

A Collaborative Software
Infrastructure based on the High Level

Architecture and XML

 NICHOLAS MONTGOMERIE-NEILSON

 Master’s Degree Project
 Stockholm, Sweden 2005

 TRITA-NA-E05046

Numerisk analys och datalogi Department of Numerical Analysis
KTH and Computer Science
100 44 Stockholm Royal Institute of Technology
 SE-100 44 Stockholm, Sweden

NICHOLAS MONTGOMERIE-NEILSON

TRITA-NA-E05046

Master’s Thesis in Computer Science (20 credits)
at the School of Engineering and Business Management,

Royal Institute of Technology year 2005
Supervisor at Nada was Henrik Eriksson

Examiner was Stefan Arnborg

A Collaborative Software Infrastructure

based on the High Level Architecture and XML

A collaborative software framework based on the
High Level Architecture and XML

Abstract
A study is made of using the High Level Architecture (HLA) as foundation for
distributed applications in the domain of Computer-Supported Collaborative Work.
A plug-in, peer-to-peer infrastructure for such applications is proposed, aimed at
facilitating development and management of collaborative software. Users of the
framework collaborate in groups and sessions, described by a replicated state XML
information model. A prototype infrastructure is developed, along with three
prototype collaborative applications. Results of performance testing show that a
transport system built on HLA compares reasonably well with a socket-based
transport system. On the whole, results demonstrate feasibility of the infrastructure
and of the objective of extending the HLA to non-simulation applications. Future
work to adapt full-scale applications to the collaborative infrastructure is invited.

Keywords: HLA, CSCW, computer supported collaborative work, XML, distributed
systems

En mjukvaruinfrastruktur för datorbaserad sam-
verkan, byggd på High Level Architecture och XML

Sammanfattning
Möjligheten att använda High Level Architecture som bas för distribuerade
applikationer för datorbaserad samverkan studeras. En infrastruktur för sådana
applikationer utvecklas, grundad på plug-in- och peer-to-peer-principer och med
målen att förenkla utveckling och administration av program för datorbaserad
samverkan. Samarbete i infrastrukturen sker i grupper som arbetar i sessioner.
Grupper och sessioner beskrivs av en informationsmodell uttryckt i XML som
underhålls i distribuerade, replikerade kopior. En prototyp för infrastrukturen
utvecklas och dessutom tre prototyper för samverkansprogram. Testresultat visar att
kapaciteten för det HLA-drivna kommunikationssystemet är jämförbar med ett
direkt socketdrivet system. Generellt sett visar studien att den föreslagna
infrastrukturen är möjlig. Den demonstrerar också ett sätt på vilket HLA kan
användas för andra syften än simulering. Framtida arbete för att anpassa en fullskalig
applikation till samarbetsinfrastrukturen uppmuntras.

Nyckelord: HLA, CSCW, datorbaserad samverkan, XML, distribuerade system

Table of Contents

1. Introduction ...1
1.1 Computers and computer communication ..1
1.2 Thesis goals..2
1.3 Where the thesis was developed ..3
1.4 Report structure ..4

2. Theory ...5
2.1 Simulation ..5

2.1.1 Simulation definition ..5
2.1.2 Modeling...6
2.1.3 Distributed simulation and parallel simulation...7
2.1.4 Distributed interactive simulation ..7
2.1.5 How simulations are built..8
2.1.6 High Level Architecture (HLA) ...9

2.2 CSCW, computer-supported collaborative work ..11
2.2.1 Computer-supported collaborative work definition ...11
2.2.2 Modes of collaborative work ..11
2.2.3 Groupware and CVEs..12
2.2.4 CSCW in practice..13
2.2.5 Various results from CSCW research ..13

2.3 New applications of simulation and CSCW...15
2.3.1 Example of a collaborative simulation application..15
2.3.2 Example of extending HLA to gaming ...15
2.3.3 Example of extending HLA to virtual shopping ...15

3. Method..17
3.1 Progress of work...17

3.1.1 Application design ..17
3.1.2 Demo implementation ...17
3.1.3 Experimentation ...18

4. Design ...19
4.1 Preliminary design findings ...19

4.1.1 General features of design solution ...19
4.1.2 Multiple collaborations...21
4.1.3 Format of Tool support...22
4.1.4 Other design considerations..23

4.2 Answers to key design questions..24
4.2.1 What kinds of distribution support will be enlisted by the HLA?..........................24
4.2.2 How is consistency ensured in the collaboration?...25
4.2.3 How is a collaborative group defined? ..27
4.2.4 How should definitions of collaborative groups be maintained?............................31
4.2.5 How should logins and logouts to/from the collaboration be handled?...............31

5. Implementation ...33
5.1 Requirements...33
5.2 ccprototype..34
5.3 ccprototype.ccgroupnode..35

5.3.1 What it does ...35
5.3.2 What it does not do ..36
5.3.3 Collaboration Description implementation..36
5.3.4 Non-Collaboration Description communication ..38
5.3.5 Framework front end components ..39

5.4 Demonstration Tools...40
6. Experiments ...41

6.1 Experiment setup and method...41
6.2 Experiment results..42

6.2.1 Initial speed measurements, 400 B - 4 MB...43
6.2.2 Finer grain speed measurements ..45
6.2.3 Further investigation into HLA irregularity..46

6.3 Experiment discussion...48
7. Conclusion & future work ...50

7.1 Project findings ...50
7.2 Future work ...51

7.2.1 Continuing work on the ccprototype implementation ...51
7.2.2 Other future work...51

References...52
Appendix A: Tool communication modes ..55

List of figures

Figure 1-1 Thesis work distribution ...3
Figure 2-1 Names for different categories of simulations ..8
Figure 2-2 CSCW-tools may work in four different modes ...12
Figure 4-1 CC...19
Figure 4-2 Communication based on a single general-purpose federate at each client............20
Figure 4-3 Communication based on several federate instances at each client.........................21
Figure 4-4 Multiple Collaborations, multiple RTIs ..22
Figure 4-5 Multiple Collaborations, single RTI ..22
Figure 4-6 Simple model for distributed applications ...26
Figure 4-7 A Tool designer’s perspective on option I and option II..26
Figure 4-8 Life cycle of a Collaboration ..28
Figure 4-9 Life cycle of a Collaboration and its associated Collaboration Description...........29
Figure 4-10 Collaboration Description information model..30
Figure 5-1 Screenshot of the demo implementation ...33
Figure 5-2 NetSimCollabDemo’s JFrame title bar and JMenu35
Figure 5-3 Tab for the CollaborationPane of Collaboration "Projektgrupp R4"........35
Figure 5-4 Dialog for creating a new Collaboration with a set of properties37
Figure 5-5 The communication infrastructure in ccgroupnode...38
Figure 5-6 ccgroupnodes of three collaborators communicating via an RTI............................39
Figure 5-7 Collaboration Search panel ...39
Figure 5-8 Participation panel (above) and a right-click remote desktop request (left)39
Figure 5-9 Activity panel with Tetris and Boxtool icons flashing ...40
Figure 5-10 CollabTextTool ..40
Figure 5-11 Detail from Figure 5-1: BoxTool...40
Figure 5-12 Detail from Figure 5-1: Tetris Tool ..40
Figure 6-1 HLA communication vs. socket-based communication..41
Figure 6-2 HLA vs Sockets, average sending time (logarithmic), 400 B - 4 MB.......................44
Figure 6-3 HLA vs Sockets, 400 B - 4 MB, with least-squares regression lines44
Figure 6-4 HLA vs sockets, standard deviation from mean...45
Figure 6-5 Average socket send time for batch-wise sent messages of varying sizes.45
Figure 6-6 Average HLA send time for batch-wise sent messages of varying size..................46
Figure 6-7 Transmissions of messages sized 10-100 kB, HLA and socket................................46
Figure 6-8 Histogram of durations of a thousand 50kB socket transmissions..........................46
Figure 6-9 Histograms for 20 socket batches, each of 1000 transmissions47
Figure 6-10 Histogram over 20 HLA batches, each containing 1000 messages47
Figure 6-11 HLA histogram, batches of 10-100k...48

List of tables

Table 1-1 Conditions that the proposed application needs to satisfy ...2
Table 1-2 Listing of the principal questions that the conditions in Table 1-1 lead to................3
Table 2-1 Example contrasting analytical problem-solving with simulation5
Table 4-1 Re-listing of the principal design parameters from chapter 119
Table 4-2 List of terms used in Collaboration design..27
Table 5-1 List of ccprototype requirements..34
Table 5-2 Example of an XML Collaboration Description..36
Table 6-1 Experiment variables and testing intervals ..41
Table 6-2 Example of a “point-test” result file...42
Table 6-3 Fixed levels for eliminated independent variables..43
Table 6-4 Dual subgroup means in each batch (milliseconds)...48

Acknowledgements

A large thank you goes out to Henrik Eriksson for being a great supervisor – your
comments contain more information per word than any I have ever seen, to Jenny
Ulriksson and many others at FOI for the excellent support and hospitality you have
offered, and to Mattias Liljeström for countless valuable discussions and good times
during course of the thesis project.

1. Introduction

1. Introduction
As the morning subway train approaches the center of the city, Jane powers up her laptop
computer. Via a wireless internet connection, she logs into her collaborative desktop to find it
just as she left it on her office workstation late last afternoon. The same applications she was
running yesterday appear, each loaded with current working material. Jane notices that
Robert has already logged in and done some more sketching on the new library his and Jane’s
architecture firm are designing. Jane sends Robert a “good morning”-message and compli-
ments him on his new ideas. Jane then switches to the collaborative word processing program
where her team is jointly composing a progress report on the library project. As project
manager, she writes a short section on Robert’s latest initiative and then makes a modifica-
tion in the goals paragraph which she notices Lisa has added last night. Jane then enters the
project calendar application and confirms that an entry has been properly made for the
dentist’s visit she is about to make. She powers down, looks out through the window and
thinks about the fresh taste of dentist’s tooth polish.

1.1 Computers and computer communication
The story of computer technology in the 20th century is the story of a revolution.
Whether one looks at usage volume, performance, or societal impact, one will find
that computer technology compares with or surpasses any other identifiable class of
technology.

Tanenbaum & Steen (2002) tell the following tale about computer performance
development in the last sixty years. In 1945, a computer cost 100 million dollars
and executed one instruction per second. Today, a 1000 dollar computer executes
10 million instructions per second, representing a price/performance improvement
of one trillion (1012). This pace of progress outclasses that of any other industry.

In more recent years, there has also been an explosive expansion of networking.
Gartner (2004) estimates that there were 550 million internet subscribers in 2004.
These people have access to information and communication resources on an
unprecedented scale. Internet users receive around 30 billion e-mails per day (IDC,
2002). Even taking into account the problems of spam (junk-mail represents just
under half of current global e-mail volume), e-mail is a hugely successful application
of network technology and has had a substantial impact on professional and
personal communication.

E-mail represents the most successful example of so-called collaborative software. E-
mail has been successful despite the fact that (or perhaps because) it does not
address all of the four capabilities that collaborative software is ideally supposed to
support: communication, collaboration, coordination, and control (Eseryel,
Ganesan, & Edmonds, 2002). Out of these four, e-mail supports only communica-
tion.

There are various applications that support all of the four services just men-
tioned—but none have been successful. For the type of application that ‘Jane’ uses
in the example above—the type of application where users can collaborate directly

1

1. Introduction

to perform common tasks—both supply and demand have been weak. One
problem this type of software faces is the difficulty of achieving effective
collaboration between people that can use only a narrow channel of communica-
tion. Another problem is the complexity inherent in designing applications that
need to address networking issues, manage collaborator groups, provide communi-
cation channels between collaborators, and synchronize collaborator activities—and
doing all this while also managing their core tasks. As a result of these issues, the
superior software for most computer-related professional tasks is a single-user, local
desktop application.

1.2 Thesis goals
The present Master’s thesis project attempts to solve some of the problems that
arise when designing collaborative applications. It proposes a framework
application that provides a pluggable interface for collaborative tools, and that
relieves these collaborative tools of responsibility for managing user groups and of
most of the responsibility for communication. In a theoretical treatment and a
practical implementation, the thesis proposes a framework application using XML-
based group definitions and a communication infrastructure built on an architecture
called the HLA (High Level Architecture).

Table 1-1 Conditions that the proposed application needs to
satisfy

Key design conditions
 Employ a pluggable collaborative tool architecture
 Manage groups for collaborations
 Define an XML group information model
 Employ peer-to-peer architecture
 Use HLA for distribution support

The most important specification items for the proposed framework application are
listed in Table 1-1. Investigating a “pluggable collaborative tool architecture” is the
main goal of the application—an architecture where collaborative applications can
easily plug into a framework application to take advantage of its various services.
The aim here is not to allow existing single-user applications such as Emacs (text
editor) or Paint (drawing application) to be plugged in directly to a collaborative
framework. Rather, the aim is to simplify and quicken the task of adapting such
programs for collaborative work, or to simplify and quicken the task of writing
collaborative programs from scratch.

To “manage groups for collaborations” is a central condition for the present thesis.
A related thesis by Liljeström investigated questions directly linked to the interface
to plug-in tools. The work distribution between the present thesis and Liljeström’s
thesis is schematically illustrated in Figure 1-1.

2

1. Introduction

 Group management

Figure 1-1 Thesis work distribution
Certain work in the present Master’s project was done in cooperation with Liljeström’s
NADA Masters’ project. The figure illustrates how some of this work was separated and
shared.

The present thesis investigated a series of questions related to the design conditions
mentioned previously. The questions are listed in Table 1-2. Every question was
answered by a design recommendation. Most of the design recommendations were
also implemented in demonstration code.

Table 1-2 Listing of the principal questions that the conditions in Table 1-1 lead to

Key design questions
 What kinds of distribution support will be enlisted by the HLA?
 How will consistency be ensured in the collaboration?
 How is a collaborative group defined?

o What data should the definition include?
o How should the definition’s life-cycle look?

 How should definitions of collaborative groups be maintained?
o …with regards to allowing efficient storage?
o …with regards to enabling searches?
o …with regards to properly managing modifications?

 How should logins and logouts to/from the collaboration be handled?
o …with regards to performance?
o …with regards to enabling effective awareness?

 How should the interface to tools look, concerning general functions?
o Handled in a parallel FOI/KTH study authored by Liljeström

1.3 Where the thesis was developed
The present thesis was presented at the computer science department of the Royal
Institute of Technology, Stockholm (KTH NADA). Research and report writing
was performed at the Swedish Defence Research Agency department of Systems
Modeling (FOI Systemmodellering). A partial goal of the thesis was to provide
foundations for a module within a system for networked defense currently under
development. Military concerns have affected the thesis parameters somewhat—the
condition of peer-to-peer architecture originates from military robustness needs, for
example—but the thesis by no means prohibits civilian applications.

Present thesis

Definition of collaboration
 property items

 Collaborators’
 workspace view

 Tool plug-in interface

 State and event XML representations Example
 tools
 Basic tool functionality

 Experiments

Collaboration base
 application

 XML experiments

Liljeström’s thesis

3

1. Introduction

1.4 Report structure
The current chapter introduced the thesis topic and gave a perspective on general
computer and communications development. It also presented the thesis goals and
laid out the principal questions to be answered. Furthermore, it contrasted the
thesis work with a parallel KTH thesis being developed at FOI.

Chapter 2, Theory, presents background theory from the two major research fields
that the thesis uses: simulation and Computer Supported Collaborative Work
(CSCW). It also presents the HLA and describes previous research efforts that have
been made to integrate the HLA with collaborative software.

Chapter 3, Method, contains a brief account for the methodological considerations
in the Master’s project.

Chapter 4, Design, presents the design solution that the project proposes for the
problems laid out in the introductory chapter, including the key design questions from
Table 1-2.

Chapter 5, Implementation, gives a roadmap to the components of the proposed
collaborative infrastructure’s prototype implementation. It gives brief descriptions
of certain visible front-end components and goes into some depth on background
data management functions.

Chapter 6, Experiments, presents results of performance tests that were performed
during the project to gauge the RTI’s quantitative qualities as communication
substructure.

Chapter 7, Conclusion & future work, summarizes the project’s findings, discusses
items of future work, and concludes the report.

4

2. Theory

2. Theory
The present thesis draws upon two research fields within computer science,
computer-supported collaborative work and modeling & simulation. Part of
the thesis goal is to apply results of the former onto practices of the latter. This
chapter will give theoretical background information on these two fields.

2.1 Simulation
This section describes simulation and the closely related field modeling.

2.1.1 Simulation definition
A simulation is defined as “the imitation of the operation of a real-world
process or system over time” (Banks, Carson, Nelson, & Nicol, 2001, p. 3).
Although simulations do not necessarily require computers, computing
advances in recent decades have made computer simulation a premier problem
solver in a wide variety of fields. Simulations are used regularly in designing
and testing new technology (cars, communication networks, nuclear systems,
semiconductors etc.), in studying complex systems (the environment, street
traffic, the human body etc.), in training (flight training, decision-making
training etc.), in decision support (in business, in medicine, in the military etc.)
in visualization of complex proposals (architecture, equipment design), to
name a few applications (Banks et al., 2001; Obaidat & Papadimitriou, 2003).

It is often said that simulation can be helpful when analytical, or closed-form,
solutions are impossible or impractical (more situations when simulation is
helpful or not helpful are discussed below). If this is unclear, perhaps the
following example will be useful.

Table 2-1 Example contrasting analytical problem-solving with simulation

• Problem: How long does it take to drive between Stockholm and Gothenburg if there is no other
traffic on the freeway?
Analytical (or closed-form) solution: [distance] / [speed] = [travel time]
 468 km / 110 km/h = 4.25 hours
The problem is inappropriate for simulation since an analytical solution is on hand.
• Problem: How long does it take to drive between Stockholm and Gothenburg if the following is true:
1. I drive 110 km/h unless I have slow cars right in front of me
2. Every minute, I run a 50% risk of catching up to a slow car. If I do, my speed (and the risk of

catching up to more slow cars) drops by one tenth
3. Every minute of driving behind slow cars, I have a 25% chance of passing. If I pass, I pass all

of the cars right in front of me and resume driving at 110 km/h
Analytical (or closed-form) solution: [complicated]
This problem is appropriate for simulation. While it is difficult to find an exact,
analytical solution, it is relatively easy to enter the model into a computer and have the
computer perform 100 or 100 000 “test drives” between Stockholm and Gothenburg.
The average test drive time will be a good prediction of the real-life driving time.

5

2. Theory

2.1.2 Modeling
A model can be defined as a representation of a system for the purpose of
studying the system (Banks et al., 2001). This includes physical models such as
model airplanes and architectural models, as well as mathematical models such
as the two car-trip models in Table 2-1. Important special cases of mathemati-
cal models are conceptual models, which focus on describing objects in a system,
their attributes, and their relationships to other objects.

According to the general definitions of modeling and simulation, there is at
least one simulation for every model and at least one model in every
simulation.1 For computer-based simulation, however, this is not true—some
models cannot be incorporated in computer simulations. Furthermore, for
some models that can be computer simulated, simulation is not an appropriate
method at all. The case where an analytical solution is readily available has
already been mentioned; cases where simulation would be too expensive or too
imprecise are relevant as well.

The converse of the above statement is definitely true, however—there must
be one model (at least) for every computer simulation. This model must be a
mathematical model of the process the simulation aims to represent. Besides
being mathematical, the model may either be dynamic or static, deterministic
or stochastic, discrete or continuous. See Banks et al. (2001) for explanations
of these terms in the context of simulation.

Certain computer-based simulations include not only computers but also other
equipment and humans. This inclusion expands the range of models that can
be incorporated in computer simulation. If a traffic planner for example wants
to study the safety effects of cell-phone conversations in cars, she cannot do so
using only computers since it is difficult to find a valid mathematical model for
human behavior in this situation. Neither can she perform real-life experiments
with this question since it would be dangerous. However, by using a computer,
an arcade-game style car-simulator, and a person, this complex system can be
successfully simulated. This simulation would include actual equipment (a real
cell-phone might be used), physical models (a mock-up hands-free and mock-
up steering instruments), mathematical models (the driving simulation
program), and a human being.

Generally, involving people and equipment in simulation can offer two
benefits: the ability to accept input from entities that would be difficult to
model mathematically, and the ability to include real entities or physical model
entities which possess specific physical characteristics that are relevant to the
simulation.

Since model-building is such an important part of constructing simulations,
many include it when describing simulation as an academic field. When this
thesis refers to simulation as a field, others may equivalently have referred to
modeling and simulation, or M&S.

1 Actually, since the simulation definition refers to “imitation over time”, so called static models
cannot be associated with a simulation. Dynamic models, however, can always be associated with
a simulation.

6

2. Theory

2.1.3 Distributed simulation and parallel simulation
The terms distributed simulation and parallel simulation are related but not
equivalent. Distributed simulation can be defined as “a single ‘run’ of a
simulation program across multiple processors” (Fujimoto, 2003, p. 124).
Parallel simulation refers to running distributed simulations with the objective
of maximizing execution speed, often on a tightly coupled computer system
such as a supercomputer or a shared memory multiprocessor (Fujimoto, 2003).
Parallel simulation can also be executed on clusters of workstations, although
this is still relatively uncommon.

Fujimoto (2003) discusses two other motivations for distributed computing
that exist alongside the motive of speed. One motivation concerns making
simulations distributed in order to integrate simulation entities that cannot be
practically put on a single machine because of geographic separation. This
applies primarily to distributed interactive simulation (refer to 2.1.4), where
people and equipment participate in the simulation and the people and the
pieces of equipment may be located far apart. An example of this is a
simulation for military training where a commander may be located by a
computer, responding to simulated enemies, while a group of air-force pilots
are interacting with the simulation from inside their flight simulators at a
different location. A second example might be kids playing multiplayer online
games simulating adventure or action scenarios.

Another motivation for distributed simulation arises when security concerns
prevent simulation entities from being moved to a single machine. This applies
in military simulations (and possibly in some business simulations) where the
internals of simulation models may contain highly sensitive data. For example,
a distributed military simulation may be run by a field commander who wishes
to evaluate the effects of calling for air-support or for a cruise-missile strike.
The model describing airplanes may be stored in an aircraft carrier computer
system whereas the cruise-missile model may be stored at an air-command
center. These models will contain sensitive internal data that should not be
downloaded to the field-commander’s workstation, for risk of falling into
enemy hands.

2.1.4 Distributed interactive simulation
There are three basic types of computer-based simulations (referred to as
“simulations” in the remainder of this thesis). Most of the simulations
discussed thus far are pure simulations (Zhao & Georganas, 2001). Pure
simulations may be either distributed or non-distributed. Within distributed
simulations, one may define the two subcategories people-in-the-loop simulations
and equipment-in-the-loop simulations (Zhao & Georganas, 2001). These have been
introduced in previous sections and will be made more rigorous in the present
section. The two terms are collectively termed distributed interactive simulations
(refer to Figure 2-1 for a graphical classification scheme).

Pure simulations are simulations where the computer is solely responsible for
determining and maintaining system state and for generating successive
simulation events. People interact with the simulation only by supplying initial

7

2. Theory

parameters (possibly), starting the simulation, and inspecting simulation results.
If the Stockholm-Gothenburg driving example above were to be simulated, it
would be a pure simulation.

People-in-the-loop simulations allow human users as well as the computer to
generate simulation events. Training simulations are nearly always of type
people-in-the-loop. Humans may be connected to the simulation via Virtual
Reality simulator studios, vehicle simulators (such as the ones used in pilot
training), a PC, or a more limited interface device such as a GPS transmitter.

Equipment-in-the-loop simulations contain at least one piece of actual
equipment connected to the simulation. The piece of equipment may respond
to input from computer-generated simulation entities, or it may itself generate
events. Examples include airplane instrumentation testing, radar station testing,
weapons development and weapons testing.

The three simulation types can be found in combination as well.

Simulation

Computer-
based

simulation

Distributed
simulation

SIMULATION
CLASSIFICATION CATEGORIES

Non-distributed
simulation

Non-computer
simulation

(simulations w/
physical models or

pen-and-paper
simulations)

Distributed
interactive
simulation

Man-in-the-loop
simulation

Equipment-in-
the-loop

simulation

Distributed pure
simulation

Non-distributed
pure simulation

Figure 2-1 Names for different categories of simulations

2.1.5 How simulations are built
Computer simulations can be constructed using general-purpose programming
languages, specialized simulation languages, or integrated simulation
environments.

8

2. Theory

General-purpose languages such as Java, C, or C# give the programmer full
flexibility regarding how to represent models and how to define event
generation and event handling.

Specialized programming languages such as GPSS make simulation program-
ming more efficient by providing programmers with a range of ready-made
simulation constructs. They also provide event-scheduling algorithms, statistics
tracking and report generation (Banks et al., 2001). Some of these services are
offered in libraries to general-purpose languages as well.

Integrated simulation packages such as Arena, AutoMod, Quest, Extend,
Taylor ED, and Witness grant the programmer yet more efficiency at the cost
of some flexibility (Banks et al., 2001). These packages contain numerous
models and even complete simulations, for the user to build from. Often, a
graphic user interface allows users to manipulate simulation parameters,
combine simulation elements, and inspect 2D and 3D graphical views of
simulations. In some cases, packages let users access and modify the actual
code that makes up simulations. This may be Java-code, GPSS-code, or code in
a proprietary package language. Packages that offer this option constitute no
sacrifice of flexibility.

2.1.6 High Level Architecture (HLA)
As discussed above (2.1.5), simulations may be built using many different
languages. Even simulations implemented in the same language can be very
different with respect to methods of constructing models, states, events etc.

The High Level Architecture (HLA) defines a framework for component-based
simulation systems (Kuhl, Weatherly, & Dahmann, 1999). The goal of the
HLA is to provide interoperability between simulations implemented in
different languages and/or using different methods. A “happy side effect”
(Kuhl et al., 1999, p. 20) of the quest for interoperability is that the HLA also
provides extensive support for distributed simulation. A second happy side
effect of interoperability is the possibility for recombination and reuse of
simulation components.

Below are a few important points about the HLA are presented, taken from
Kuhl et al. (1999). For a complete discussion, refer to this standard work.

 The HLA is a software architecture.
 The HLA prescribes how software for certain parts of a simulation

program should be written in order to enable the simulation to inter-
operate with other simulations.

 The HLA defines the interface of a support system called the Run-time
infrastructure (RTI). An RTI is assumed to be present when HLA simula-
tions are run.

 The HLA is not the RTI, nor does the HLA provide it, nor define its
implementation. The HLA defines RTI interface, and RTI implementa-
tions are provided by various independent vendors in various lan-
guages.

9

2. Theory

The HLA introduces various terms for its architecture elements. The following
is a summary of the most important terms taken from Reid (2000, p. 2):

 Federate: An individual simulator application or executable compo-
nent. These are the independent simulators, which the HLA integrates
into a larger collaborative simulation.

 Federation: A simulation composed of two or more (often many
more) federates integrated together.

 Federation execution: A session in which a federation is running,
usually as a distributed system.

 Federation Object Model: The common object model that describes
the data shared between federates within the federation. […]

 Simulation Object Model: The object model that describes the data
that an individual federate shares with the federation. It also contains
some other interfacing information about the federate. In some ways,
the FOM is a subset of the collection of SOMs defined for the various
federates in the federation. […]

 Object: In a conceptual sense, an HLA object is an entity that the
simulation models. HLA objects represent “actors” that play in the
simulation. In a literal sense, an object is a container for shared data
that are created by a federate during the federation execution and per-
sist for the duration of the federation execution or until deliberately de-
stroyed. The FOM defines all classes of object and any federate that
wishes to publish or subscribe to an object must also compatibly define
that object in its SOM. HLA objects store their data in attributes.

 Interaction: An HLA interaction is essentially a broadcast message
that any federate playing within the federation execution can send or
receive. […] Interactions carry their data in parameters.

 Runtime Infrastructure (RTI): The software that implements the
HLA interface specification and runs the federation execution.

 Object Model Template (OMT): The standard template used for
defining the form, type, and structure of the data shared within the
federation and for some other interfacing information. All FOMs and
SOMs are documented in accordance with the OMT. […]

As mentioned above, the RTI provides various services for federates. These
services come in six classes, which are described as follows in Moradi & Ayani
(2003, p. 465):

 Federation management: Provides functions for creating, modifying,
controlling and destroying a federation execution. After creating a fed-
eration execution, federates join and resign the federation as they wish
as long as it serves the purpose of the simulation.

 Object management: Federates create, modify, or delete objects and
interactions through Object management services.

 Declaration management: Provides federates with the ability to
express their intentions or interests in publishing or subscribing to ob-
ject attributes and/or interactions.

 Time management: Provides a flexible and robust means to co-
ordinate events between federates.

10

2. Theory

 Ownership management: Provides federates with the possibility to
exchange ownership of object attributes among themselves.

 Data distribution management: Provides mechanisms for efficient
routing of information among federates.

The HLA was developed by the Defense Modeling and Simulation Office
(DMSO) of the United States Department of Defense. It is a successor to a
more limited DMSO simulation framework called Distributed Interactive
Simulation (DIS). Since 2001, all American military simulations are required to
be HLA-compliant. Since 2000, the HLA is also a civilian IEEE standard
(IEEE 1516) and the DMSO is working actively to achieve a technology
transfer of the HLA to civilian actors and to promote HLA use in civilian
applications. The HLA has not yet had its breakthrough in civilian applications,
however. Some believe this is because the main services of the HLA
(interoperability, distribution-support for simulations with secret internals) are
primarily geared towards military needs, and are not worth the overhead in
civilian applications. Others believe that civilian simulation is bound to grow
significantly and that now that a strong civilian standard exists, the HLA will
satisfy an emerging demand for reusability and interoperability in simulations
in business, university, and entertainment (Kuhl et al., 1999).

2.2 CSCW, computer-supported
collaborative work

This section describes the relatively young research field labeled computer-
supported collaborative work. It gives a definition and summarizes major
considerations within the field.

2.2.1 Computer-supported collaborative work definition
The conventional meaning of computer-supported collaborative work is
obvious—using a computer to perform tasks in cooperation with others. Since
the middle of the 1980s, the term also has a more specific meaning as the name
of a multidisciplinary research field focused on this activity. In this role, the
term is often abbreviated CSCW. One definition of CSCW is the following:

“[CSCW is] an endeavor to understand the nature and characteris-
tics of cooperative work with the objective of designing adequate
computer-based technologies.”

(Bannon & Schmidt, 1991, p. 3)
In this thesis, the acronym CSCW will be used both in the sense being of a
research field and in the conventional sense. Hopefully, context will make
reference intentions clear.

2.2.2 Modes of collaborative work
Computer-supported collaborative work can occur in four modes (refer to
figure 2.2).

11

2. Theory

”Hot-seat
computer”

Specialized
CSCW-

tools
E-mail

Computer
with two

mice

Asynchronously Synchronously

Lo
ca

lly
D

is
tri

bu
te

d

Communication happens...

Ap
pl

ic
at

io
ns

 a
re

 ru
n.

..

Figure 2-2 CSCW-tools may work in four different modes

Asynchronous, local collaboration would occur if two people were to try to
collaborate on a project using a single personal computer, continually swapping
seats at the keyboard. Little research is devoted to this mode of CSCW.

Collaboration with distributed applications employing asynchronous communication is a
more common phenomenon. It includes e-mail—which of course is based on
users having separate, distributed e-mail clients and where users communicate
asynchronously (i.e. after sending a message, users do not have to wait
passively for a response but can carry on with other activities). It also includes
many internet software development projects, where users collaborate with
software such as CVS to typically produce competitive, open source code. This
type of CSCW has received some research attention (eg. Yamauchi et al., 2000;
Bowen & Maurer, 2002), and certain findings are presented below (see section
2.2.5).

Collaboration with local applications based on synchronous communication is another
area being researched. The type of system called Single Display Groupware,
especially, is being studied by various researchers (eg. Tse et al., 2004; Tollinger
et al, 2004; Stewart, Benderson, & Druin, 1999). Single Display Groupware is
based on several users having individual input devices to a single computer or a
single interactive table top. Users can immediately see and react to other users’
actions, so communication is synchronous.

The focus of this thesis lies on the fourth mode of CSCW, which concerns
synchronous, distributed collaboration. This is the bottom right quadrant of Figure
2-2. This mode of software includes general Groupware and CVEs, which will
be discussed next. When the present chapter mentions CSCW-software, it
focuses primarily on the synchronous, distributed category.

2.2.3 Groupware and CVEs
Computer systems designed to support CSCW are often labeled collaborative
systems or groupware (Prakash, Shim, & Lee, 1998). Groupware comes in many
different forms, including full-fledged 3D-implementations where users can
inter-act in virtual reality worlds.

12

2. Theory

Groupware featuring 3D are commonly known as Collaborative Virtual
Environments (CVEs) and has attracted substantial attention in years past in
parts of the CSCW community (Churchill, Snowdon, & Munro, 2001; Zhao &
Georganas, 2001). However, a recent trend has been to move away from 3D in
favor of “toolbar and 2D community products” (Churchill et al, 2001, p. 100),
particularly in business-oriented groupware.

2.2.4 CSCW in practice
Eseryel et al. (2002) list tools supporting CSCW. The most successful tool by
far is electronic mail. Although e-mail might not match most people’s
definition of groupware, it is an enabler of CSCW and it outclasses other
CSCW-tools with regards to usage volume and impact. Other tools are:

 Domino Office Procedure System
 Lotus Notes
 Xerox Docushare
 SevenMountains Integrate

(Eseryel et al., 2002)
These systems fulfil the requirement that “an integrated CSCW-system should
address four basic areas of concern: Communication, Collaboration,
Coordination, and Control (Ganesan et al., 2001)” (Eseryel et al., 2002, p. 131).
Some newer systems that also fulfill the requirement are:

 eGroupware
 XOOPS Dynamic Web CMS
 CVS (limited Communication support)

Examples of systems that address only a few of the areas, but still qualify as
CSCW-tools are:

 e-mail
 Microsoft NetMeeting
 ICQ
 MSN Messenger
 LAN/WAN file sharing capabilities

2.2.5 Various results from CSCW research
CSCW uses results and methods from a range of disciplines including the study
of distributed systems, communication, human-computer interaction, artificial
intelligence and social theory (Severinson-Eklundh, 1998). The remainder of
this section will describe some research results that may be relevant to the
forthcoming discussion.

The conclusion of Eseryel et al. (2002) that communication, collaboration,
coordination, and control are important aspects of CSCW systems has already
been mentioned. Furthermore, many authors place additional demands on
“communication” by claiming that CSCW-systems need to afford their users
awareness of each other, and of each other’s actions (Prakash et al., 1998;
Churchill et al., 2001; Li & Li, 2002).

13

2. Theory

It is also seen as important that users trust that other users share their view of
the collaborative work area (Churchill, 2001). This is succinctly communicated
with the term WYSIWIS (what-you-see-is-what-I-see). Under certain
circumstances, however, this requirement must be relaxed in order to allow
personalized screen layouts, particularly if users collaborate with differently
sized devices (Marsic, 2000).

Regarding actual instances of collaboration, Ahmed, Kumar & Tripathi (2003)
have observed that the success of collaborations is not merely a technological
matter. They find that collaboration users, just as people in many other
settings:

“may compete to maximize their personal gains. A user can only
be trusted to maintain integrity of collaboration entities […] if
he/she has vested interest to do so”

(p. 1)
In synchronous distributed CSCW (refer to Figure 2-2), consistency issues
have been widely studied. Consistency issues deal with the problem of how to
maintain shared data up-to-date with all users. Two approaches exist:
centralization (client-server) or replication (peer-to-peer). The conclusions on
centralization versus replication in CSCW mirrors conclusions from general
distributed computing; centralization is easier to implement and performs
faster for certain operation (eg. searches) whereas replication is more fault-
tolerant and faster in other capacities (eg. data manipulation when data is
administrated close to the local machine) (Prakash et al., 1998).

Furthermore, CSCW-researchers have identified a number of subtle human
capabilities that come naturally in co-located collaboration but that risk being
lost when people collaborate remotely via computers unless they are addressed.
This includes the ability to rapidly survey what people around you are doing
and whether they are available, the ability to engage in unforced social contact,
and the ability to politely dismiss people when one is busy (Churchill et al., 2001).
Catering to these capabilities, and similar ones, is an important design element
in synchronous distributed CSCW software.

Research on online open source software development, a special case of
asynchronous distributed CSCW, has identified some success factors in this
type of “narrow band” collaboration. Various effects stem from the fact that
work precedes coordination. Typically, collaborators read “ToDo-lists”, then
individually complete tasks they choose for themselves, and finally submit
work for integration with the main project. This stands in contrast with
conventional work organization, where coordination precedes work. It has
been found to encourage innovation, spontaneity and new member recruit-
ment; and discourage procrastination. Narrow band media has also been found
capable of affording effective and efficient communication when used wisely
(Yamauchi et al., 2000).

Finally, it has been emphasized that CSCW systems need to prevent cognitive
overload in users, that they need to be concerned with user security and user
integrity, and that they need to be scalable.

14

2. Theory

2.3 New applications of
simulation and CSCW

This section will give a brief account of some previous work that has been
done with the objective of introducing CSCW into simulation. It will also look
at previous efforts to extend the simulation architecture HLA to other
purposes than simulation.

2.3.1 Example of a collaborative simulation application
Ayani & Dharma (2003) implemented a web-based collaborative educational
simulation application. The application allowed multiple users to chat, and to
view either a CPU-caching simulation or a two-server queuing system
simulation. Only the initiator of each session could modify simulation
parameters and control simulation flow.

The application did not use a ready-made architecture such as the HLA but
constructed its own client-server architecture for messaging and synchroniza-
tion. Clients were Java applets that displayed simulation state and handled user
messaging. The initiator’s client was the one that actually computed simulation
state and forwarded state information to the server. The server was a Java
process that received chat messages (from all users) and simulation messages
(only from the initiator), synchronized those messages, and forwarded them to
clients. TCP/IP was used as communication protocol.

2.3.2 Example of extending HLA to gaming
Vuong et al. (2004) designed and implemented an ambitious framework for
multiplayer online gaming on top of the HLA. The framework features a
server-based game lounge which players can log on to from PCs or cell
phones. In the lounge, players can chat and launch games. The framework also
features a test implementation of a chess game, and an implementation of a
membership server which keeps records of all members and all completed
game results.

The framework, which its authors label Scalable Collaborative Environment, utilizes
an HLA RTI for communication between game players, observers and
membership servers. The players’ client application and the observers’ client
application are partly implemented as HLA federates, and game sessions are
partly implemented as HLA federations. The RTI handles transport, traffic
filtering and synchronization.

2.3.3 Example of extending HLA to virtual shopping
Zhao & Georganas (2001) implemented a collaborative virtual shopping mall
using the HLA. The shopping mall was represented as a virtual environment
with 3D, person-like avatars representing shoppers and with various 3D
objects representing shopping items. Shoppers were implemented as HLA
federates and shopping sessions were implemented as HLA federations.
Communication was handled by an HLA RTI.

15

2. Theory

The authors go on to make a thorough evaluation of the HLA as an enabler of
collaborative virtual environments. Conclusions include the following.

 The HLA can provide a shared sense of space for collaboration par-
ticipants though its federation concept.

 The HLA can support awareness though its Object Management
service.

 The HLA shows “acceptable performance” in supporting a shared
sense of time. Data Distribution Management services are helpful in
reducing response time. However, question marks linger for HLA per-
formance over the internet.

 The HLA supports dynamic entries and exits to the collaboration
through its Federation Management service. However, there is one
limitation: any special characteristics in an arriving collaborator must
have be predefined in the FOM in order to be used.

(Zhao & Georganas, 2001, p. 19-20)

16

4. Design

3. Method
The present investigation employed various methodologies. This chapter is a
brief account of some of these.

The duration of this Master’s project was twenty weeks. It involved a literature
review, informal interviews (predominantly with personnel at the Swedish
Defence Research Agency and the Royal Institute of Technology), spiral-model
software design, demo implementation, and performance testing. Performance
testing compared the speed of Run-Time Infrastructure (RTI) communication
with the speed of regular socket communication, and was performed in a mini-
lab setting at the Defence Research Agency.

3.1 Progress of work
The thesis work consisted of four major tasks: literature review, application
design, application implementation, and performance/feasibility experimenta-
tion. The four tasks were intermingled over the course of the project. Method
considerations for three of them will be described more closely in the
following subsections.

3.1.1 Application design
The design effort was aimed at providing a complete design solution for the
collaborative framework application that is proposed in this thesis. Particular
focus was given to design of the management of users in group constellations.
Design was largely an iterative process, although the better part of the design
effort was completed before implementation started. For presentation of the
design solutions, the applications Microsoft Visio and Eclipse 3.0 with the
hyperModel plug-in were used.

3.1.2 Demo implementation
The present thesis includes a demo implementation of the system it proposes.
The primary purpose of the demo implementation is to demonstrate feasibility
and to provide a code-foundation for performance testing. As usability and
GUI-development were not primary concerns, only limited user tests were
performed.

The demo application was implemented in Java Standard Edition. Some
incompatible code caused the project to be released in two versions: one for
JRE 1.4.2 and one for 1.5.0. The demo application is included in the CD-ROM
distributed with original prints of this Master’s report. Look for the CD-ROM
in the pages directly following the reference list.

17

4. Design

3.1.3 Experimentation
Approximately two weeks were spent on performance testing. This task was
completed in collaboration with a related Master’s project by Liljeström (refer
to Figure 1-1). The objective was to compare the speed of HLA RTI
communication with direct, low-level socket communication. The intention
was not to find the true speed of an HLA RTI, but rather to find how the RTI
performs relative to a standard socket method of communication under a
variety of conditions.

The experiment was set up around point-to-point communication on pairs of
PC:s on either a dedicated, single switch LAN or on a shared LAN with
interfering traffic. Two pairs of PC:s were used, one pair of medium
performance machines and one pair of high performance machines.

In several test sessions, a custom-made Java test program at machine A sent
messages of various sizes, in various quantities, to another test program at
machine B. In some tests, machine B returned the message upon reception
while in other tests, machine B was set up to simply time reception intervals.
The HRTimer package (Roubtsov, 2002) was used for precision timing.

Experiments were carried out at facilities of the FOI Swedish Defence
Research Agency, and results are presented in Chapter 6.

18

4. Design

4. Design
This chapter will present a design solution that addresses the questions and
conditions presented in chapter one (re-listed in Table 4-1). Chapter 5 will
describe how a portion of the design solution was implemented.

Table 4-1 Re-listing of the principal design parameters from chapter 1

Key design conditions
1. Employ a pluggable collaborative tool architecture
2. Manage groups for collaborations
3. Define an XML group information model
4. Employ peer-to-peer architecture
5. Use the High Level Architecture for distribution support

Key design questions
1. What kinds of distribution support will be enlisted by the HLA?
2. How will consistency be ensured in the collaboration?
3. How is a collaborative group defined?
4. How should definitions of collaborative groups be maintained?
5. How should logins and logouts to/from the collaboration be handled?
6. How should the interface to tools look, concerning general functions?

o Handled in a parallel FOI/KTH study authored by Liljeström

In section 4.2, explicit answers will be given to key design questions 1 through
5. Before that, Section 4.1 discusses design at a more general level. This
discussion will present how the key design conditions were satisfied and it will
reveal the overall rationale behind the selected design solution.

4.1 Preliminary design findings
This section discusses key design conditions and design
rationale by delving into how certain central issues were
resolved and by presenting two use cases that were developed
early in the Master’s project.

Human user
participating in a

Collaboration

To
ol

 1

To
ol

 2

To
ol

 ..
.

To
ol

 N

M
em

be
rN

od
e

Service A

Service B

CC

4.1.1 General features of design solution
Design conditions require a peer-to-peer system. The peer
module in the selected design solution was given the name
Collaborative Core (CC, Figure 4-1). The CC collects the various
services offered to collaborations, and it is the unit where one

Figure 4-1 CC
The centerpiece of the proposed software is a peer-to-peer module
called Collaborative Core (CC). CC offers various collaboration
services and supports the plugging in of collaborative tools.

19

4. Design

plugs in specialized collaboration applications such as collaborative versions of
Emacs, Paint or Word. Such collaborative applications will be referred to as
Tools in the remainder of this design presentation.

The principal service offered by the CC is transparent communication with
other CCs, in order for users to collaborate. A user who is collaborating with a
determined group of other users is said to participate in a Collaboration.

The CC provides communication through an HLA Run-Time Infrastructure—
which was a condition of the design specification. The vices and virtues of
using an HLA RTI will be examined in chapter 6. Two models were
considered for organizing the RTI communication. One was to use a single
HLA federation for every Collaboration that a user participates in (Figure 4-2).
This implies that a user’s CC contains one single federate. In HLA simulations,
as mentioned in 2.1.6, federates are computer processes that may represent one
or more simulation objects, or an entire simulation. The federate has access to
various types of support for communicating with other federates. In the CC, a
federate is not a simulation, but it makes heavy use of said communication
support.

The option of having a single, general-purpose federate was ultimately
discarded. Handling traffic from an unknown number of federates while at the
same time managing group functions would lead to a complex design, without
significant associated gains in performance.

The model that was in fact selected is presented in Figure 4-3. This model is
based on coupling every Tool with an instance of a small generic Tool-
federate. It also employs a specialized federate for group functions (detailed
below). Group management occurs in the CCFederation, which is formed by the
set of online MemberNode federates.

Figure 4-2 Communica-
tion based on a single
general-purpose federate
at each client

20

4. Design

Figure 4-3 Communication based on several federate instances at each client
Each client has a specialized MemberNode federate (for group-management
communication) and several instances of a generic Tool-federate (for Tool
communication).

4.1.2 Multiple collaborations
Before going into how the key design questions were answered, an account will
be given of how the proposed design handles participation in several
Collaborations. This refers to the situation where a person may be in a
collaborative session with her project colleagues while she is simultaneously in
a different session with a group of union representatives. The selected design
solution is to spawn one CC for every Collaboration dynamically (Figure 4-4).
A structure called CollabFrame charged with managing the several CCs is
introduced in the layer closest to the human user.

Multiple Collaborations may exist in one RTI, or may exist in separate RTIs.
As mentioned above, an RTI is somewhat similar to a distributed operating
system and it may be set up on several computers on a Local Area Network, or
on several computers connected via the internet. The RTI offers synchroniza-
tion and data transmission services to its connected computers. All users in a
collaboration session must be connected to the same RTI to be able to
communicate (refer to Figure 4-4 and Figure 4-5).

21

4. Design

Figure 4-4 Multiple Collaborations, multiple RTIs
When a user such as Jane participates in several Collaborations at once, the
CollabFrame transparently runs one Collaborative Core for every simulation. The
several Collaborations may use separate Run-Time Infrastructures, or they may share
an RTI (as in Figure 4-5).

Figure 4-5 Multiple Collaborations, single RTI
In this situation, two Collaborations run on the same RTI. To users, and to (nearly) all
parts of the various CCs, this situation is equivalent to the one in Figure 4-4.

4.1.3 Format of Tool support
Designing a Tool plug-in framework has thus far in the discussion been an
unequivocal condition of the study. An exact mechanism for actual Tool plug-
in is discussed at length in Liljeström (2005), and straightforward results are

22

4. Design

produced. Certain design elements of the Tool interface were subject to
discussion between the present author and Liljeström, however. Specifically, a
choice had to be made between a framework supporting several modes of Tool
operation, and a more general framework that defers some complexity to
Tools. The question essentially concerned whether the framework should be
intelligent regarding both Tool status and Tool events.

It was seen as clear that the “matter” of a Collaboration, in analogy with a
distributed simulation, is made up of (1) the application states in all clients and
(2) of the events that are exchanged between clients. The collaborative frame-
work must hence have the capacity to relay events between collaborators, and
the capacity to transmit the status of one collaborator to another, for example
when a new user arrives, and support for saving client states. This implies a
certain level of intelligence regarding states. Does the framework need this
level of intelligence regarding events as well? That is: does it need to be able to
interpret and store a history of events? The details of this discussion will be
omitted, but among other things, event-intelligence could require as many as
twelve modes of operation for collaborative Tools (refer to Appendix A). This
would relieve Tools of some event-related responsibility but would also place
stricter design demands on Tool developers. Ultimately, it was determined that
the costs of assuming substantial event-related responsibility were greater than
the benefits. Hence the CC design simply accepts state reports (through a Tool
method such as <Object>.getState()), cares for state synchronization and event
forwarding, and defers the brunt of intelligence regarding events to Tools.

4.1.4 Other design considerations
In order to build a solid design foundation, hypothetical use cases were
developed in consultation with the thesis’s FOI sponsor. Conclusions of the
use cases include the following:

 The system would benefit from built-in mini-applications such as a text
messenger and a contact list

 Users should get cues about Tool activity in the Collaboration
 The system must carefully consider user authorization
 The system needs to offer persistent state storage both when users are

online (when peer-to-peer methods can be used) and when users are
offline

Finally, the question of how to enable peer-to-peer based searches for
Collaboration sessions was addressed. The solution for this rests on using an
agreed-upon name for a Federation dedicated to searches. Whenever a user
starts the framework, she transparently joins a Federation Execution named
“__SysFederation”. If no such Federation Execution exists (meaning that no
other users are online), one is initiated. Thereafter, all Collaborations the user
joins are posted in the SysFederation as HLA objects. This enables a newly
arrived user to make a search of online Collaborations by inspecting the
SysFederation’s HLA objects and avoids the need for a central searching service.

That concludes the general look at the design solution. Next, the key design
questions will be answered.

23

4. Design

4.2 Answers to key design questions
This section will explicitly answer the five design questions first outlined in
Table 1-2 and repeated in Table 4-1.

4.2.1 What kinds of distribution support
will be enlisted by the HLA?

The HLA will be utilized for three major distributed functions for the
proposed collaborative application infrastructure: transport management, time
management and data filtering.

Transport management refers to the fact that the application framework relies
on the HLA entirely for data transport between collaborator computers. The
HLA, or specifically, the HLA RTI, is responsible for message passing and to
some extent responsible for data maintenance. The RTI, in its turn, relies on
an underlying network (LAN or WAN) for actual transport. In many
transport-related respects, the RTI performs equivalently to how a socket-
based communication system would perform. A performance comparison
between these two types of systems is presented in chapter 6. In aspects such
as fault tolerance, consistency guaranteeing, and time management, however,
the HLA offers support whereas pure socket-systems do not.

The proposed mechanism for transport management with regards to group
management and Collaboration control—the core tasks for the present
design—relies on HLA interactions. An interaction class with four data fields
(HLA parameters) is defined for this purpose. The fields are sender, messagetype,
receiver and message.

Time management service refers to making sure Collaboration events are time-
stamped and providing support for event-ordering and reliable event delivery.
Time management is often critical in simulation and in certain collaborative
tasks, but not quite as critical in Collaboration control and group management.
The facilities of HLA time management are therefore not leveraged in the
present investigation. For an example of time management implementation in
applications other than simulation executions, refer to Liljeström (2005). For a
discussion of consistency (related to time-management) mechanisms in
Collaboration control and group management, refer to section 4.2.2.

Data filtering refers to discriminating communication data with regards to
recipients. The benefit, of course, is that network traffic is minimized. The RTI
offers a class of services called Data Distribution Management (DDM) that fit
well with this objective. Originally designed to filter simulation events from
simulation objects that are not affected by them, DDM allows a designer to
define the event space in terms of various user-defined dimensions. The
designer may then specify that certain events are only relevant in certain ranges
of certain dimensions. A dimension may correspond to a physical dimension
such as “latitude”, “longitude,” or “altitude”, or a logical dimension such as
“communication priority” or “team affiliation”. Dimension-bound events in a
DDM-enabled federation execution will only be propagated to objects within
relevant dimension ranges.

24

4. Design

The actual filtering logic resides within the RTI implementation, and its
mechanics are not defined in the HLA specification. When a federate at a
certain machine calls on its RTI-stub (RTI Ambassador) to send an interaction
or an object attribute update to a certain region, the RTI then works out which
the receiving federates will be. Certain RTI implementations solve this
distributed-computing task using a centralized approach. This class of RTIs
implements the brunt of the RTIs intelligence in code residing at a single,
central machine and deploys RTI stubs at remaining simulation machines,
mostly concerned with making relays to/from the cental node. With
centralized RTIs, it is clear that the Data Distribution Management does not
perform traffic filtering to its full potential, as every message must first travel
to the central node. Fully de-centralized RTIs that perform traffic filtering at
the actual sources of traffic exist however, e.g. Object Web RTI (Fox,
Furmanski, & Ozdemir, 1998) and Magnetar RTI (Vuong et al., 2004). There
are also hybrid RTIs, e.g. pRTI, which centralize some functions but not
others.

A straightforward DDM-approach is taken to achieve traffic filtering in the
present Collaboration control design solution. User IDs are taken to be
coordinates in a DDM dimension called active-listeners. If non-numeric user IDs
are used (such as by external mandates), a hashed ID number is used. System
events, messages, and other collaboration events that are directed to a
particular set of recipients are then associated with the region composed of the
various relevant locations in the active-listeners dimension. If the execution uses a
distributed RTI-implementation, traffic filtering will then be transparently
carried out at each message source, and network traffic will be minimized.

4.2.2 How is consistency ensured in the collaboration?
Ensuring consistency ranks among the most important tasks in distributed
computing, if not in all kinds of computing. Parts of the HLA are explicitly
geared towards ensuring consistency in distributed simulation, and its facilities
can be utilized for consistency for the present CSCW purposes as well. Two
design options are available:

I. The Collaboration’s work is represented as HLA objects. Communica-
tion in the Collaboration is represented as either interactions or attribute
updates. Consistency support provided through time managed attribute
updates and interaction transmissions.

II. The Collaboration’s work is represented as objects internal to Tools.
Tools must be prepared to on demand reveal their state in an agreed-
upon representation such as XML. Communication in the Collaboration
is represented as interactions. Consistency support is provided through
time managed interaction transmissions.

Option I leverages the built-in HLA capabilities more than option II does, but
in doing so, also ties the CC more tightly to the HLA specification. It also ties
the Tool developer closer to CC technology. It was determined early on in the
Master’s project that such tight couplings were undesirable. Option II was
hence selected for being more component-oriented and more standards-
oriented. Standards-orientation lies in the fact that option II merely requires

25

4. Design

Tools to be able to reveal their state as XML at certain times, whereas option I
requires Tools to constantly store their state as HLA objects. Figure 4-6 and
Figure 4-7 expand on the idea of reducing requirements on Tool designers.

Figure 4-6 Simple model for distributed ap-
plications
The figure shows a simple four-category break-
down of the principal logical elements that
make up a distributed application.

Logic

Data:
HLA objectsUI

Communication

Logic

Data:
HLA objects UI

Logic

Data:
custom/XMLUI

Communication

Logic

Data:
custom/XML UI

CC influence CC influence

Tool Tool Tool Tool

Figure 4-7 A Tool designer’s perspective on option I and option II
If the CC requires Tool data to be represented as HLA objects as in option I, Tool
developers’ design freedom is undercut without an associated significant decrease in
workload. The right part of the figure attempts to illustrate option II influencing (i.e.
imposing requirements on, or assuming responsibility for) communication but leaving
the Tool designer greater freedom with regards to application logic and data
representation.

The discussion of this section so far has addressed the question “how is
consistency ensured in the collaboration” in the sense of consistency with
regards to internal collaboration data. Consistency is a key issue with regards to
Collaboration metadata as well, even though Collaboration metadata undergoes
less intense modification. The metadata discussion has been deferred since
what the metadata should be has not yet been spelled out. While metadata
contents will not be revealed until the next section, some conclusions can be
drawn on consistency-preserving schemes using an assumed metadata entity.

Using the following assumptions (which section 4.2.3 will confirm as true), one
can draw conclusions on what would be a viable consistency protection
mechanism:

Application logic

Data
re-

presentation

User
interface

Communication

Tool

 Metadata can be completely visible to individual collaborator
 Metadata modifications occur as result of actions of one peer at a time
 Read-write conflicts do not cause fatal errors; write-write conflicts do
 Metadata is modified intermittently

If “intermittently” is taken to mean “typically with intervals of seconds or
tenths of seconds” rather than, say, “every five milliseconds”, the above
enumeration leads to the conclusion that a writer’s lock on metadata will
provide sufficient guarantees for consistency. Such a lock can be implemented
in HLA (Liljeström, 2005).

26

4. Design

4.2.3 How is a collaborative group defined?
The definition of collaborative groups is a central design issue. The definition
consists of the data that a computer would need to have in order to completely
describe a group of people collaborating around some goal. This might be
termed Collaboration metadata or Collaboration Description. The remainder of the
discussion will use the latter term.

The question was addressed in the following two senses:

 What data should the Collaboration Description include?
 What should the Collaboration Description’s life-cycle look like?

The Description’s life-cycle was investigated first, as it has certain implications
for what data to include in the definition. An appropriate life-cycle should
provide support for dynamic creation of groups of people who want to
collaborate, support for groups that are non-transitory and support for live
entry and exit to collaborations without noticeable adverse effects to other
users.

The definitions in Table 4-2 were found useful when designing the Collabora-
tion Description (some of the terms have been used earlier).

Table 4-2 List of terms used in Collaboration design

Collaboration A group of people engaged in a collaborative activity with
each other using some form of supporting software, and
their associated work.

Collaboration Description An object or document containing all the data that define a
Collaboration.

Collaboration session A session of Collaboration activity. In a Collaboration
session, one or several participants are online, intercon-
nected and engaged in collaborative activity through their
computers.

Member A person/user that participates in a Collaboration.
join/resign Collaboration Permanently enter or leave the Collaboration .
login/logout from
 Collaboration

Temporarily enter or leave the Collaboration (such as by
going online or offline).

Tool An application that is used jointly by Members.
Applicant A person who wishes to become Member.
Application Document The document that Applicants must submit when they wish

to become Members.
Collaboration repository Central persistent storage facility for Collaboration

Descriptions and Tool work data. May be implemented as
a folder in a distributed file system.

Using the first few terms of Table 4-2, a powerful scheme for the Collabora-
tion Description life cycle can be constructed. Figure 4-8 shows such a scheme.

How to store the Collaboration Description throughout the life-cycle is
another important design question (one which also will be explored in the
implementation chapter). With this question, two of the design parameters
actually find themselves in a conflict that needs to be resolved. First, it was
stated that the system should support non-transitory Collaborations. This
implies that Collaboration data, including the Collaboration Description, are
preserved even when no Members are directly linked to one another. This, in

27

4. Design

turn, implies that a central storage exists, accessible to all Members whenever
they return to online status and wish to resume a Collaboration. The wish for a
central storage is in conflict with the condition that the design be developed
according to peer-to-peer principles.

Collaboration
does not exist

Collaboration
exists, but no
Collaboration

Session

Collaboration
Session
running

A user creates Collaboration
with certain parameters. She

becomes Member and
creator of the Collaboration

A Member logs into
(starts?) a

Collaboration
Session

A new user joins
(becomes Member of)

the Collaboration

A user logs out of
the Collaboration

Was she
the last online

Member?

A user resigns
from the

Collaboration

Was she the
last Member? YES

NO

YES

NO
Collaboration

terminated

*

LEGEND

 situation

 occurrence

 conditional branch
Figure 4-8 Life cycle of a Collaboration
The figure shows the various stages in a Collaboration’s life cycle.
*At the starred box, the member logging in will start a new Collaboration session if
she is the only Member online. If not, she will enter an existing Collaboration session.

28

4. Design

Figure 4-9 details the storage/maintenance implications for the Collaboration
Description for every stage in the Collaboration life-cycle. The figure mentions
a “persistent storage” that will become necessary whenever no Members are
online. The workaround to the apparent conflict between the peer-to-peer
condition and the persistence preference is to use a distributed file system for
persistent storage. The implementation of a suitable file system is investigated
in Baymani and Strifeldt (2005).

How is the Collaboration
Description maintained?

Collaboration
Description does
not exist yet.

Collaboration
Description
deleted from
central store and
from all peers.

Collaboration Description
in persistent storage.

Collaboration Description
maintained by peers in a
distributed fashion.

Collaboration Description
composed by the
creator’s client.

Collaboration
does not exist

Collaboration
exists, but no
Collaboration

Session

Collaboration
Session
running

A user creates Collaboration
with certain parameters. She

becomes Member and
creator of the Collaboration

A Member logs into
(starts?) a

Collaboration
Session

A new user joins
(becomes Member of)

the Collaboration

A user logs out of
the Collaboration

Was she
the last online

Member?

A user resigns
from the

Collaboration

Was she the
last Member? YES

NO

YES

NO
Collaboration

terminated

*

LEGEND

 situation

 occurrence

 conditional branch
Figure 4-9 Life cycle of a Collaboration and its associated Collaboration
Description
The figure details how management of the Collaboration Description occurs
throughout the life of a Collaboration. The wish for non-transitory Collaborations and
the condition of peer-to-peer design are fundamentally at odds here. The proposed
resolution is to use a distributed file system for persistent storage. Such a file system
for e.g. a collaborative platform is investigated in Baymani & Strifeldt (2005).
* Star explanation in Figure 4-8.

29

4. Design

With the life-cycle of the Collaboration Description established, the question
of what data the Description should include can now be addressed. It is clear
that the description should contain information about the following, at least:

 Members
 Tools
 Current session (or last session, if none is currently running)

The information about Members is to include identification data, settings data
and role data, and the information about Tools is to include version data.

Aside from these basic features, additional sets of data were placed within the
Collaboration Descriptor. These include Member window-data to allow
desktop layout sharing, signup handling data, and Member role data on a Tool-
by-Tool basis. The resulting Collaboration Description is shown in Figure
4-10.

Figure 4-10 Collaboration Description information model
The above is a UML model for the information in a Collaboration Description.
Chapter 5 describes how this model was implemented using XML.

In the above rendering, the Collaboration Description reflects all relevant
information about a Collaboration, except for internal Tools settings and Tool
working material. Handling Tool working material is outside the scope of this
design, but the design might very well be extended to include Tool settings.
This could favorably be accomplished by adding sub-classes to the UML class
tool-usage. Other such extensions are also possible.

30

4. Design

4.2.4 How should definitions of collaborative
groups be maintained?

The maintenance of the Collaboration description is outlined in Figure 4-9.
Recapping, when a Member is offline she has a set of Collaboration Descrip-
tions stored locally. These are used to retrieve connection information and to
connect to (or to start) Collaboration sessions. Once in a session, the Member
receives the most recent version of the relevant Collaboration Description
from one of the online Members. After that, any actions that the first Member
or any of the other Members take to modify the Collaboration Description are
propagated to other Members’s local versions of the Description. An HLA-
implemented circular writer’s lock prevents write-write conflicts.

4.2.5 How should logins and logouts
to/from the collaboration be handled?

The following describes non-authentication related procedures for login and
logout to Collaborations in the present design. As authentication and security
in collaborative systems is studied extensively elsewhere at FOI, these issues
were excluded from the present Master’s project.

In the first step, the Member’s MemberNode federate connects to the
Collaboration session’s group management federation, goes through an
authorization process, and then receives access to the distributed Collaboration
Description. Upon receiving this access, the Member client will set the
attribute collaboration::member::last-login to the present time. If the user was a
Member before, the Collaboration Description will already contain a profile on
the user and data on the Tools she used during her last session. If any of these
items have changed during the time offline, the user’s MemberNode will effect
these changes on the Collaboration Description directly after login.

Next, a number of Tool-instances are launched by the framework. Recorded in
the Collaboration Description, these may be the Tools the Member was using
her last session, or they may be the default set of Tools for her or for the
Collaboration. For each Tool, a ToolFederate is launched and an up-to-date
version of the Tool’s work state is retrieved from the Collaboration session (i.e.
from an online Member). If no Members are online, up-to-date state is
retrieved from a Tool state repository such as a distributed file system.

Logouts from the Collaboration are described in Figure 4-9. If the Member is
last to log out of a Collaboration, the logout process is somewhat complicated.
An up-to-date version of the Collaboration Description must be saved in the
Collaboration repository along with the work state of each individual Tools
that is running. If there is a service breakdown before this operation is finished
(such as if the user powers down without saving), Collaboration work is lost.
To mitigate the effects of this, the CC should feature periodic auto-saves of the
Collaboration Description, executed by peers selected in a distributed fashion.

31

4. Design

If the Member logs out while there are still other Members online, she does
not need to save anything to repository, but she does need to insert the
following into the Collaboration Description:

 The present time (to collaboration::member::last-logout)
 What Tools she is presently using (collaboration::member::tool-usage)
 Windowing information on the Tools she is running and on the client

module as a whole (collaboration::tool::window-instance and
collaboration::member::screen-properties::window-instance)

If the Member suffers a service breakdown or if she fails to seize the writer’s
lock multiple times, outdated information will be reflected in the Collaboration
Description. To mitigate the effects of this, peers should feature automatic
periodic writing of this data to the Collaboration Description.

32

5. Implementation

5. Implementation
This chapter describes the demo application that was implemented based on
the design in chapter 4. The demo application and its corresponding Java
source code package were called ccprototype. Figure 5-1 is a screenshot of
ccprototype in action, showing the framework’s desktop application interface
and a number of Tools. This chapter will describe ccprototype, the ccproto-
type.ccgroupnode sub-package that manages membership traffic, the several
demonstration Tools and the list of requirements the implementation places on
its host system.

Figure 5-1 Screenshot of the demo implementation
Screenshot featuring a Collaboration with two Members (Ove Persson and ms Erika),
using the Tools Boxtool, Participation Panel, Tetris, CollabText and Activity Panel.

5.1 Requirements
Ccprototype places a number of requirements on its hardware and software
environment. This section lists these requirements, briefly describes them, and
briefly comments how they were fulfilled or worked around in the ccprototype
implementation.

33

5. Implementation

Table 5-1 List of ccprototype requirements

Requirement Description Implementation comment
1. Client computers

on an IP network
PCs using any platform that is
supported by the JRE and by
pRTI (see below)

Windows clients and an Ethernet
LAN were used during development.
Tests on Linux clients were
successful.

2. JRE 1.4 or 1.5 Java Runtime Environment. Minimal implementation difference.
Code for both versions is provided.

3. pRTI 1516, v 2.3 RTI software supplied by Pitch
AB.

An FOI license was used during
development.

4. Common network
location

Users in a Collaboration need
read- and write access to a
common network location.

Workaround: local directories on
Collaborators’ hard drives simulated
the network location.

5. User ID system Users of ccprototype must be
associated with a unique numeric
ID.

Not regarded, when logging in the
user chooses any ID she wishes.
Upon collision, the user is notified
and login fails.

6. User authentica-
tion system

Authentication for access control
and encryption policies.

Not implemented, which was
prescribed by thesis parameters.

7. Tool ID system Tools must be associated with a
unique numeric ID (may coincide
with a user ID).

Not regarded, Tool IDs were
manually allocated to the five
demonstration Tools.

8. Tool delivery A mechanism for delivering
Tools to first-time users.

Not regarded, all Tools were pre-
delivered to all user machines.

Item 1 is the only hardware related requirement in the above list. It arises
because the weight of the front end of ccprototype makes it unfit for devices
less powerful than PCs. The design and the remainder of the implementation
(including most of ccgroupnode) are however fully prepared for use on thin
devices such as PDAs.

Items 2 and 3 represent straightforward software requirements.

Item 4 represents a requirement that could be satisfied by a distributed
network. In the present implementation, it was simply worked around.

Items 5-8 represent requirements that the ccprototype places on its environ-
ment. In continuing efforts at FOI, several of these will be implemented, with
the aim of integrating the ccprototype in an evolving system called NetSim.

5.2 ccprototype
The ccprototype has two roles.

I. ccprototype is parent to code for the demo implementation’s front end.
II. ccprototype is the root package for the ccgroupnode package (explained

below) and for demonstration Tool packages. It is also the root for code
packages cctool and net, produced in a parallel Master’s project by Lil-
jeström. Liljeström also contributed to the Tool packages.

This section describes item I while following sections will describe the several
sub-packages referenced in II.

34

5. Implementation

The first component of the front end is a JFrame-based desktop application
(NetSimCollabDemo, refer to Figure 5-2). It is charged with enabling user input
concerning searches for Collaborations, as well as joins, exits, and switches
between Collaborations, and RTI settings management. It implements
management of multiple Collaborations (discussed in 4.1.2) through multiple
JTabbedPanes.2

Figure 5-2 NetSimCollabDemo’s JFrame title bar and JMenu
Detail from Figure 5-1.

Each JTabbedPane contains an instance of the JDesktopPane descendant
CollaborationPane (Figure 5-3). CollaborationPane is charged with
managing the internal windows that house Tools used in the particular
Collaboration. The CollaborationPane also maintains a link to the Member-
Node, which is a central back end component discussed in sections 4.1 and 5.3.

Figure 5-3 Tab for the CollaborationPane of
Collaboration "Projektgrupp R4"
Detail from Figure 5-1.

5.3 ccprototype.ccgroupnode
This section describes the ccgroupnode package, charged with managing the
Collaboration information model. First, the section will specify exactly what
the ccgroupnode does and what it does not do. It will then describe three
implementation highlights: the Collaboration Description, the communication
system and the framework front end components. Section 5.4 contains details
on how the demonstration Tools were implemented.

5.3.1 What it does
The ccgroupnode implements the design described in chapter 4, principally
managing the Collaboration information model and offering membership-
related services. From a user perspective, it specifically carries out the
following:

 Implements services for searching, creating, joining and resigning
Collaborations (see 5.3.5).

 Implements services for reading and writing information about Tools
and Members in specific Collaborations, and other Collaboration prop-
erties (5.3.3).

 Offers specific features in the collaboration framework front end
(instant messaging, desktop layout sharing, presence awareness, activity
awareness) (5.3.5).

 Opens its communication infrastructure to developers who wish to
implement custom content, traffic-filtered communication between
specific users (5.3.4).

2 In this chapter, components implemented as classes are named with fixed-width font.

35

5. Implementation

5.3.2 What it does not do
The following are some examples of what the sub-package ccgroupnode does
not do, with explanations:

 Offer an interface to Tools or manage communication among Tools or
save the work Collaborators perform with Tools. For an investigation
into these questions, refer to Liljeström (2005).

 Offer a complete GUI for Collaborations. Some of this functionality is
in ccgroupnode, but components with strong demo-flavor or compo-
nents that are likely to be replaced or modified in production have
been placed outside the sub-package. Most of these were discussed in
5.2.

 Offer applications that might be labeled “collaborative Word” or
“collaborative Emacs”. As has been mentioned before, this type of
functionality is labeled a Tool in the present framework. Implementa-
tion of Tools in ccprototype are discussed in 5.4.

5.3.3 Collaboration Description implementation
The Collaboration Description is a central entity in the present design. As
explained in 4.2.3, it is the vehicle of all relevant Collaboration information
except for material produced within Tools. The Collaboration Description
takes two implementation forms, each relevant in different parts of its life
cycle. When transmitted via the network or when put in persistent storage, the
Collaboration Description is implemented as XML. For an example, refer to
Table 5-2. When loaded into client computer memory, the Collaboration
Description is implemented as a DOM document wrapped in a ccgroupnode
class called CollaborationDescription. The CollaborationDescription
offers many convenience methods that access Description data, and offers
parsing services to and from XML.

Table 5-2 Example of an XML Collaboration Description

<?xml version="1.0" encoding="UTF-8"?>
<collaboration description="A first prototype cd" id="5" name="Development project group">

 <member last-login="2005-02-08T09:45:28.15Z" last-logout="2005-01-26T16:07:15.91Z" name="Kalle Ank" user-id="32"
 desktop-width="1280" desktop-height="1024" client-run-state="window">
 <tool-usage tool-id="1" role="admin"/>
 <tool-usage tool-id="2" role="admin"/>
 <tool-usage tool-id="3" role="admin">
 <window-instance width="279" height="320" left="839" top="136" tool-run-state="windowed" is-selected="0"/>
 </tool-usage>
 <tool-usage tool-id="4" role="admin">
 <window-instance width="101" height="71" left="450" top="30" tool-run-state="windowed" is-selected="0"/>
 </tool-usage>
 <screen-properties desktop-width="1280" desktop-height="1024">
 <window-instance width="869" height="836" left="372" top="119" tool-run-state="windowed" is-selected="1"/>
 </screen-properties>
 </member>

 <member last-login="2005-02-01T12:38:29.70Z" last-logout="2005-01-26T15:44:36.56Z" name="Abraham" user-id="33"
 desktop-width="1280" desktop-height="1024" client-run-state="window">
 <tool-usage tool-id="1" role="admin"/>
 <tool-usage tool-id="3" role="admin">
 <window-instance width="293" height="320" left="113" top="49" tool-run-state="windowed" is-selected="1"/>
 </tool-usage>
 <tool-usage tool-id="4" role="admin">
 <window-instance width="101" height="71" left="450" top="30" tool-run-state="windowed" is-selected="0"/>
 </tool-usage>
 <screen-properties desktop-width="1280" desktop-height="1024">
 <window-instance width="785" height="679" left="278" top="215" tool-run-state="windowed" is-selected="1"/>
 </screen-properties>
 </member>

 <tool id="1" name="nmvtool" iconpath="C:\ccfolders\network\icons\NMVToolIcon.gif"/>
 <tool id="2" name="boxtool" iconpath="C:\ccfolders\network\icons\BoxToolIcon.gif"/>
 <tool id="3" name="participation-panel"/>
 <tool id="4" name="activity-panel"/>
 <tool id="5" name="tetTool" iconpath="C:\ccfolders\network\icons\TetrisIcon.gif"/>
 <tool id="6" name="tetTool" iconpath="C:\ccfolders\network\icons\TetrisIcon.gif"/>
</collaboration>

36

5. Implementation

Collaboration Description handling is implemented in a somewhat naïve
fashion. Going back to the life cycle from 4.2.4, the Collaboration Description
can exist in three states:

1. Collaboration Description being composed by creator’s client.
2. Collaboration Description maintained by peers in a distributed fashion.
3. Collaboration Description in persistent storage.

In state 1, the Collaboration Description data is being composed by the user in
a dialog like the one in Figure 5-4. When she presses Generate, a Collabora-
tionDescription instance is created and ccgroupnode attempts to launch a
session of the Collaboration. If no Collaboration with identical ID is already in
session on the RTI (no prior collision checks are made), the launch is suc-
cessful and an XML copy of the Description is saved on the local disk. The
CollaborationDescription instance is kept in memory and state 2 is entered.

Figure 5-4 Dialog for creating a new Collaboration with a set of properties

The Collaboration Description is in state 2 whenever at least one user is in a
Collaboration session. The user(s) then have a CollaborationDescription in
memory and an XML Collaboration Description on disk to guard against
crashes. No XML file exists on the network in state 2 (or state 1). Any user
action that prompts a change in the Collaboration Description (name change,
Tool addition etc) causes the user’s ccgroupnode to transmit the updated
Collaboration Description as XML to all other users. Other users then adopt
this data as their Description, replacing the former Description in memory and
on disk. When a user logs out of the session, her exit state (logout time and
active Tool window data) is entered into her CollaborationDescription and
sent as XML to other users, in the same manner as above. If the user was the

37

5. Implementation

last online Member, she saves the Description to persistent storage (see state 3)
and deletes the XML file on her local disk.

Consistency protection for the Collaboration Description was not imple-
mented in the prototype. If this were to be added, a number of options are
available. They would all be are relevant for state 2:

 A writer’s lock, to ensure that users do not concurrently write to the
Collaboration Description

 A detect-and-recover mechanism, based on previously saved Descrip-
tions

 A transaction-based system for changes to the Description, possibly
implemented in combination with one of the two previous mecha-
nisms.

State 3 refers to having the Collaboration Description in persistent storage at a
location accessible to all Collaboration members. In the project’s implementa-
tion, persistent storage was implemented as storage in an XML file in a
network directory. To simplify further, an implementation where this folder is
only simulated to be on a network was used. A future full scale implementation
should consider using a location on a distributed network as persistent storage.

5.3.4 Non-Collaboration Description communication
Communication between
components in the present
implementation is outlined in Figure
5-5 and Figure 5-6. Higher-level
objects send data by using
references and method calls to
lower level objects. Low-level
objects send data upwards by using
events and listeners. MemberNode
is an important hub in the
communication system, serving as
interface to both the RTI and the
Collaboration Descriptor, and as
traffic router for messages traveling
upwards from the RTI.

Figure 5-5 The communication

infrastructure in ccgroupnode

ccgroupnode core

«subsystem»
RTI

MemberNode

CollabRTIConnection

Collaboration- Description

ParticipationPanel

ActivityPanel

CCMessageListener

CollaborationPane

MNodeEventFirer

MNodeListener

MNodeListener

MNodeListener

XML-file

Tool N

Tool 1

ccgroupnode classes supporting
the ccprototype front end

col
bo

labtexttool,
xtool, etc

38

5. Implementation

ccgroupnode core

«subsystem»
RTI

MemberNode

CollabRTIConnection

Collaboration- Description

ParticipationPanel

ActivityPanel

CCMessageListener

CollaborationPane

MNodeEventFirer

MNodeListener

MNodeListener

MNodeListener

XML-file

Tool N

Tool 1

ccgroupnode classes supporting
the ccprototype front end

collabtexttool,
boxtool, etc

ccgroupnode core

MemberNode

CollabRTIConnection

Collaboration- Description

ParticipationPanel

ActivityPanel

CCMessageListener

CollaborationPane

MNodeEventFirer

MNodeListener

MNodeListener

MNodeListener

XML-file

Tool N

Tool 1

ccgroupnode classes supporting
the ccprototype front end

collabtexttool,
boxtool, etc

ccgroupnode core

MemberNode

CollabRTIConnection

Collaboration- Description

ParticipationPanel

ActivityPanel

CCMessageListener

CollaborationPane

MNodeEventFirer

MNodeListener

MNodeListener

MNodeListener

XML-file

Tool N

Tool 1

ccgroupnode classes supporting
the ccprototype front end

collabtexttool,
boxtool, etc

Figure 5-6 ccgroupnodes of three collaborators communicating via an RTI

5.3.5 Framework front end components
While most of ccgroupnode is concerned with background information
management, it contains a number of components that are directly visible to
the user. These are the Collaboration Search panel, the Activity panel, and the
Participation panel.

The Collaboration Search panel (Figure 5-7)
enables searching for and joining offline and
online Collaborations. Offline Collaborations
are reached via the Collaboration Descriptions
in persistent storage. Online Collaborations are
reached via their Collaboration Descriptions
posted in the SysFederation (refer to 4.1.4).

Figure 5-7 Collaboration Search panel

The Participation panel (Figure 5-8) shows the user properties of the panel’s
Collaboration and a list of online and offline Collaboration members. Via this
list, the panel allows the user interact with collaborators via instant messages. It
also offers the option of requesting the desktop layout of a remote user. If the
remote user accepts, the requester’s
application window layout becomes
identical to the remote user. This means that
the size and position of the application
window becomes identical (scale-adjusted if
users have non-identical screen resolution),
as well as the size, position, and selection of
internal windows for Tools (including the
Participation panel itself).

Figure 5-8 Participation panel (above) and a
right-click remote desktop request (left)

39

5. Implementation

The Activity panel is a JPanel component (within a JInternalFrame) that gives
a graphical cue whenever there is activity by any collaborator in any Tool.

Upon such activity, an icon for the Tool in question blinks for
three seconds.

Figure 5-9 Activity panel with Tetris and Boxtool icons flashing

5.4 Demonstration Tools
In order to give a hint of future infrastructure applications, three demonstra-
tion Tools were developed. Work on these Tools was shared between the
present author and Liljeström.

CollabTextTool (Figure 5-10) was the first Tool implemented. It is a simple
collaborative text editor, where every letter a user types ends up on all
collaborators’ screens. It does not implement undo or erase funcionality. It
uses MemberNode services to get the full name of the most recent writer to add
it to the typing history (the bottom field).

Figure 5-10 CollabTextTool

BoxTool (Figure 5-11) is a graphical Tool that lets users
collaboratively add and move boxes. While a box is being
moved by one user, another user cannot grab it. BoxTool
is intended to hint at more advanced painting applications
or modeling applications.

Figure 5-11 Detail from Figure 5-1: BoxTool

The Tetris tool (Figure 5-12) is a collaborative version of the game Tetris. The
initiating user starts a server-instance of this game and starts playing it the way she
would play a normal single-player Tetris. Collaborators can then join as clients,

and get to see what happens in the game and get to send
move commands to pieces. The Tetris tool is an open
source Tetris implementation by Cederberg (2003), adapted
for the ccprototype infrastructure by Liljeström.

Figure 5-12 Detail from Figure 5-1: Tetris Tool

40

6. Experiments

6. Experiments
This chapter describes HLA performance tests that were carried out during the
Master’s project. Results show that HLA communication is somewhat slower
than raw socket communication and notably less regular. Disturbance patterns
in HLA communication that invite further investigation are also shown.
Experiments were done in collaboration with Liljeström’s Master’s project.

6.1 Experiment setup and method
Tests were carried out on pairs of computers, where each computer was
equipped with a software test module that could send and receive batches of
test messages and accurately time transmission cycles. Clocks were not
precision-synchronized, but this presented no problem as experiment time was
recorded by only one clock at a time: either the sender’s clock (to time send
message-receive reply cycles) or the receiver’s clock (to time receive reply-receive reply
cycles). Refer to Figure 6-1 for an overview of the experiment setup and to
Table 6-1 for a list of variables that were investigated during the course of the
experiment.

Testmodule

Federate FederationLegend:

Testmodule

Test
message

Reply

Testmodule

Server
socket

Client
socket

Legend:

Testmodule

Test
message

Reply

RTI

Figure 6-1 HLA communication vs. socket-based communication
The figure illustrates the dual machine ‘bounce-back’ experiment setup. In the other
setup that was used, ‘single-direction,’ no reply message was sent.

Table 6-1 Experiment variables and testing intervals
Transmission times for messages in

a batch (dependent variable)
-

Transmission method to use Socket or HLA
Transmission cycle to time Bounce-back or single-direction.
Size of each message in a batch 10 bytes - 16 000 000 bytes
Number of messages per batch 100 or 1000 messages.
Cache control Either the same message was used in an entire batch, or several

messages were used alternately, to counteract caching effects.
Network topology Two or three computers on a reserved 100 MBit LAN or two or

three computers on a shared 32 computer 100 MBit LAN with
interfering traffic.

Test-machine performance Pairs or triples were made out of the following: Three 1 GHz
Pentium III, PCs and one 1.5 GHz Pentium IV PC. All had
Windows XP, 256 MB RAM and 100 Mbit network adapters.

Pause between send intervals. 0 or 50 milliseconds.
HLA-specific variables Transfer type: HLA-Reliable or HLA Best Effort

RTI server setup: On receiving PC or on third PC

41

6. Experiments

Transmission time was the central variable under study. A typical test run
lasted a few minutes and after that time, the duration of every individual
transmission was available in a text file on the initiating machine. The text file
also contained aggregate data on the test. Individual tests were called point-tests
because they tested one point in the nine-dimension space of dependent
variables. Multiple point-tests could be performed in an automatic sequence.
However, it was not feasible to perform tests with parameters modified
according to every possible combination, even with the finite test ranges
outlined in Table 6-1. Therefore, the experiments aimed to identify variables
that had no significant effects on the dependent variables, then test these
variables extensively in limited configurations. If repeated tests failed to reject
the null hypothesis for a variable, the variable was then eliminated from further
study, thereby reducing the dependent variable space by one dimension.

Table 6-2 shows an example of a point-test result file. After collection, text file
data were inserted into spreadsheets for analysis. Certain data were exported to
text-files anew for analysis in a second custom-made program equipped with
capabilities not present in the spreadsheet program. Final results were always
compiled in spreadsheets however, and they are presented in the following
section.

Table 6-2 Example of a “point-test” result file
Experiment data for a 1000-message, single-direction HLA performance test run are
shown. The column “interval” shows the millisecond length of the seven first intervals
between message transmissions. The column “Recv interval” shows the length of the
corresponding first seven intervals between transmission receptions timed at the
receiving machine.
Start Messages Bytes/msg Interval (msec) Medium
Mon Jan 10 18:18:46 1000 650000 0 HLA

size Sandtid, snitt Mottagtid, snitt Mottagtid, tot Sandtid, tot
650000 137.6633918583393 137.77852056358194 137640.74204301834 137663.3918583393

size Sandtid, stdav Mottagtid, stdav
650000 15.340667080921751 39.4946067546835

NON-BOUNCE-BACK RESULTS
Interval Recv interval Cumulative send time Cumulative reception time
129.3376669883728 81.51147699356079 129.3376669883728 81.51147699356079
177.2269937992096 209.63362646102905 306.5646607875824 291.14510345458984
127.31813669204712 130.01903867721558 433.8827974796295 421.1641421318054
129.89695620536804 135.0498456954956 563.7797536849976 556.213987827301
135.08420753479004 127.529616355896 698.8639612197876 683.743604183197
127.44049859046936 87.88463354110718 826.304459810257 771.6282377243042
165.4713099002838 204.4988956451416 991.7757697105408 976.1271333694458
126.83818745613098 130.59341382980347 1118.6139571666718 1106.7205471992493
130.62749600410461 127.22622585296631 1249.2414531707764 1233.9467730522156
127.16644144058228 143.71184062957764 1376.4078946113586 1377.6586136817932
143.68250727653503 88.30759191513062 1520.0904018878937 1465.9662055969238
166.00098609924316 205.9367880821228 1686.0913879871368 1671.9029936790466
128.04895615577698 127.92324161529541 1814.1403441429138 1799.826235294342

•••

6.2 Experiment results
Out of the nine independent variables that were studied, seven could be
eliminated after extensive testing. Modifications of these seven variables were
not associated with significant effects on the set of experiment transmission
times. Eliminated variables are not to be seen as uninteresting, but neither are
they likely to be responsible for the phenomena in the dependent variable
accounted for below.

42

6. Experiments

For each of the seven eliminated variables, a fixed experiment level was chosen
for the tests in the remaining two-dimension independent variable space. The
experiment levels were chosen in ranges that had been previously tested (and
found not to effect the dependent variable) and they are listed in Table 6-3.

Some comments are in order. Transmission cycle time turned out to be not
very different whether the bounce-back or the single-direction setup was used
(refer to Figure 6-1). Neither was it different when, in the single-direction
setup, the remote reception values or the local sending values were used. The
value used for “time” below is “intervals between sequentially sent messages,
in milliseconds”.

The number of messages had no effect on the dependent variable—provided
the number was not small. A slight warm-up effect was recorded, with the first
message in each batch typically being slower than the overall average. This
could alternatively have been controlled by sending uncounted warm-up
messages.

The “pause” variable could not be eliminated. When attempts were made to
pause between transmission cycles, the JVM clock that determined the pause
length turned out to be far less accurate than the experiment’s HRTimer
facility (featuring tenth-of-a-millisecond measurement precision; Roubtsov,
2002). A proper way to study the effects of sending-pauses would be to time
the pauses as well as the sending periods with an accurate clock and to coalesce
these data into an accurate measure.

The presentation uses SI-prefixes; 1 kB = 1000 bytes, 1 MB = 1 000 000 bytes.

Table 6-3 Fixed levels for eliminated independent variables
Transmission times for messages

in a batch (dependent variable)
 -

Transmission method to use Socket or HLA.
Transmission cycle to time Eliminated. Set to single direction.
Size of each message in a batch 10 bytes - 16 000 000 bytes
Number of messages per batch Eliminated. Set to 1000.
Cache control Eliminated. No cache control was used.
Network topology Eliminated. Two PCs on a 100 MBit reserved LAN were used.
Test-machine performance Eliminated. 1 GHz Pentium III computers were used.
Pause between send intervals. Not regarded. Set to 0 milliseconds.
HLA-specific variables Eliminated. Transfer set to Reliable, RTI server run on receiving PC

6.2.1 Initial speed measurements, 400 B - 4 MB
The objective of the experiments was to arrive at a measurement for the speed
of the HLA relative to a direct socket method. Results should hence not be
seen as absolute or exact measures of HLA speed. Experiments regarded both
sockets and HLA as raw communication vessels and did not consider factors
other than speed. Figure 6-2 shows an initial wide-net investigation covering five
orders of message-size magnitude, ranging from 400 bytes to 4 000 000 bytes.

43

6. Experiments

0.1

1

10

100

1000

400 B 4 kB 40 kB 400 kB 4 MB

Message size

Tr
an

sm
is

si
on

 ti
m

e
(m

illi
se

co
nd

s) HLA
Sockets

Figure 6-2 HLA vs Sockets, average sending time (logarithmic), 400 B - 4 MB

10 000 test transmissions in total.

The average transmission speed in the test in Figure 6-2 was 2.9 MB/s for
HLA and 5.7 MB/s for sockets. Large messages were sent with significantly
higher per-byte speed. The greatest difference between the two methods
occurred with 400 byte and 400 kilobyte messages, where sockets were 5.5 and
2.4 times faster than HLA, respectively.

HLA transmissions were fairly variable around the HLA regression line
inserted in Figure 6-3. The 5000 HLA transmissions were on average 36.0
milliseconds off the HLA line while the 5000 socket transmissions were only
off the socket line by an average 1.0 millisecond. The greatest variance within
an individual batch occurred with the 1000 messages in the HLA’s 400 kB
batch (refer to Figure 6-4).

0.1

1

10

100

1000

400 B 4 kB 40 kB 400 kB 4 MB

Message size

Tr
an

sm
is

si
on

 ti
m

e
(m

illi
se

co
nd

s)

HLA
Sockets
Expon. (HLA)
Expon. (Sockets)
LS line, HLA
LS line, Sockets

Figure 6-3 HLA vs Sockets, 400 B - 4 MB, with least-squares regression lines

44

6. Experiments

0

10

20

30

40

50

60

400 B 4 kB 40 kB 400 kB 4 MB

Message size

St
an

da
rd

 d
ev

ia
tio

n
fro

m
 m

ea
n

(m
illi

se
co

nd
s)

HLA

Sockets

Figure 6-4 HLA vs sockets, standard deviation from mean

6.2.2 Finer grain speed measurements
The apparent HLA anomaly at the 400 kB size was investigated further in
higher resolution tests around this level. As before, HLA tests were paired with
socket transmission tests, and message sizes were varied. Figure 6-5 shows an
investigation of socket transmission times for 20 batches of 1000 messages
containing messages ranging from 50 kB to 1 MB.

0
10
20
30
40
50
60
70
80
90

100

50
k

10
0k

15
0k

20
0k

25
0k

30
0k

35
0k

40
0k

45
0k

50
0k

55
0k

60
0k

65
0k

70
0k

75
0k

80
0k

85
0k

90
0k

95
0k 1M

Tr
an

sm
is

si
on

 ti
m

e
(m

illi
se

co
nd

s) Std. Deviation

Average

Figure 6-5 Average socket send time for batch-wise sent messages of varying

sizes.

Figure 6-6 shows a same-sized sequence of point-tests as Figure 6-5 with HLA
as transmission method. The regular linear pattern in Figure 6-5 stands in
contrast with the slightly more irregular linear relationship in Figure 6-6. The
average standard deviation within the twenty socket batches was 1 millisecond
while the corresponding figure for the HLA batches in Figure 6-6 below was
28 milliseconds.

45

6. Experiments

0
20
40
60
80

100
120
140
160
180
200

50
k

10
0k

15
0k

20
0k

25
0k

30
0k

35
0k

40
0k

45
0k

50
0k

55
0k

60
0k

65
0k

70
0k

75
0k

80
0k

85
0k

90
0k

95
0k 1M

Tr
an

sm
is

si
on

 ti
m

e
(m

s)

Std. Deviation
Average

Figure 6-6 Average HLA send time for batch-wise sent messages of varying size

A similar HLA irregularity can be seen in the finer-grain, smaller size tests in
Figure 6-7.

0

5

10

15

10
k

20
k

30
k

40
k

50
k

60
k

70
k

80
k

90
k

10
0k

Tr
an

sm
is

si
on

 ti
m

e
(m

s) Std. Deviation
Average

0

5

10

15

20

25

30

35

40

45

10
k

20
k

30
k

40
k

50
k

60
k

70
k

80
k

90
k

10
0k

Tr
an

sm
is

si
on

 ti
m

e
(m

s)
Std. Deviation

Average

Figure 6-7 Transmissions of messages sized 10-100 kB, HLA and socket

Ten socket test runs are shown left and ten HLA test runs right.

6.2.3 Further investigation into HLA irregularity
To search for patterns in the irregularity of HLA transmissions, several
histogram analyses were performed.

Figure 6-8 shows a histogram for a
single point-test. Based on timing data
for a batch of a thousand 50kB socket
transmissions, it reveals that the typical
transmission took between 5 and 6
milliseconds, with 599 transmissions
falling within this range.

Figure 6-8 Histogram of durations of a
thousand 50kB socket transmissions
Durations are approximately normally distributed.
Figure 6-9 shows a histogram breakdown of an entire sequence of twenty
socket tests (the sequence in Figure 6-5 actually), with the bottom left one
being the 50kB test from Figure 6-8. The figure reveals an apparent linear
dependency between size and transmission time. Furthermore, mean
transmission times for individual batches exhibit approximate normal
distribution.

46

6. Experiments

Figure 6-9 Histograms for 20 socket batches, each of 1000 transmissions

Transmission times appear to be normally distributed and linearly size-dependent.

The HLA-diagram in Figure 6-10 is constructed in the same way as Figure 6-9,
but it reveals a fundamentally different pattern. Most HLA transmission times
exhibit bi-modal distribution, with values clustering around two means instead
of one. Some batches containing larger messages (650 kB and above) even
exhibit tri-modal distributions.

Figure 6-10 Histogram over 20 HLA batches, each containing 1000 messages
The contrast to Figure 6-9 is striking. Distributions are now bi- or tri-modal—e.g. a

typical 200k HLA transmission took either 22 or 92 milliseconds.

47

6. Experiments

0 <= x < 1

50 <= x < 51

Out liers

10k
20k
30k
40k
50k
60k
70k
80k
90k
100k

0

200

400

600

800

1000

For HLA batches with messages ranging from 50kB to 550kB, the spacing
betweens apparent peaks in the bi-modal distribution was studied. Table 6-4
shows the results of this least-variance investigation, and it indicates a stable
between-peak period of 75 milliseconds. Batches of messages sized over 550
kB exhibited less clear-cut distributions. Following the hypothesis that larger
distributions are tri-modal (supported by 650kB, 850kB and 950kB series), the
third peaks can be seen after a second approximate 75 millisecond period.

Table 6-4 Dual subgroup means in each batch (milliseconds)
Each pair of subgroups was formed so that the sum of their respective variances was
smaller than the corresponding sum for any other configuration of subgroups.
 50kB 100kB 150kB 200kB 250kB 300kB 350kB 400kB 450kB 500kB 550kB
Mean 1 5.0 (σ1.2) 10 (σ0.8) 16 (σ0.8) 22 (σ1.0) 24 (σ1.0) 33 (σ3.5) 37 (σ0.8) 42 (σ0.9) 45 (σ0.4) 52 (σ1.4) 56 (σ0.1)

Mean 2 85 (σ12) 85 (σ15) 90 (σ3.6) 92 (σ2.3) 103 (σ4.9) 108 (σ4.7) 114 (σ2.7) 114 (σ2.8) 120 (σ3.4) 125 (σ4.0) 131 (σ8.8)

 Average mean spacing: 75.0 ms Standard deviation (σ) of mean spacing: 2.7 ms

A similar period was observed in
other batches as well. Figure 6-11
shows a series of 10 kB to 100 kB
message batches. Although the
second peaks are less common, the
peak period is similar. Ignoring
series with weak bi-modality (30k
and 60k) or with many outliers
(80k), this sequence’s average mean
spacing is 79 milliseconds with the
Table 6-4 method.

Figure 6-11 HLA histogram, batches of 10-100k

6.3 Experiment discussion
A curious periodicity was observed in transmissions via the HLA RTI. The
pattern emerges with messages in the tens or hundreds of kilobytes. Whereas
direct socket transmissions performed predictably, with an apparent linear
relationship between message size and transmission time, HLA transmissions
performed erratically and, on average, slower.

Closer investigations eliminated cache mechanisms and RTI host overhead as
explanatory variables. Several other variables were eliminated from the
independent variable space for having no or uninteresting effects on speed.
These include the number of messages per test session, transmission cycle
timing variants, network topology, and test-machine performance.

The erratic aggregate data is founded on a periodicity effect best shown in
Figure 6-10 and Figure 6-11. Messages in the 100kB range tend to get delivered
in 10 milliseconds (10 MB/s), but a fraction of messages get delivered slower
(typically in 85 milliseconds, 1,2 MB/s). With larger messages, the fraction of
low-speed transmissions is larger, with a notable turning point at the 500kB
level. Several tests show that when messages grow to sizes of 500kB to 550kB,

48

6. Experiments

the slower transmission time becomes dominant. As messages grow larger still,
a third typical transmission time appears. The spacing between typical
transmission times was observed to be constant at approximately 75
milliseconds.

Discussions with the RTI supplier, Pitch AB, suggest that memory manage-
ment of the Java Virtual Machine (JVM) may be sub-optimal within the
context of pRTI’s large object handling. Repetitions of the study should
consider using different JVMs used, as well as using several different RTI
implementations.

While some simulation applications do not operate with event messages in the
ranges of hundreds of kilobytes, many do. Furthermore, if the RTI simulation
infrastructure is to be extended to areas such as Computer-Supported
Collaborative Work, there will definitely be large message passing and any
performance erraticism with this needs to be investigated.

49

7. Conclusion & future work

7. Conclusion & future work
This chapter presents the Master’s project’s findings along with a brief
discussion of future work.

7.1 Project findings
The project’s conclusion is made up of a number of smaller findings in several
categories. This is due to the fact that the project’s central research issue was
feasibility.

The project’s central finding is that it is indeed feasible to construct a software
platform for collaborative applications using an HLA communication
substructure and an XML information model for group management. This
finding can be structured as follows:

1. A collaborative platform based on the HLA and XML can feasibly be developed.
A. A design centered on the Collaboration concept is theoretically appealing.

i. A Collaboration can be effectively described in an XML data structure.
ii. Collaboration communication can occur in an HLA Federation.

a. Interactions are appropriate transmission vehicles.
b. HLA Objects are appropriate for posting properties.
c. RTI Data Distribution Management can be used for traffic filtering

iii. Peer-to-peer architecture can be used (nearly) throughout the design.
a. Collaboration sessions can be driven entirely by P2P communication.
b. Global Collaboration search can be accomplished in P2P by using a

global Federation with a reserved name (such as “__SysFederation”).
c. Persistent storage of Collaboration properties and work when col-

laborators are offline must be handled with non-P2P methods.
B. An implementation based on pRTI, Java, and XML files has demonstrated

appealing features in practice.
i. Information model maintenance using replicated-state XML files and

“write-all” updates is possible. More sophisticated methods are available.
ii. DOM conversions between XML and a Java representation class (Col-

laborationDescription) were effective when managing and transmitt-
ting the collaboration information model.

iii. Having a number of Collaboration-supporting group services built into
the infrastructure (e.g. to provide users awareness of other users’ pres-
ence and activity) is beneficial.

2. pRTI performance was irregular
A. The infrastructure is not suited for intense collaboration around large objects.
B. The infrastructure is not well suited for heavy transfers such as video feeds. It

can coordinate such transfers, however, and make sure they occur properly in
a dedicated channel outside of the infrastructure.

During the course of the project, one major auxiliary issue arose: item 2 in the
structure above. This was an issue regarding the pRTI’s performance when
handling large pieces of data. The conclusion was that RTI communication
capabilities show potential when compared to a direct socket communication
method, but that performance is poorer and less regular. A joint investigation
into this issue with the RTI supplier yielded the preliminary conclusion that

50

7. Conclusion & future work

irregularities could be due to sub-optimal memory management of large
objects in the RTI implementation’s Java code.

7.2 Future work
The findings tree above is associated with considerable future work, most
notably in implementation. Other items of future work can also be foreseen.

7.2.1 Continuing work on the ccprototype implementation
The mechanism for maintaining the Collaboration Description in a distributed
fashion while doing work on it (item 1.B.i.) can be made more robust by
implementing a writer’s lock to prevent write-write-conflicts. The mechanism
can also be made more efficient by implementing a different distribution
method such as cascaded sending or by adopting a transaction-like mode of
operation instead of updating entire descriptions.

The persistent storage for Collaboration Descriptions could also be refined.
Presently seen as a network location, this storage could alternately be a server
which indexes Descriptions and offers fast-search features and safe-
modification features.

Certain items of work on built-in framework components have also been left
for the future:

 Implementing checks and recovery for corrupted Collaboration Descrip-
tions

 Implementing Tool-initiation ability in the Activity panel
 Implementing a history list of active collaborators in the Activity panel
 Implementing a file-transfer feature in the Participation panel

Lastly, two HLA-related work recommendations are the following:

 Implementing saves of DDM region handles in memory once they have
been created (in CollabRTIConnection), to avoid repeated creation.

 Expanding the DDM ID range (the range of dimension active-listeners in
the MemberNode FDD file) to be as large as the future range of exter-
nally provided numeric user IDs.

7.2.2 Other future work
Regarding item 2 in the section 7.1 findings tree, the suppliers of pRTI suggest
RTI performance be investigated using an alternate Java Virtual Machine.
Future investigations might want to look into performance with JVMs such as
BEA JRockit or IBM’s Java Development Kit.

A different line of future work lies in the tasks of making the project’s
infrastructure (or a similar infrastructure) more adaptable to collaborative
applications, and to actually adapt a full-scale application to it. The latter part
entails taking an application, preferably an open source application such as
OpenOffice Draw, and enabling collaborative work within it using the infrastruc-
ture’s services.

51

8. References

References
This reference list adheres to APA Style as described by the APA Publications
Manual (2001) with one modification: in two cases where an URL is available
but APA Style does not require it to be shown, the URL is given in brackets at
the end of the reference.

Ahmed, T., Kumar, R., and Tripathi, A. (2002). Secure Management of Distributed

Collaboration Systems. (Tech. Rep.). Minneapolis, MN, USA: University of
Minnesota, Dept. of Computer Science.

APA. (2001). Publication Manual of the American Psychological Association (5th ed.)

Washington DC: APA Press.

Ayani, R., & Dharma, R. B. (2003, January). Web-based Collaborative Simulation In

Tan Soon Huat, G. (Chair), Cluster-Based Distributed Simulation Using HLA.
Seminar conducted at the National University of Singapore.

Banks, J., Carson, J. S. II, Nelson, B. L., & Nicol, D. M. (2001). Descrete-Event

System Simulation (3rd edition). New Jersey: Prentice Hall.

Bannon, L., & Schmidt, K. (1991). Four characteristics in search of a context.

In J. Bowers & S. Benford (Eds.), Studies in Computer Supported Collaborative
Work: Theory, Practice and Design, (pp. 3-16). Amsterdam: North-Holland.

Baymani, S., & Strifeldt, E. (2005). Carbonara—a semantically searchable distributed

repository. Master’s thesis, KTH Royal Institute of Technology.

Bowen, S., & Maurer, F. (2002). Using Peer-to-Peer Technology to Support

Global Software – some initial thoughts. In Damian, D., Maurer, F., &
Sridhar, N. (Eds.), Proceedings of the ICSE Int. Workshop on Global Software
Development (pp. 2-5), Orlando, FL: Sydney University of Technology.

Cederberg, P. (2003). Online Tetris Game. Retrieved from

http://www. percederberg.net/home/java/tetris/tetris.html.

Churchill, E. F., Snowdon, D. N., & Munro, A. J. (Eds.). (2001). Collaborative

Virtual Environemnts – Digital Places and Spaces for Interaction. London:
Springer-Verlag.

Eseryel, D., Ganesan, R., and Edmonds, G. S. (2002). Review of Computer-

Supported Collaborative Work Systems. Educational Technology & Society,
5(2), 130–136.

Fox, G.C., Furmanski, W., & Ozdemir, H. T. (1998). Object Web (Java/CORBA)

Based RTI to Support Metacomputing M&S. Retrieved January 17, 2005, from
http://www.dtc.army.mil/ hpcw/ 1998/furm4/furm.html

52

8. References

Fujimoto, R. M. (2003). Distributed Simulation Systems. In Chick, S., Sánchez,
P. J., Ferrin, D. & Morris, D. J. (Eds.) Proceedings of the 2003 Winter
Simulation Conference (pp. 124-134). New Jersey, NJ: IEEE Press.

Gartner Research (2004, February 20). Worldwide Internet Access, 2003 Update

(Executive Summary). Retrieved December 2, 2004, from
http://0-biblioteca.itesm.mx.millenium.itesm.mx/gartner/research/
119700/119790/119790.html

Roubtsov, V. (2003, January 10). JavaWorld - My kingdom for a good timer.
Retrieved December 18, 2004, from http://www.javaworld.com/java
world/javaqa/2003-01/01-qa-0110-timing.html

IDC (2002, September 27). We've all got mail: IDC predicts 60 billion e-mails a day
by 2006. Retrieved December 2, 2004, from http://www.computerworld.
com/softwaretopics/software/groupware/story/0,10801,74682,00.html

Kuhl, F., Weatherly, R., & Dahmann, J. (1999). Creating Computer Simulation

Systems – An introduction to the High Level Architecture. Upper Saddle River, NJ:
Prentice Hall.

Li, D., & Li, R. (2002, November). Bridging the gap between single-user and

multi-user editors challenges, solutions, and open issues. In Sun, C. (Chair),
Session III of the Fourth International Workshop on Collaborative Editing Systems,
New Orleans, LA, USA.

Liljeström, M. (2005). Generic XML-based Interface for Computer Supported

Collaborative Work in an HLA Environment. Master’s thesis, KTH Royal
Institute of Technology.

Marsic, I. (2000). Real-Time Collaboration in Heterogenous Computing

Environments. In Proceedings of the International Conference On Information
Technology: Coding And Computing (pp. 146-151). Las Vegas, NV, USA:
Computer Society Press.

Moradi, F., & Ayani, R. (2003). Parallel and distributed simulation. In M. S.

Obaidat & G. I. Papadimitriou (Eds.), Applied System Simulation –
Methodologies and Applications (pp. 457-486). Dordrecht: Kluwer Academic
Publishers.

Obaidat, M. S., & Papadimitriou, G. I. (2003). Introduction to applied system

simulation. In M. S. Obaidat & G. I. Papadimitriou (Eds.), Applied System
Simulation – Methodologies and Applications (pp. 1-8). Dordrecht: Kluwer
Academic Publishers.

Prakash, A., Shim, H. S., & Lee, J. H. (1999). Data management issues and

trade-offs in CSCW systems. IEEE Transactions on Knowledge and Data
Engineering, 11(1), 213-227.

Reid, M.R. (2000, November). An Evaluation of the High Level Architecture (HLA)

as a Framework for NASA Modeling and Simulation. Paper presented at the

53

8. References

25th NASA Software Engineering Workshop, Goddard Space Flight
Center, Greenbelt, MD, USA. [http://sel.gsfc.nasa.gov/website/sew/
2000/topics/MReid_SEW25_Paper.PDF]

Severinson-Eklundh, K. (1998). Computer-supported cooperative work. Retrieved

January 10, 2005, from Royal Institute of Technology, NADA Web site:
http://www.nada.kth.se/~kse/ cscw/F1.pdf

Stewart, J., Benderson, B. B., and Druin, A. (1999). Single Display Groupware:

A Model for Co-present Collaboration. In Proceedings of the CHI 99 Confer-
ence on Human Factors in Computing Systems (pp. 286–293). New York: ACM
Press.

Tanenbaum, A. S., & Steen, M. van, (2002). Distributed Systems – Principles and

Paradigms. Amsterdam: Prentice Hall.

Tse, E., Histon, J., Scott, S. D., & Greenberg, S. (2004). Avoiding interference:

how people use spatial separation and partitioning in SDG workspaces. In
Proceedings of the ACM Conference on Computer-Supported Collaborative Work (pp.
252-261). Chicago, IL, USA: ACM Press.

Tollinger, I., McCurdy, M, Vera, A. H., & Tollinger, P. (2004). Collaborative

knowledge management supporting Mars mission scientists. In Proceedings of
the ACM Conference on Computer-Supported Collaborative Work (pp. 29-38).
Chicago, IL, USA: ACM Press.

Vuong, S., Scratchley, C., Le C., Cai, X. J., Leong, I., Li L., Zeng, J., and

Sigharian, S. Towards a Scalable Collaborative Environment (SCE) for Internet
Distributed Application: A P2P Chess Game System as an Example. Unpublished
manuscript, University of British Columbia [http://www.magnetargames.
com/Technology/DAIS-Vuong Chess-230603R.doc (retrieved October
12, 2004)]

Yamauchi, Y., Yokozawa, M., Shinohara, T. & Ishida, T. (2000). Collaboration

with lean media: How open-source software succeeds. In Proceedings of the
ACM Conference on Computer Supported Cooperative Work (pp. 329-338). Phila-
delphia, Pennsylvania, USA: ACM Press.

Zhao, H., & Georganas, N.D. (2001). Collaborative Virtual Environments:

Managing the Shared Spaces. Networking and Information Systems Journal, 3(2),
1-23.

54

Appendix A: Tool communication modes

Appendix A: Tool
communication modes
An important CC task is to enable late arrival to Collaborations. Presently,
ensuring consistency in late-arriving Collaborators is a complex task for
collaborative applications. The CC is intended to facilitate this task for
application designers, and one model to do so would be to support the
following 12 update modes.

Information necessary for updating newly-arrived collaborator
 History
State No history Full history

(all events)
Partial history
(last N events)

Selected history
(certain relevant
events)

No state X X X X

Full state X X X X

Selected final state
(certain relevant parts
of state information)

X X X X

In other words, tools plugged into the CC must declare what kind of
information is necessary to update a new collaborator using that same tool.
Collaboration sessions are defined by state-information and by the events that
have occurred. These two variables take three and four modes, respectively,
making 12 combinations. A few examples follow.

1. Two collaborators start a chat session and each writes five messages. A
third collaborator joins. No state or history information necessary
for update. (Person number three may start chatting immediately,
without knowledge of prior messages. In fact, for integrity purposes, he
is not supposed to have knowledge of prior messages as they may not
have been intended for him.)

2. Two collaborators start a collaborative drawing session. They each
draw five shapes and then collaborator A modifies two while collabora-
tor B deletes one. Collaborator C joins. Collaborator C needs to be
updated with the final state of the drawing. Alternately, a different
drawing application may want to update him with final state and full
history, or final state and a partial history consisting of e.g. the
last three events.

3. Two collaborators and an observer start a multi-game, multi-player
board game application. They select the game chess and the players
each make five moves. An additional observer joins. The observer
needs to be updated with the full state of the collaboration (game
selection, color selection etc) and the full history of events.

55

Appendix A: Tool communication modes

4. Two collaborators start a video conference and talk for five minutes.
The video channel is handled outside of the CC for performance rea-
sons. Applications use the CC exchange information necessary to set
up the external channel however – i.e. to exchange IP addresses and
agree on encoding settings. A third collaborator joins. The third col-
laborator needs to be updated with the state of the collaboration
(i.e. the conference settings).

5. Three collaborators start using a collaborative article-authoring and
typesetting tool. This tool has extensive text editing and graphics-
handling capabilities and it allows users to maintain parts of their work
private for performance reasons and integrity reasons. The three col-
laborators work for an hour, during which they each privately produce
a two-page article. During the hour, collaborator A invites collaborator
B to review one of his pages, while collaborator C offers his entire arti-
cle for general review. Collaborator C also produces a title-logo which
he makes publicly accessible to the collaboration. Collaborator D joins.
Collaborator D needs to be updated with a selected final state. In
other words – he needs to be updated with those selected parts of the
final state which are supposed to be available to him: the article and
graphics of collaborator C.

56

ccgroupnode CD-ROM

The CD contains the ccgroupnode package, auxiliary code libraries, and
Javadoc documentation. Refer to the folder readme on the CD for further
content information and for installation instructions.

List of acronyms

APA American Psychological Association
CC Collaborative Core
CSCW Computer-supported collaborative work
CVE Collaborative Virtual Environment
CVS Concurrent Versions System
DDM Data distribution management
DIS Distributed interactive simulation
DMSO Defense Modeling and Simulation Office
FDD Federation description document
FOI Swedish Defense Research Agency
FOM Federation object model
HLA High level architecture
KTH Royal Institute of Technology, Stockholm
NADA Department for numerical analysis and computer science
OMT Object model template
pRTI Pitch AB’s RTI
RTI Run-time infrastructure
SOM Simulation object model

	Introduction
	Computers and computer communication
	Thesis goals
	Where the thesis was developed
	Report structure

	Theory
	Simulation
	Simulation definition
	Modeling
	Distributed simulation and parallel simulation
	Distributed interactive simulation
	How simulations are built
	High Level Architecture (HLA)

	CSCW, computer-supported collaborative work
	Computer-supported collaborative work definition
	Modes of collaborative work
	Groupware and CVEs
	CSCW in practice
	Various results from CSCW research

	New applications of simulation and CSCW
	Example of a collaborative simulation application
	Example of extending HLA to gaming
	Example of extending HLA to virtual shopping

	Method
	Progress of work
	Application design
	Demo implementation
	Experimentation

	Design
	Preliminary design findings
	General features of design solution
	Multiple collaborations
	Format of Tool support
	Other design considerations

	Answers to key design questions
	What kinds of distribution support will be enlisted by the H
	How is consistency ensured in the collaboration?
	How is a collaborative group defined?
	How should definitions of collaborative groups be maintained
	How should logins and logouts to/from the collaboration be h

	Implementation
	Requirements
	ccprototype
	ccprototype.ccgroupnode
	What it does
	What it does not do
	Collaboration Description implementation
	Non-Collaboration Description communication
	Framework front end components

	Demonstration Tools

	Experiments
	Experiment setup and method
	Experiment results
	Initial speed measurements, 400 B - 4 MB
	Finer grain speed measurements
	Further investigation into HLA irregularity

	Experiment discussion

	Conclusion & future work
	Project findings
	Future work
	Continuing work on the ccprototype implementation
	Other future work

	References
	Appendix A: Tool communication modes

