65 research outputs found

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later

    Negation in context

    Get PDF
    The present essay includes six thematically connected papers on negation in the areas of the philosophy of logic, philosophical logic and metaphysics. Each of the chapters besides the first, which puts each the chapters to follow into context, highlights a central problem negation poses to a certain area of philosophy. Chapter 2 discusses the problem of logical revisionism and whether there is any room for genuine disagreement, and hence shared meaning, between the classicist and deviant's respective uses of 'not'. If there is not, revision is impossible. I argue that revision is indeed possible and provide an account of negation as contradictoriness according to which a number of alleged negations are declared genuine. Among them are the negations of FDE (First-Degree Entailment) and a wide family of other relevant logics, LP (Priest's dialetheic "Logic of Paradox"), Kleene weak and strong 3-valued logics with either "exclusion" or "choice" negation, and intuitionistic logic. Chapter 3 discusses the problem of furnishing intuitionistic logic with an empirical negation for adequately expressing claims of the form 'A is undecided at present' or 'A may never be decided' the latter of which has been argued to be intuitionistically inconsistent. Chapter 4 highlights the importance of various notions of consequence-as-s-preservation where s may be falsity (versus untruth), indeterminacy or some other semantic (or "algebraic") value, in formulating rationality constraints on speech acts and propositional attitudes such as rejection, denial and dubitability. Chapter 5 provides an account of the nature of truth values regarded as objects. It is argued that only truth exists as the maximal truthmaker. The consequences this has for semantics representationally construed are considered and it is argued that every logic, from classical to non-classical, is gappy. Moreover, a truthmaker theory is developed whereby only positive truths, an account of which is also developed therein, have truthmakers. Chapter 6 investigates the definability of negation as "absolute" impossibility, i.e. where the notion of necessity or possibility in question corresponds to the global modality. The modality is not readily definable in the usual Kripkean languages and so neither is impossibility taken in the broadest sense. The languages considered here include one with counterfactual operators and propositional quantification and another bimodal language with a modality and its complementary. Among the definability results we give some preservation and translation results as well

    A Galois connection between classical and intuitionistic logics. I: Syntax

    Full text link
    In a 1985 commentary to his collected works, Kolmogorov remarked that his 1932 paper "was written in hope that with time, the logic of solution of problems [i.e., intuitionistic logic] will become a permanent part of a [standard] course of logic. A unified logical apparatus was intended to be created, which would deal with objects of two types - propositions and problems." We construct such a formal system QHC, which is a conservative extension of both the intuitionistic predicate calculus QH and the classical predicate calculus QC. The only new connectives ? and ! of QHC induce a Galois connection (i.e., a pair of adjoint functors) between the Lindenbaum posets (i.e. the underlying posets of the Lindenbaum algebras) of QH and QC. Kolmogorov's double negation translation of propositions into problems extends to a retraction of QHC onto QH; whereas Goedel's provability translation of problems into modal propositions extends to a retraction of QHC onto its QC+(?!) fragment, identified with the modal logic QS4. The QH+(!?) fragment is an intuitionistic modal logic, whose modality !? is a strict lax modality in the sense of Aczel - and thus resembles the squash/bracket operation in intuitionistic type theories. The axioms of QHC attempt to give a fuller formalization (with respect to the axioms of intuitionistic logic) to the two best known contentual interpretations of intiuitionistic logic: Kolmogorov's problem interpretation (incorporating standard refinements by Heyting and Kreisel) and the proof interpretation by Orlov and Heyting (as clarified by G\"odel). While these two interpretations are often conflated, from the viewpoint of the axioms of QHC neither of them reduces to the other one, although they do overlap.Comment: 47 pages. The paper is rewritten in terms of a formal meta-logic (a simplified version of Isabelle's meta-logic

    Classifying toposes for non-geometric theories

    Full text link
    The classifying topos of a geometric theory is a topos such that geometric morphisms into it correspond to models of that theory. We study classifying toposes for different infinitary logics: first-order, sub-first-order (i.e. geometric logic plus implication) and classical. For the first two, the corresponding notion of classifying topos is given by restricting the use of geometric morphisms to open and sub-open geometric morphisms respectively. For the last one, we restrict ourselves to Boolean toposes instead. Butz and Johnstone proved that the first-order classifying topos of an infinitary first-order theory exists precisely when that theory does not have too many infinitary first-order formulas, up to intuitionistically provable equivalence. We prove similar statements for the sub-first-order and Boolean case. Along the way we obtain completeness results of infinitary sub-first-order logic and infinitary classical logic with respect to (Boolean) toposes.Comment: 24 page

    Classical BI: Its Semantics and Proof Theory

    Full text link
    We present Classical BI (CBI), a new addition to the family of bunched logics which originates in O'Hearn and Pym's logic of bunched implications BI. CBI differs from existing bunched logics in that its multiplicative connectives behave classically rather than intuitionistically (including in particular a multiplicative version of classical negation). At the semantic level, CBI-formulas have the normal bunched logic reading as declarative statements about resources, but its resource models necessarily feature more structure than those for other bunched logics; principally, they satisfy the requirement that every resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI is provided by a display calculus \`a la Belnap, which can be seen as a generalisation of the bunched sequent calculus for BI. In this paper we formulate the aforementioned model theory and proof theory for CBI, and prove some fundamental results about the logic, most notably completeness of the proof theory with respect to the semantics.Comment: 42 pages, 8 figure

    Complexities of Proof-Theoretical Reductions

    Get PDF
    The present thesis is a contribution to a project that is carried out by Michael Rathjen and Andreas Weiermann to give a general method to study the proof-complexity of Pi_2 sentences. This general method uses the generalised ordinal-analysis that was given by Buchholz, Rueede and Strahm as well as the generalised characterisation of provable-recursive functions of PA with axioms for transfinite induction that was given by Weiermann. The present thesis links these two methods by giving an explicit elementary bound, for the proof-complexity increment that occurs after the transition from the theory that was used by Rueede and Strahm, to PA with axioms for transfinite induction, which was analysed by Weiermann
    corecore