The world 

simulator is used to generate an appropriately-sized cubic world based on the 

predicted number of objects in the DVE. The object simulator is used to 

simulate the movement of each object. 

5.2.1 World Simulator 

As mentioned in Chapter 4, the PIM system is an experimental system to 

determine the scalability of the PIM approach, there are no audio or video 

messages transmitted. In order to simulate a skeleton DVE, in which the only 

information objects observe is the dimension of the world, a 

125 



WorldSizeGenerator is used to generate the size of a cubic world. The world 

size is generated based on the formulas below: 

Vauras = Nobjects * l§ * 1! * Radius(aura)3 

Formula 5.1 Calculating the Total Volume of Auras 

Formula 5.2 Calculating the World Size 

Vauras represents the total volume of all objects auras; Nobjects is the number of 

objects in the world; Radius(aura) is the radius of an aura, which is fixed at the 

world creation time and is set as 200 meters in all experiments, however, the 

radius of an aura can be altered depending on the requirements of the 

simulation; C is the coverage rate of the objects' auras in the world and it is set 

to 5%; W size is one of the dimension of a cubic world. In Figure 5.1, a three 

dimension cubic world is represented and each dimension is identical (Wxdim= 

Wydim= Wzdim = W size). 

Figure 5.1 Cubic World 

Through passing the same variables to the WorldSizeGenerator, each node's 

object's movements are simulated in the same three-dimensional (3D) world. 

126 



5.2.2 Object Simulator 

Each node has a program, called RandomWayPointWorld, to simulate the 

movement of its object. Five positions, called markers, are generated at world 

creation time for each node. Each object chooses a random marker and moves 

towards the marker for a random time, termed marker selection time (MSn. 

During the MST, the object's position is updated at the same frequency as the 

PUM messages sent from the node to its local server. Once the MST has been 

exceeded, the object selects another random marker, and continues the process. 

Each marker remains at a position for a random amount of time, called marker 

relocation time (MRn, and then relocates to a new position in the world. In 

order to determine the MST and the MRT, four values are used to calculate the 

minimum and maximum range of MST and MRT. As the x-, y- and z-dimensions 

are identical in a cubic world, the diagonal size of this world can be calculated 

as below: 

Sized1a = ~3W'.r:ze 

Formula 5.3 Calculating the Length of Diagonal 

MRTtower is the lower bound of the MRT and it is defined as the time taken for an 

object travelling at its maximum speed to cover a distance equal to half the 

diagonal size of the world. MRTupper is the upper bound of the MRT. Compared 

with the MRTtower, MRTupper is the time taken for an object to travel a distance 

equal to the full diagonal size of the world, at top speed. These two variables are 

represented as the formulas below: 

MR~pper = Sizedia/Speed(top) 

Formula 5.4 Calculating the Upper Bound and Lower Bound of the MRT 

127 



MRT is a random time selected within the range [MRTlowero MRTupper] and can be 

decided based on the formula below: 

MRT = CurrentTimeO + {MR7;ower +RandomO*{MR~pper -MR7;ower)) 

Formula 5.5 Calculating MRT 

In the Formula 5.5, CurrentTimeO is a function to get the current time of the 

system; RandomO returns a decimal number uniformly distributed between 0 

and 1. After the previous selected MRT has passed, the MRT is recalculated. The 

process will repeatedly occur during the lifetime of the object in the DVE. This 

selection ensures that the time a marker remains in a given position is a 

sufficient time, with respect to the size of the world, to avoid markers 

repositioning too frequently. If markers reposition very frequently, the object's 

movement towards the markers exhibits strange behaviour: when the objects are 

initialised, they are uniformly distributed within the virtual world but, as time 

passes, the majority of objects clump together in the centre of the world. This is 

because, once an objects reaches the centre of the world, the direction they 

travel in changes sufficiently rapidly that it is unlikely they will be able to move 

to the extremities of the world before they change direction. If an object is 

currently located at one of the extremities of the world, for example at the 

minimum x-coordinate of the world, it is far more likely that the marker will 

position itself at an x-coordinate greater than the object's current position, 

causing the object to move towards the middle of the world. However, once the 

object reaches the centre of the world, it is equally probable that the marker will 

be at either a smaller or larger x-coordinate than the object. In this case, the 

object will, on average, remain near the centre of the world; the object will move 

back and forth around the centre of the world. 

MST is chosen within the range of [ MSTlower, MSTupper]. MSTlower and MSTupper 

should be less than MRTlower and MRTupper respectively. Therefore, an object can 

128 



trace one marker and change to different marker before the marker relocation 

happen. MST/ower and MSTupper can be defined as below: 

Formula 5.6 Calculating the Upper Bound and Lower Bound of the MST 

Based on the calculated MST/ower and MSTupper, MST can be determined: 

MST = CurrentTimeO + (MS7;ower + RandomO * (MS~pper - MS7;ower)) 

Formula 5.7 Calculating the MST 

Similar to MRT, MST will dynamically change during the lifetime of the object 

in the DVE. 

In a 3D world, each object's position, velocity and acceleration are represented 

by 3D vectors. The pseudo-code below represents the position and velocity 

generation process. 

Vector(diff)= Position(marker)-Position(obj); 

Number dis_maker_obj ~ Magnitude(Vector(diff)); 

Normalise(Vector(diff)); 

Number dis_travelled = Magnitude(Velocity(obj)) • dt; 

Vector (vec_travelled) = Vector(diff) * dis_travelled; 

if (dis_travelled >= dis_marker_obj) 

position(obj) = Position(marker); 

Velocity(obj) = Veclocity(O,O,O); 

else 

Position(obj) = Position(obj) + Vector(vec_travelled); 

Number accel = Magnitude(Acceleration(obj)); 

Vector (newSpeed) = Vector(diff) • (Magnitude(Velocity(obj)) + accel); 

Vector (newSpeed) = Vector (newSpeed) + Velocity(obj); 

Number newSpeed = Magnitude(Vector(newSpeed)); 

if (newSpeed > MAX_SPEED(obj)) 

Normalise(Vector(newSpeed)); 

Vector (newSpeed) = Vector(newSpeed) • MAX_SPEED(obj); 

Velocity(obj) = Vector(newSpeed); 

129 



To clarify the pseudo-code, it is necessary to explain some of the basic vector 

operations which are used: 

• A vector (Vector(obj)) is a mathematical entity which has both a 

magnitude and direction. It is represented as a n-dimensional tuple (obj 1, 

obh, ... , objn). A vector can be used to represent an object's position 

(Postion(obj)) in space, such as the location of an object in a DVE. 

Additionally, vectors can be used to represent the spatial direction of an 

object such as the velocity (Velocity(obj)) and acceleration 

(Acceleration(obj)). In 3D space, vector(obj) corresponds to (objx, objy, 

obh)· 

• Magnitude(v) is the scalar magnitude of the vector J~ vi . Magnitude 

is used to calculate the distance between two points in 3D space, where 

Magnitude(v) =~(VJ2 + (Vy)2 + (V%)2 

• Normalise(v) is a vector with a magnitude of 1 representing the same 

dIrectIOn as v x Y %. 
. . (Obj obj Obj ) 

Magnitude( v) , Magnitude( v) , Magnitude( v) 

Normalise is commonly used to move an object a scalar distance along a 

given vector, where the normalised vector is scaled by the distance 

required to be moved. 

As mentioned previously, after the markers' positions have been generated and 

the object has chosen a maker randomly, in order to simulate the movement of 

an object, the trajectory can be predicted based on a set of formulas, which are 

used to calculate the current position, velocity and acceleration of the object 

according to the previous relevant information. Given a fraction time (dt), if the 

distance (dis_marker _ obj) between the object and the marker is less than the 

distance (dis_travelled) an object can travel based on the previous velocity, the 

position of the object is set as the marker position and the velocity is set as O. As 

130 



can be seen from the pseudo-code, the object will stay at the marker once its 

position is set as the marker and it remains still until next marker is selected. 

This will give an object variable speed before its speed reaches its maximum 

speed. If dis_marker_obj is larger than dis_travelled, the object is still moving 

toward the selected marker, the new position and velocity of this object is 

required to be calculated. To simplify the calculation process, the acceleration is 

set as a fixed value, 10 meters per second in each dimension. 

5.3 The PIM System Experiments 

In this section, four experiments have been conducted to test four different 

aspects of the system: 

• The maximum number of objects which can be supported by one server; 

• The upper bound of message frequency for a node to send PUMs to its 

local server; 

• The overhead of APUMtocal in the PIM system compared with a 

traditional aura-based interest management system; 

• The scalability of the system in term of the number of nodes (objects) the 

system can support simultaneously as the number of servers increases. 

The first two experiments' results can be used to assist DVE developers to 

estimate appropriate system variables (PUM frequency, number of servers, 

maximum number of objects supported) to provide acceptable performance. For 

example, given a threshold maximum drop rate and a PUM transmission 

frequency, assuming that the target machines are of similar specification to the 

test machines, the results of the first two experiments can be used to estimate the 

number of servers required to achieve acceptable performance for a given 

number of users in certain simulations. 

131 



The last two experiments focus on detennining the scalability of the system. The 

purpose of PIM is to alleviate the missed interaction problem, which occurs 

when the time taken by the interest management approach to resolve the objects' 

interests is longer than the duration of the pair of objects' interaction. The 

rationale behind PlM is to use an enlarged aura, the PAl, to exchange APUMtocal 

(pairs of objects' message transmitted at variable frequencies) to notify the 

existence of objects before their auras overlap. However, due to the additional 

message exchange, the perfonnance of the system may degrade due to the 

increased message transmission. This can limit the scalability of the system. 

The third set of experiments is intended to investigate the effect of APUMtocal 

messages on the perfonnance of the system. The final set of experiments 

concentrates on demonstrating the scalability offered by the decentralized server 

architecture employed in the PIM system. These experiments are intended to 

investigate the effect of increasing the number of servers on the overall 

perfonnance of the system. The desired effect, which would imply that the 

system is scalable, is for the system to be able to support larger numbers of 

objects as the number of servers is increased, while maintaining acceptable 

perfonnance. It is also expected that an increased number of servers with the 

same number of objects supported will result in equal or better perfonnance, 

provided the number of objects being supported is not small. 

Although the different experiments have their own purposes, all the experiments 

are based on the same conditions: 

• There is no application-imposed restriction on the frequency a server will 

transmit an aggregated PUM message to the other servers; it depends on 

the processing speed of the server and the volume and frequency of PUM 

messages the server receives from the nodes. 

• The frequency a server sends an aggregation APUMadmin message, which 

is the message exchanged between different servers, is set to one 

message every 10 seconds. 

132 



• The drop percentage is calculated by comparing the number of messages 

sent by the nodes with the number of messages received by the servers. 

The percentage drop rate, PD, is calculated using the following formula 

(Total(Sent)= the number of messages sent by all nodes in the DVE, 

Total(Received)= the number of messages received by the servers): 

PD = (Total(Sent) - Total(Received») 
Total(Sent) 

Formula 5.8 Calculating the Drop Rate 

Experiment 1: Maximum Number of Objects Supported by One Server 

• Purpose 

This experiment is intended to determine the number of objects a server 

can support simultaneously. Due to physical restrictions, such as CPU 

speed and the amount of free memory, the number of objects a server can 

support simultaneously is limited. As the number of objects increases, 

servers can be added to improve the scalability of the system. Although 

objects are evenly distributed between servers in this system, each server 

still hosts a copy of every remote object as PIM checks the intersection 

between remote objects and local objects. Therefore, the number of local 

objects, after distributing them evenly, should be less than the maximum 

numbers a server can support. 

• Methods 

In these experiments, the number of objects is increased from 500 to 

1500 by increments of 500. The number of servers is fixed at 1. Each test 

lasts one hour and is repeated three times. 

133 



• Results 

19"""," 

aJ 

/ 40 o-op / percertBge 
1 __ 1 Oen.erl 

:xl -----0 
500 1 1000 1 1500 1 

1-+-1_ 1.!B 1 lB.86 1 54.8:2 I 
N. ... " .... d ~ects 

Figure S.2 Average Single Server Results 

• Analysis 

According to Figure 5.2, the message drop rate increases steeply as the 

number of objects increases. As can be seen from the graph, with 500 

objects, the drop rate was just 1.96%; with 1000 objects, the drop rate 

increases 16.9% compared with 500 objects; with 1500 objects, the drop 

rate reaches 54.82%. The performance of the system sharply degrades. 

The reason for this is that the server received more messages than it can 

handle per second. Therefore, under the current test conditions, the 

maximum number of objects a server can support is 1500 objects. 

Experiment 2: PUM Frequencies 

• Purpose 

As mentioned previously, due to limited processing and memory 

resources, the number of objects a server can support is restricted. 

Additionally, the frequency a node sends PUM messages to the local 

server must be limited to some extent to avoid intolerable drop rates. 

Therefore, the purpose of this experiment is to determine the maximum 

acceptable frequency a node can send PUMs to its local server. 

134 



• Methods 

In these experiments, the number of objects is increased from 500 to 

1500 by increments of 500. The number of servers is increased from 1 to 

3 servers. Each test lasts one hour and is repeated two times. The 

frequency each node sends PUMs to its local server ranges from 2 

messages per second to 5 messages per second. Following this, a further 

set of experiments was conducted in which the nodes transmitted PUMs 

at 10 messages per second. 

• Results 

41 

:!J 

0 

[- ,-
1-- 2""", 

3 ...... 

60 

41 

20 

0 

1 __ ' 511'18 

- - 21.-.a'1 

3.""" 

z __ ,._ 

/ 
/ ...-----' 

!!Xl 1(ll) ' !iD IID 

067 11)3 34.61 

Oll 372 '262 2)<0; 

'61 073 2.!ll 61B 

,--,.-
/' 

./' --..?---
>I) 1(XXl 1>1) l!XXl 

2D6 213< 5521 

06 I~ Ol 19.45 ll61 
011 3"; 717 lUG 

19l1 

1153 

--
l500 

227 

_ 1, .. 
- - 2&8'181 

3 . ...... 

60 
/' 41 

20 /' ----0 ~--->I) 1000 1>1) l!XXl l500 

l-- lllNr 1 III 1199 531>1 

• 2sINn 007 753 20m 329 

31 ...... 116 127 6.7 12.36 ,In2 

1--,.-
100 

60 .---::::----
0 

>I) 1000 1>1) l!XXl l500 

1_ " ...... 2114 25'" "'9 
- - 2 ........ 115 9Q 2117 35'" 

3_ 16 15<1 9. ,.7 2Il!i9 

Figure 5.3 Varying the Number of PUM Messages per Second 

10 M I J I gas I*' s--III 

100 

1 __ 1s~r 
Drq> 

50 
.... .. 2s~ 

pen:9"til(JEI 

~ 3SeMfS 
0 

500 1000 1500 2000 2500 

-+-1 ser.er 10.71 53.01 61.22 

---- 2 Ser\er'S 3.72 19.19 46.07 51A3 

3 ser.ers 5 .02 12.26 24.93 40.96 45.78 

,., ..... d OIlects 

Figure 5.4 10 Messages per Second 

135 

_ ISlNf 

~ 2SrAn 

3.""" 



• Analysis 

As can be seen from Figure 5.3, the PIM system's drop rate increases 

when the PUM transmission frequency is increased. In order to analyse 

the results, only the experiments with the largest number of objects for 

each number of servers will be discussed (1500, 2000 and 2500 objects 

for 1,2 and 3 servers respectively): 

.:. 1 Server: at 2 messages per second transmission rate, a single 

server with 1500 objects drops less than 40% of the messages. At 

3 messages per second, a single server was observed to drop 53% 

of messages. At 4 messages per second, the server was observed 

to drop 56% of messages. At 5 messages per second, the server 

dropped 60% of messages . 

• :. 2 Servers: the average drop rate observed with two servers and 

2000 objects were 24%, 33%, 31 % and 36% for 2, 3, 4 and 5 

messages per second respectively. The deviation between 3 and 4 

message per second from the expected trend can be attributed to 

variations in the external processing demands on the server 

machines . 

• :. 3 Servers: the trend in drop rate is very obvious in the 3 server 

experiments. The message drop rates grow proportionally to the 

frequency of message transmission. The drop rates were 12%, 

20%, 23% and 29% for 2, 3, 4 and 5 messages per second 

respectively. 

In addition to the experiments from 2 to 5 messages per second, Figure 

5.4 provides an extreme situation under the current test conditions: 10 

messages per second. In Figure 5.4, the drop rate rises for 1, 2 and 3 

servers respectively. Initially, it rises proportionally to the number of 

objects, as was observed with lower frequency message transmission. 

136 



However, the drop rate increase appears to reach some plateau in which 

the rate of increase reduces. This may indicate that this specific 

experiment is reaching the computational and message-handling limits 

the servers are capable of. If the number of objects was further increased, 

it is assumed that the drop rate increase would eventually tend towards 

zero, as the drop rate approached a limit, 100%. This phenomenon can 

be explained using a fairly simple model. Given M is the maximum 

number of messages can be processed by the system in one second; 0 is 

the number of objects participating in the DVE simultaneously; R is the 

message transmission frequency an object sends messages to the system; 

N is the number of messages transmitted per second, which is also 

equivalent to 0 * R; D is the message drop rate, which includes both the 

messages dropped in transmission and in the system buffers. D can be 

represented using the formula below: 

Formula 5.9 Approximate Drop Rate 

Given that M and R are constants, D is the function with respect to O. 

D=/(O) 

Therefore, the derivative of D with respect to 0 obtains the rate of 

change of D. According to [MathWorld05], the derivative of function xn
, 

where x is a variable, is: 

d n n-l -x =nx 
dx 

Therefore, the derivative of D with respect to 0 is: 

137 



D'~J'(O)~ ![l-~(~)J 
= _[ _ ~ (0-2

)] 

= ~ (~2) 
Formula 5.10 Approximate Drop Rate Deviation 

As 0 ~ 00, ~ ~ 0, therefore, as 0 (the number of objects) becomes 
o 

large, the drop rate deviation tends towards 0 as the drop rate tends 

towards 100%. 

Experiment 3: APUMlocal Overhead 

• Purpose 

This experiment is designed to determine the overhead of APUUocal 

message exchange. As mentioned previously, the difference between the 

PlM system and a traditional aura-based interest management system is 

PlM's utilisation of an additional message, APUM/ocal, to pre-empt 

potential aura intersections. However, this additional message exchange 

may degrade the system's performance. Therefore, it is necessary to 

determine to what extent the additional message, APUUocal, affects 

performance. 

• Methods 

A simple aura-based system was implemented to determine the overhead 

of the additional message, APUUocal, in the PlM system compared to 

existing aura-based systems. In the aura-based system, there are only two 

types of messages exchanged between the servers: PUM and APUMadmin. 

Apart from the absence of APUUocal messages, the two systems are 

identical. The frequency each node transmits PUMs to its local server is 

138 



set to 3 messages per second in these experiments. Each experiment lasts 

for one hour. Results are taken as the average of three runs. The number 

of servers ranges from one to three servers. 

• Results 

p,...- 3 "",-Pw_ PlM3""'-Pw _ 

100 100 

Orap 
50 

""'- ---- ~ 0 

Orap 
50 - ~ 

~ 

500 1000 1500 200l 2iOO 0 
500 1000 1500 200l 2iOO 

1-=-1 sesver 1.07 13.68 50.!'!) 1-1 ........ 1.88 lB.1l6 54.82 

1- 2"""""" 0..29 421 12.4 23.36 1- 2 .......... 2.06 6.82 20.88 3349 

' '''''''''' 2.39 2.1 1 H 8 6 11 1831 I 3 .......... 2.42 2.18 7.23 14.33 :ll.76 

-"''''''-
1-- 1W"'ooY --254ifWli 3....,.,.1 -"'--1 __ 1~ __ 2$C!!1"oe"5 3 ........ 1 

Figure 5.5 System Comparison 

500 1000 1500 2000 2500 

1 server 0.91 5.18 4.24 - -

2 servers 1.77 2.61 8.58 10.13 -
3 servers 0.03 0.07 2.84 8.22 2.45 

Table 5.1 Drop Rate Deviation 

500 1000 1500 2000 2500 

1 server 449766 527431 502570 - -
2 servers 829483 1095555 1131482 1154284 -

3 servers 1087085 1588617 1688556 1689022 1656775 

Table 5.2 Number of APUM/oca1 Handled by PIMServers 

• Analysis 

In Figure 5.5, two sets of results are presented to show the average 

percentage drop rate of the two systems. In both system, the drop rate 

decreases as the number of servers increases. However, compared with the 

aura-based system, the message drop rate in the PIM system is higher in 

general. The reason for this is that an extra type of message, APUM/oca/, is 

139 



exchanged between PIM servers; therefore, the servers are responsible for 

generating, sending, receiving and processing APUMlocal. As can be seen 

from Table 5.1, the drop rate deviation between the two systems ranges 

between [0.9%, 5.18%] in the I server experiments, [1.77%, 10.13%] in the 

2 servers experiments and [0.03%, 8.22%] with 3 servers. 

The increase in the drop rate, compared with the traditional aura-based 

interest management system, does not appear detrimental to the performance 

of the PIM system, which suggests the overhead of APUMtocal is tolerable. 

Table 5.2 shows the number of APUM!oca! messages exchanged between 

servers. It shows that the number of APUMtocal messages transmitted is 

directly proportional to the number of servers. The table also shows that the 

number of APUMtocal messages transmitted increases as the number of 

objects increases, although this increase does not appear to be directly 

proportional. Although the APUMlocal messages cause an increase in the drop 

rate, without the APUMlocal messages PIM would not be able to effectively 

alleviate the missed interaction problem which is exhibited in current interest 

management systems. 

Experiment 4: Scalability Tests 

• Purpose 

After analysing the overhead of the APUMlocal, these experiments intend 

to determine the scalability of the system. According to the results 

displayed in the first experiment in this chapter, the maximum number of 

objects a server can support simultaneously is 1500 objects under the 

current test conditions. However, in the following experiments, the 

number of objects the PIM system must support is increased as more 

servers are added to the system. The experiments in this section are 

intended to determine the scalability of the system by increasing the 

140 



number of objects simultaneously participating in the DVE while the 

number of servers is increased from one to ten. 

• Methods 

The number of servers is increased from 1 to 10 and the number of 

objects increased from 500 to 6000 in increments of 500. The numbers 

of objects tested on 1 server ranges between 500 and 1500. The 

maximum number of objects in each test will increase by 500 for each 

server added to the system. The frequency that each node sends PUMs to 

its local server is fixed at 3 messages per second in these experiments. 

The duration of each run is one hour and each experiment is performed 3 

times. 

141 



• Results 

PIM 10 s.rvws Drop ~ T_ 2 

~~~l~~ 
o , , , ,

500 1CXXl 15OO = :l5OO 3aXJ J300 4XXl <I!1XlSCOO:BXl =
I't ... _cra~e<n

........... 1 SeI'Wr

1 ~2 9"""'"
3 9"""""

1- 4 Ser.ers
__ 5 sElr'\oer"9

........... 6sero.ers

-+- 7sE!r'.Er'S

- 8 seN:f"9
- 9 s er.EW'S

10 sBl'\8'S

-+- 1 Ser.eI"

--4-2ser..ers

39

- 4 s er.er9

1 ->- 5 9eN!1'S

--- 6 Ser.er5

--+- 7s8r\e1"9

- 8 sen.ers
500 1 CXXl 1500 2CXXl 2500 300J :NlO 4(0) 4500 5000 5500 6000 I _ 9 9"""'"

.... nberot~

Figure 5.6 Scalability Results

PIM 10 s.rvws A/wllge Drop ~

10 Ser.er3

3S8r\8"S

- 4S81'\8'9

1- - 5ge"",""
"-"-6sef\e1"3

-+- 7 ser.ers
- 8s9l\Er"S

- 9sel'\Ef'S

10 serwrs

Figure 5.7 Average Scalability Results

142

• Analysis

Figure 5.6 shows three different sets of test results. Due to the fact that

the experiment are conducted on a shared computer cluster, the system

performance varies during and between each individual run, being

influenced by the usage level of machine at the time. A high usage level

for a machine may manifest itself by producing an artificially high

message drop rate. The ideal trend should show the drop rate decrease or

remain constant when more servers are added to the system. The reason

for that is that the objects are distributed evenly in the PIM servers and

the intercommunication between servers is within the servers' processing

capabilities; even though the number of objects increases, the overall

system performance should not degrade. However, as the machines are

shared resourced, the system performance exhibits some variation from

the ideal trend, which is illustrated in Figure 5.6. These results do,

however, show that the performance of the system improves as the

number of servers is increased. The average drop rate trend is displayed

in Figure 5.7. The performance figures showed in these results are closer

to the ideal trend.

5.4 Parameter Selection

The PIM system utilises a number of parameters to control its behaviour:

• Future time for generating PAIs

• Aura size

• PUM message transmission frequency

• APUMadmin message transmission frequency

Each of these parameters can be modified to result in different effects on the

PIM system. For example, increasing the future time value will result in larger

PAIs, which can reduce the likelihood of missed interactions occurring.

143

However, this will result in more messages being transmitted and may,

therefore, contribute towards network congestion. In the event of network

congestion, message transmission delays may be detrimentally affected,

decreasing responsiveness and increasing the probability of missed interactions

occurring. Similar behaviour can be seen by adjusting the PIM system's other

parameters. As such, the choice of appropriate parameters for predictive interest

management is important and essentially requires the adjustment of these

parameters to provide high levels of responsiveness while alleviating the missed

interaction problem and minimising PIMs contribution to network congestion.

Recent work has been undertaken to develop a simulator to determine the effect

of these parameters on the occurrence of missed interactions [Parkin06]. This

work concentrates on identifying under which circumstances missed interactions

occur and the frequency of their occurrence. Experiments were conducted by

varying aura size and message transmission frequency respectively. The results

of these experiments showed that increasing aura sizes and message

transmission frequency resulted in fewer missed interactions occurring.

5.5 Summary

This chapter introduced the test environment, which is a shared resource in the

School of Computing Science at Newcastle University. In this test environment,

each server occupies one machine and nodes are distributed evenly across a set

of non-server machines to create synthetic networking traffic. The world

simulator and object simulator components were introduced, which are two

pieces of software to simulate a simple virtual world and objects' movements

respectively. Using these components, it is possible for different objects to

observe and navigate through the same virtual world in a pseudo-intelligent

fashion. Four different set of experiments were conducted:

144

• To provide a guideline for the development of DVEs built on top of the

PIM systems to ensure a minimum level of performance, e.g. drop rate

below a threshold for a given number of objects and PUM transmission

frequency;

• To demonstrate the PIM system's scalability.

The first two sets of experiments demonstrated the maximum number of objects

a server could support on the test machines. The results also displayed the drop

rates corresponding to different PUM message transmission frequencies with a

given number of objects and servers. Developers of DVEs can use these results

to assist in choosing appropriate system variables (e.g. number of servers, PUM

transmission frequency, and maximum number of supported objects). It is

important to balance the variables as their effects on the overall system

performance are inter-related, as can be seen from the results. For example,

given the number of servers and maximum number of supported objects, the

developers of DVEs can determine the PUM transmission frequency to achieve

a minimum system performance.

The third set of experiments showed that the additional message introduced by

the PIM system to alleviate the missed interaction problem, APUMtocal, does not

cause a major degradation in the overall system performance, implying that the

PIM system is scalable. The final set of results showed that the PIM system

achieves a high level of scalability by employing the de-centralised server

communication model, which was discussed in detail in Chapters 2 and 4. These

results showed that the system's performance can be improved by increasing the

number of servers.

In addition, a brief description of the considerations required when adjusting the

parameters the PIM system works upon was provided in Section 5.4.

145

Chapter 6

Conclusions

This chapter provides a summary of this thesis, the contributions it makes, and

discusses future work.

6.1 Thesis Summary

A Distributed Virtual Environment (DVE) is a virtual environment which allows

dispersed users to interact with each other and the virtual world through the

underlying network. To build a DVE, the developer not only needs to handle the

issues of a single-user virtual environment, such as collision detection and

rendering, but is also required to deal with the issues of a distributed system,

such as network latency and bandwidth usage.

Three layers should be provided to build a DVE: application layer, message

dissemination layer and network layer.

146

Layer

Application Layer

Message dissemination Layer

Network Layer

Purposes

Provides users a representation of a virtual world allowing

users to interact with it and other users through

input/output devices

• Provides developers a network layer API which

eases programming

• Provides facilities to ensure interoperability with

heterogeneous network architectures and

platforms

• Provides location and discovery services

• Provides filtering mechanisms to reduce the

number of unnecessary messages which are

transmitted over the underlying network

• Provides services to regulate message

transmission frequency according to some

filtering criteria

• Provides the developers the choice of

synchronous and asynchronous messaging

models

Provides network protocols to enable high-levels of

accessibility to the DVE over LANs and public access

networks, e.g. the Internet

Table 6.1 Purposes ofDVE Layers

Users interact with a DVE through the application layer. These interactions are

manifested as events which are passed to the message dissemination layer. Upon

receipt of these events, the message dissemination layer processes events into

messages and instructs the network layer to send these messages to their

required recipients. In order to achieve this, the message dissemination layer can

employ a wide variety of techniques, such as message filtering and message

frequency regulation, to efficiently utilise the available bandwidth and improve

scalability. When the network layer receives a message from the underlying

147

network, it is passed to the message dissemination layer. Upon receiving a

message from the network layer, the message dissemination layer generates a

corresponding event, which is passed to the application layer. This event

manifests itself as a state update for one or more objects, which is reflected in

the output devices to the users.

Middleware can be incorporated into the message dissemination layer to ease

DVE development. Middleware is a class of software that resides between an

application and the operating system. It shields the application developer from

the complexity of networking issues and provides them with services to ease the

development of distributed applications. It provides interoperability for a DVE

to overcome heterogeneity between networks; it provides easier access to the

network layer; it provides the choice of the synchronous and asynchronous

message models; it provides location and discovery services.

Interest management can be built on top of middleware to provide message

filtering and message regulation mechanisms in the message dissemination

layer. There are three interest management approaches: region-based, aura-based

and hybrid interest management. Region-based interest management divides a

virtual world into different regions; objects residing in the same or neighbouring

region can interact with each other through message exchange in the underlying

network. Aura-based interest management specifies an aura (a sphere) for each

object; objects can interact with each other as long as they fall into each other's

auras. Hybrid interest management is the combination of the region-based and

aura-based approaches. However, all of the existing approaches do not address

the Missed Interaction Problem. Missed interactions occur when the time for an

interest management approach to resolve the interaction between a pair of

objects is longer than the duration of these objects' interaction. For example, a

pair of objects, such as high-speed airplanes, might interact with each other, in

terms of falling into the same region or their auras overlap, very briefly, say 50

milliseconds. However, it might take the interest management approach 100

148

milliseconds to detect the interaction. When the interest management approach

detects this interaction, these objects may have passed by or crashed into each

other. Therefore, a new interest management approach should be provided to

alleviate the missed interaction problem.

The choice of communication models can influence the scalability, consistency

and responsiveness of a DVE. The peer-to-peer communication model involves

direct communication between nodes. This provides minimal network latency;

therefore, it should theoretically provide the best responsiveness for a DVE.

However, as the number of nodes increases, each node is required to

communicate with an increasingly large number of nodes; if the number of

nodes becomes sufficiently large, the node will become overloaded and the

consistency and responsiveness of the DVE will dramatically degrade. In

addition, the scalability of a DVE is limited due to the huge amount of message

exchange between every node, which may cause network congestion. The

centralised server communication model uses a server to connect all clients. It

can provide the most consistent DVE as the server can act as a central repository

for object states. However, a single server is potentially a bottleneck; the DVE's

scalability is limited by the processing power of its server. Furthermore, if the

volume of messages needed to be processed overloads the server, the

responsiveness of DVE will significantly degrade. The de-centralised server

communication model utilises mUltiple servers to facilitate intercommunication

between geographically dispersed clients. Compared with the other two models,

this model provides the best scalability. In addition, due to the participation of

multiple servers, the message processing requirements of a DVE are distributed

between the servers, resulting in a consistent and responsive DVE.

Chapter 3 described a new interest management approach, termed Predictive

Interest Management (PIM), which is intended to alleviate the missed

interaction problem in DYEs. The rationale behind PIM is to enlarge the

objects' auras such that messages will be exchanged before objects' auras

149

overlap. However, due to the extra message exchange in the underlying network,

additional network bandwidth will be consumed. Therefore, it is necessary to

regulate the message exchange frequency. The concepts of Predictive Area of

Influence (PAl), Collision Window (CW) and its associated values (UPV, OUPV

and AUBV) were introduced to calculate the appropriate message exchange

frequency between nodes. These were used to construct a message exchange

schema, based on the intersection degree of a pair of objects, to regulate the

message exchange types and frequencies between the relevant nodes. Therefore,

as two objects approach each other, prior to their auras overlapping, the message

exchange frequency should increase until it reaches the maximum message

exchange frequency (the message exchange frequency when objects' auras

overlap).

Chapter 4 described the structure and implementation of the PIM system. The

PIM system utilises predictive interest management to filter unnecessary

message exchange between nodes and alleviate the missed interaction problem;

CORBA is adopted as the middleware to handle the networking issues and to

provide interoperability between heterogeneous networks; the de-centralised

server communication model is adopted to improve scalability.

Chapter 5 provided experiments to evaluate different aspects of the PIM system:

• The number of objects a single server can support;

• The upper bound of message exchange frequency;

• The overhead of PIM's additional message exchange;

• The scalability of (number of objects which can be supported by) the

PIM system as the number of servers is increased.

The results from these experiments demonstrate that the PIM system provides a

scalable middleware for DVEs. They show that the overhead of the additional

message exchange required in PIM does not have a significant impact on the

performance of the system. The results also demonstrate that as the number of

150

servers is increased, the perfonnance of the system and the number of objects

which the system can support increases.

6.2 Contribution of Thesis

The core contribution of this thesis lies in providing a new interest management

approach, tenned Predictive Interest Management (PIM) , its implementation

and evaluation.

• Predictive Interest Management: an aura-based interest management

approach which utilises expanded auras and predictive techniques to

initiate message exchange at appropriate frequencies depending on the

intersection degree of the objects' expanded auras. This technique

utilises variable-frequency message exchange to minimise the impact of

the additional message exchange on system scalability. While it is

impossible to fully eradicate the missed interaction problem, as network

latency may be arbitrarily large in the case of network congestion or

network failure, this is a best-effort approach to alleviate the missed

interaction problem.

• Implementation: this thesis described the PIM system, which implements

the predictive interest management algorithm to alleviate the missed

interaction problem. This system provides an interoperable interest

management middleware, which fulfils the requirements of the message

dissemination layer in the three-tier DVE architecture described in

Chapter 2. The PIM system is built on top of an existing middleware

standard, CORBA, which offers platfonn and language independence.

CORBA adopts the Internet Inter-ORB Protocol (nOP) as its network­

layer protocol, which is built on top of TCP/IP, to provide support for

Internet deployment. The PIM system utilises the asynchronous

messaging model to support large-scale message exchange in real-time.

151

The PlM system adopts the de-centralised server communication model,

whereby a node connects to its geographically closest server to

participate in the DVE. It utilises inter-server message exchange to

enable interaction between objects hosted on nodes connected to

different servers. This ensures that the computational and network

overhead of interest management and message dissemination is fully

distributed between the servers. The choice of geographically-closest

server removes the overhead of dynamically connecting to servers based

on some application-level criteria.

• Evaluation: this thesis provided experimental results to evaluate the PlM

system in Chapter 5. A number of experiments were conducted to

evaluate different aspects of the system to determine:

o The number of objects a single PlM server can support

o The message exchange frequency upper-bound between a node

and its local server

o The overhead of the PIM system's additional message exchange

compared with traditional aura-based interest management.

o The scalability of the system, in terms of the number of objects

which can be supported, as the number of servers is increased.

The experimental results demonstrated that the PlM system is scalable.

They showed that the PlM system's additional message exchange has

only a marginal effect on the overall performance of the system. In

addition, the results showed that the maximum number of objects the

PlM system can support increased proportionally to the number of

servers.

6.3 Future Work

There are a number of avenues for future work:

152

• Adaptive message exchange frequency

• Higher-order functions to determine PAls

• Load-balancing on servers

• Integration with a graphics engine

Adaptive Message Exchange Frequency

The current PIM system uses initialisation-time constants for maximum message

exchange frequency between nodes and servers, and administrative message

exchange frequency between servers. In addition, it utilises a system-wide fixed

constant value to calculate the time displacement by which the objects' auras are

expanded (termed future time). It would be desirable to provide a mechanism to

adapt the message exchange frequency to the characteristics of the objects, such

that high-speed objects transmit state updates more frequently than low-speed

objects. In addition, the use of an adaptive value for future time could help

further alleviate the missed interaction problem if network transmission delays

rise, whereas network utilisation could be improved by reducing future time if

network transmission delays fall.

Higher-order Functions for Predicted Area of Influence (PAl)

Currently, the PAl of an object in the PIM system is calculated by summing the

object's aura's radius with its maximum speed multiplied by a fixed-value future

time (ft). However, it may be possible to reduce the radius of the PAl by using

higher-order functions, such as the rate of change of velocity (acceleration), to

predict the distance an object can travel more accurately over ft. For example,

given an object, such as a tank, which has a relatively high maximum speed

(60mls), but slow acceleration (4m1s2); if this tank is stationary at time t, it is

unnecessary to use a PAl containing the area it can cover over ft at top speed, as

the tank is not capable of accelerating to top speed before t + ft. This could be

further extended to consider aspects such as turning circles, braking etc., to

further reduce the volume of the PAl.

153

Load Balancing on Servers

In the current PIM system, each server is connected to nodes which are

geographically closest to it. However, it is possible with this architecture for a

particular geographical region's server to become more heavily loaded than

others, which could compromise the system's performance. To alleviate this

issue, multiple servers could be applied for a given region. This would enable a

server to redirect a connecting node to another local server if its load was greater

than some predefined threshold value to avoid itself from becoming overloaded.

This would enable the scalability, consistency and responsiveness of the DVE to

be further improved by adding additional servers to geographical regions with

large numbers of users.

Integration with a Graphics Engine

To reiterate, the PIM system is an experimental system, which only provides a

complete implementation of the message dissemination and network layers. Its

current application layer does not provide a graphical user interface, but instead

simply propagates state update messages to its server using random way-point

generation to move its objects throughout the DVE. It would be desirable to

provide a more fully-featured application layer, integrated with a graphics

engine, to produce a complete DVE for dispersed users to interact within.

154

BIBLIOGRAPHY

[Abrams99]

H. A. Abrams, "Extensible Interest Management for Scalable Persistent

Distributed Virtual Environments", PhD Thesis, Naval Postgraduate School,

Monterey, California, 1999.

[Barrus96]

J. W. Barrus et aI, "Locales and Beacons: Efficient and Precise Support For

Large Multi-User Virtual Environments", a mitsubishi electric research

laboratory (MERL), TR-95-16a, 1996.

[Benford94]

S. Benford et aI, "Managing mutual awareness 10 collaborative virtual

environments", VRST'94, 1994.

[Benford97]

S. Benford et aI, "Introducing Third Party Objects into the Spatial Model of

Interaction", CRG Internal Report, 1997.

[Bharambe02]

A. R. Bharambe et aI, "Mercury: A Scalable Publish-Subscribe System for

Internet Games", Netgames2002, 2002.

[Bharambe04]

155

A. R. Bharambe et aI, "Mercury: Supporting Scalable Multi-Attributed Range

Queries", SIGCOMM'04, Portland, Oregon, USA, 2004.

[BroseOl]

G. Brose et aI, "Java Programming with CORBA: advanced techniques for

building distributed applications, Third Edition", John Wiley and Sons, 2001.

[CastroOl]

M. Castro et aI, "SCRIBE: A large-scale and decentralized publish-subscribe

infrastructure", NGC200 1, 2001.

[Cerf74]

V. G. Cerf and R. E. Kahn, "A protocol for packet network interconnection",

IEEE Transaction on Communication, Vol. COM-22, V5, pp. 627-641, May

1974.

[ChurchillOl]

E. F. Churchill, D. N. Snowdon and A. 1. Munro, "Collaborative Virtual

Environments: Digital places and spaces for interaction", Springer-Verlag

London Limited, 2001.

[Cohen94]

D. Cohen, "NG-DIS-PDU: The next generation of DIS-PDU (IEEE 1278)", in

the proceedings of the 10th Workshop on Standards for Distributed Interactive

Simulations, 735-742, March 1994.

[Comer91]

D. E. Comer, "Intemetworking with TCP/IP VoLl: Principles, Protocols, and

Architecture (2th Edition)", Chapter 11 , pp. 159-168, Chapter, pp. 171-202,

Chapterl7, pp. 281-290, Prentice-Hall, inc, 1991.

156

[Das97]

T. K. Das, et aI, "NetEffect: A Network Architecture for Large-scale Multi-user

Virtual Worlds", ACM VRST' 97, Lausanne Switzerland, 1997.

[Frecon98]

E. Frecon and M. Stenius, "DIVE: A Scaleable network architecture for

distributed virtual environments", Distributed Systems Engineering Journal

special issue on Distributed Virtual Environments, Vol. 5, No.3, pp. 91-100,

Sept. 1998.

[Funkhouser95]

T. A. Funkhouser, "RING: A Client-Server System for Multi-User Virtual

Environments", AT&T Bell laboratories, 1995.

[Greenhalgh95]

C. Greenhalgh et aI, "MASSIVE: a Distributed Virtual Reality System

Incorporating Spatial Trading", the 15th International Conference on Distributed

Computing Systems (DCS'95), pp.27-34, 1995.

[Greenhalgh96]

C. Greenhalgh, "Dynamic, embodied multicast groups in MASSIVE-2",

Technical Report NOTTCS-TR-96-8, 1996.

[GreenhalghOO]

C. Greenhalgh et aI, "Inside MASSIVE-3: Flexible Support for Data

Consistency and World Structuring", CVE2000, 2000.

[KuhI99]

F. Kuhl, R. Weatherly and J. Dahmann, "Creating Computer simulation

systems: an introduction to the high level architecture", Prentice Hall PTR,

1999.

157

[Lee02]

D. Lee et aI, "ATLAS - A Scalable Network Framework for Distributed Virtual

Environments", CVE'02, September 30-0ctober 2, Bonn, Germany, 2002.

[Lengyel02]

Eric. Lengyel, "Mathematics for 3D Game Programming and Computer

Graphics", Charles River Media Inc, Hingham, MA, 2002.

[Lopez02]

P. G. Lopez et aI, "MOVE: Component Groupware Foundations for

Collaborative Virtual Environments", CVE'02, September 30-0ctober 2, Bonn,

Germany, 2002.

[Lu03]

F. Lu et aI, "Predictive Interest Management: An Approach to Managing

Message Dissemination for Distributed Virtual Environments", In Proceedings

of the First International Workshop on Interactive Rich Media Content

Production: Architectures, Technologies, Applications, Tools (Richmedia2003)

2003.

[Lu05]

F. Lu et aI, "Interest Management Middleware for Networked Games", ACM

SIGGRAPH Symposium on Interactive 3D Graphics and Games, Washington,

DC, April 3-6, pp 57-63, ACM SIGGRAPH 2005.

[Macedonia95]

M. Macedonia, "A Network Software Architecture for Large-Scale Virtual

Environments", Ph.D. thesis, computer science department, naval postgraduate

school, Monterey, CA, USA, 1995.

158

[Milgram99]

P. Milgram, Hennan W. Colquhoun Jr., "A FRAMEWORK FOR RELATING

HEAD-MOUNTED DISPLAYS TO MIXED REALITY DISPLAYS",

proceedings of the human factors and ergonomics society 43rd annual meeting.

[Ng02]

B. Ng et aI, "A Multi-Server Architecture for Distributed Virtual Walkthrough",

ACM VRST'02, Hong Kong, November 11-13,2002.

[Okanda05]

P. Okanda and G. Blair, "OpenPing: A Reflective Middleware for the

Development of Adaptive Networked Game Applications", SIGCOMM'04

Workshops, Aug. 30 & Sept. 3, 2004, Portland, OR, USA, ACM.

[Parkin06]

S. E. Parkin, P. Andras and G. Morgan, "Managing Missed Interactions in

Distributed Virtual Environments", Proc. of the 12th Eurographics Symposium

on Virtual Environments, pp 27-34, Lisbon, Portugal, 8th - 10th May 2006.

[Ruh99]

W. Ruh, T. Herron and P. Klinker, "IIOP Complete: understanding CORBA and

Middleware Interoperability", Addison-Wesley, 1999.

[Savetz96]

K. Savetz et aI, "MBONE: Multicasting Tomorrow's Internet", Hungry Minds
,

Inc, 1996.

[SedgewickOl]

R. Sedgewick and P. Flajolet, "An Introduction to the Analysis of Algorithms",

Addison Wesley, 2001.

159

[Sedgewick03]

R. Sedgewick, "Algorithms in Java- 3rd Ed", Addison Wesley, 2003.

[Singb95]

G. Singh et aI, "Bricknet: Sharing object behaviours on the Net", In Proceedings

of the Virtual Reality Annual international Symposium (VRAIS '95), pages 19-

25. Los Alamitos, CA, IEEE Computer Society Press, March 1995.

[SingbaI99]

S. Singhal, M. Zyda, "Networked Virtual Environments: Design and

Implementation", ACM Press, SIGGRAPH Series, Addison-Wesley, 1999.

[Smed02]

J. Smed, T. Kaukoranta and H. Hakonen, "A Review on Networking and

Multiplayer Computer Games", rucs Technical Report No 454, TurKu Centre

for Computer Science, April 2002.

[Tanenbaum97]

A. S. Tanenbaum, "Computer Networks Third Edition", Prentice-Hall

International Inc, 1996.

[WattOl]

A. Watt and F. Policarpo, "3D Games: real-time rendering and software

technology", Chapter14, pp. 415-418, Chapterl5, pp. 437-466, Addison-Wesley,

2001.

[Zyda93]

M. Zyda et aI, "NPSNET: REAL-TIME VEHICLE COLLISIONS,

EXPLOSIONS AND TERRAIN MODIFICATIONS", The Journal of

Visualization and Computer Animation, Vol. 4, No.1, 1993, pp. 13-24.

160

[Zyda93_2]

M. Zyda et aI, "Hypermedia and Networking in the Development of Large-Scale

Virtual Environments", In the Proceedings of the International Conference on

Artificial Reality and Tele-existence, Tokyo, Japan, 6-8 July 1993.

[Active Worlds05]

http://www.activeworlds.com/tour.asp#. as viewed 8 Jan 2005

[Blizzard05]

Blizzard Entertainment, http://www.blizzard.com/. as viewed 17 July 2005.

[Bungert05]

ChristofBungert, http://www.stereo3d.com/hmd.htm as viewed 26 Nov 2005.

[CFAINET05]

CFAINET, http://www.cfainet.org/home/virtualreality/vrprogram.asp.as

viewed 8 Jan 2005

[Epic05]

Epic Games, http://www.epicgames.com. as viewed 19 July 2005.

[EverQuest99]

EverQuest,

http://www.absoluteastronomy.com/encyclopedia/e/ev/everquestl.htm.as

viewed 18 July 2005.

[GIST05]

GIST, http://www.dcs.gla.ac.uki-stevenihaptics.htm. as viewed 18 July 2005.

[IBM05]

161

IBM, http://www.redbooks.ibm.com/abstracts/sg246842.html. as viewed 8 Jan

2005

[Id05]

Id Software, http://www.idsoftware.com. as viewed 19 July 2005.

[InternetSociety05]

Internet Society, http://www.isoc.orglinternet/history/brief.shtml, as viewed 19

July 2005.

[Javvin05]

Javvin, http://www.javvin.com/protocols.html. as viewed 19 July 2005.

[KuoOl]

A. Kuo, "A (very) brief history of

http://shl.stanford.eduiGame archive/StudentPapers/BySubject/ A­

I1C/Cheating/Kuo Andy.pdf, as viewed 16 July 2005.

[Kushner05]

cheating",

D. Kushner, "Engineering EverQuest: Online gaming demands heavyweight

data centers", http://www.spectrum.ieee.orgIWEBONLY/publicfeature/ju105/

0705eq.html, as viewed 15 July 2005.

[Math World05]

MathWorld http://mathworld.wolfram.com/Derivative.html as viewed 11 Dec

2005.

[Microsoft05]

Microsoft http://www.microsoft.com/com/default.mspx as viewed 11 Dec 2005.

[MoguI84]

Jeffrey Mogul, http://rfc.dotsrc.org/rfc/rfc919.html, as viewed 9 June 2005.

162

[Monty97]

Monty, http://www.bigkid.com.auiarticles/0007/diabloii3.htm. as viewed 17

July 05.

[OMG05]

OMG, http://www.omg.org, as viewed 11 Dec 2005.

[Origin05]

Origin, http://www.owo.comi. as viewed 18 July 2005.

[ReiUy99]

D. Reilly, "Inside Java: The Java Programming Language",

http://www.javacoffeebreakcom/artic1es/insidejavalinsidejava-nov99.html.as

viewed 9 June 2005.

[Sun05]

Sun, http://java.sun.com/products/jms/overview.html, as viewed 11 Dec 2005.

[Sweeney99]

T. Sweeney, "Unreal Networking Architecture"

http://unrea1.epicgames.comiNetwork.htm, as viewed 16 July 2005.

[Ultima97]

Ultima Online,

http://www.absoluteastronomy.com/encyc1opediaiu/ullultimaonline.htm.as

view 18 July 2005.

163

Appendix A

messageservice.idl

module rns

module idl

interface util

/.

Vector3D is defined as the vector of an object

@param x-x coordinate

@param y-y coordinate

@param z-z coordinate

./

struct Vector3D

double Xi

double y;

double z;

I;

struct SinglePumMessage

long user_id:

long object_id;

long world_id;

Vector3D position:

I;

struct ObjectProperty

long object_id;

double aura;

double object_radius;

double tipl: /Itime interval of pum in local channel

double topVeloci ty;

Vector3D initialPosition;

I;

struct SingleApumMessage

long mS_id:

long world_id;

long supplier_id;

long object_id:

double pia:

double aura;

164

I;

Vector3D position;

I;

struct MserviceToUserPumMessage

long mS_id;

long world_id:

SinglePumMessage userMessages:

I;

typedef sequence<SinglePumMessage> AggregatedPumMessage;

typedef sequence<S ingleApumMessage> AggregatedApumMessage;

t ypedef sequence<Mserv iceToUserPumMessage> AggregatedMTUPumMessage;

struct MSExchangeAdminApumMessage

long mS_id;

long world_id:

long maxSupllierld:

AggregatedApumMessage userApumMessages;

I;

struct MSExchangePumMessage

long ms_id;

long world_id;

long maxSupplierId;

AggregatedPumMessage purn:

I;

struct WorldInformation

long world_id;

string urI;

string description;

I;

typedef sequence <long> objectIds;

typedef sequence<WorldInformation> Worlds Information:

typedef sequence<ObjectProperty> ObjectsProperties;

module excep

I;

exception WorldNotExist {string errorDetails: long world_id; I:

exception ObjectNotExist (string error Details: long object_id; I;

exception PerrnissionDenied {string errorDetails; I;

exception SubscriptionExceeded{string errorDetails; I;

module cl ients

interface MessageServiceUser: util

I/called by ms server, to push the aggregated purn message to node

oneway void receive_status_messages (in AggregatedMTUPumMessage status_message);

165

oneway void receive_status_message(in MserviceToUserPumMessage status_message);

};

};

module servers

interface MessageService: util

Ilcalled by node, subscribe itself to message service

string user_subscribed(in string subscriber, in string user_ior, out long user_id) raises

(excep: : SubscriptionExceeded) ;

Ilcalled by node when it has been subscribed

long get_ms_id();

Ilcalled by node, unsubscribe itself to message service

void user_unsubscribed (in long user_id);

Ilcalled by node, subscribe itself to a certain world

void world_subscribed(in long user_id, in long world_id) raises {excep: :WorldNotExist);

Ilcalled by node, unsubscribe itself to a certain world

void world_ubsubscribed(in long user_id, in long world_id);

Ilcalled by node, declaim the new object created by node to message service

void add_object (in long user_id, in long world_id, in ObjectProperty pro):

Ilcalled by node, declaim to remove one object to message service, if the object doesn't belong

lito the node or the object isn't a shared object, PermissionDenied exception will be raised.

void remove_object (in long user_id, in long world_id, in long object_id) raises

(excep: :PermissionDenied, excep: :ObjectNotExist):

Ilcalled by node and remove the specified world in message service, if the node isn't the owner of

lithe world, PermissionDenied exception will be raised

void remove_world(in long user_id, in long world_id) raises (excep: :PermissionDenied, excep::

WorldNotExist) :

Ilcalled by node or other message service, get the information about the existing worlds

Worlds Information get_worlds () ;

Ilcalled by node and specify information about the world and define a world id by it

I lown. If the world id has existed, message service will assign a new world id

long create_world(in long user_id, in any world);

Ilcalled by node, send structured aggregated (all objects information in one package) message

Ilmessage is an any cast to UserPushStructuredMessage {I.

oneway void send_pum(in SinglePumMessage message);

Ilcalled by other message service, indicate the host message service the new subscribed world

void append_world(in long ms_id, in any world);

Ilwhen user remove the his own world from the other message service, other message serivce call

Iithis method to tell the host message service the world removal

void displace_world(in long mS_id, in long world_id) raises (excep: :PermissionDenied, excep::

WorldNotExist) ;

Ilcalled by other message service, declaim the entering status to the host message service

void rns_subscribed(in string rns_dornain, in string ms_name, in string rns_ior, in long ms_id);

166

I;

I;

I;

I/called by other message service, declaim the leaving status to the host message service

void rns_unsubscribed (in long mS_id);

void different_ms_user_subscribed (in long ms_id, in long world_id, in SingleApumMessage

initial Info) ;

void different_ms_user_unsubscribed(in long mS_id, in long world_id, in long user_id);

void push_aggregated_ms_adminApum (in MSExchangeAdminApumMessage apum);

oneway void push_aggregated_ms_apum(in SingleApumMessage apum);

one way void push_aggregated_ms_pum (in MSExchangePumMessage pum);

I;

167

	427290_001
	427290_002
	427290_003
	427290_004
	427290_005
	427290_006
	427290_007
	427290_008
	427290_009
	427290_010
	427290_011
	427290_012
	427290_013
	427290_014
	427290_015
	427290_016
	427290_017
	427290_018
	427290_019
	427290_020
	427290_021
	427290_022
	427290_023
	427290_024
	427290_025
	427290_026
	427290_027
	427290_028
	427290_029
	427290_030
	427290_031
	427290_032
	427290_033
	427290_034
	427290_035
	427290_036
	427290_037
	427290_038
	427290_039
	427290_040
	427290_041
	427290_042
	427290_043
	427290_044
	427290_045
	427290_046
	427290_047
	427290_048
	427290_049
	427290_050
	427290_051
	427290_052
	427290_053
	427290_054
	427290_055
	427290_056
	427290_057
	427290_058
	427290_059
	427290_060
	427290_061
	427290_062
	427290_063
	427290_064
	427290_065
	427290_066
	427290_067
	427290_068
	427290_069
	427290_070
	427290_071
	427290_072
	427290_073
	427290_074
	427290_075
	427290_076
	427290_077
	427290_078
	427290_079
	427290_080
	427290_081
	427290_082
	427290_083
	427290_084
	427290_085
	427290_086
	427290_087
	427290_088
	427290_089
	427290_090
	427290_091
	427290_092
	427290_093
	427290_094
	427290_095
	427290_096
	427290_097
	427290_098
	427290_099
	427290_100
	427290_101
	427290_102
	427290_103
	427290_104
	427290_105
	427290_106
	427290_107
	427290_108
	427290_109
	427290_110
	427290_111
	427290_112
	427290_113
	427290_114
	427290_115
	427290_116
	427290_117
	427290_118
	427290_119
	427290_120
	427290_121
	427290_122
	427290_123
	427290_124
	427290_125
	427290_126
	427290_127
	427290_128
	427290_129
	427290_130
	427290_131
	427290_132
	427290_133
	427290_134
	427290_135
	427290_136
	427290_137
	427290_138
	427290_139
	427290_140
	427290_141
	427290_142
	427290_143
	427290_144
	427290_145
	427290_146
	427290_147
	427290_148
	427290_149
	427290_150
	427290_151
	427290_152
	427290_153
	427290_154
	427290_155
	427290_156
	427290_157
	427290_158
	427290_159
	427290_160
	427290_161
	427290_162
	427290_163
	427290_164
	427290_165
	427290_166
	427290_167
	427290_168
	427290_169
	427290_170
	427290_171
	427290_172
	427290_173
	427290_174
	427290_175
	427290_176
	427290_177
	427290_178
	427290_179
	427290_180

