23 research outputs found

    Radiance interpolants for interactive scene editing and ray tracing

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 189-197).by Kavita Bala.Ph.D

    Frequency Based Radiance Cache for Rendering Animations

    Get PDF
    International audienceWe propose a method to render animation sequences with direct distant lighting that only shades a fraction of the total pixels. We leverage frequency-based analyses of light transport to determine shading and image sampling rates across an animation using a samples cache. To do so, we derive frequency bandwidths that account for the complexity of distant lights, visibility, BRDF, and temporal coherence during animation. We finaly apply a cross-bilateral filter when rendering our final images from sparse sets of shading points placed according to our frequency-based oracles (generally < 25% of the pixels, per frame)

    Doctor of Philosophy

    Get PDF
    dissertationWhile boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, have traditionally well served the needs of the modeling community, they have not seen widespread adoption among the wider engineering discipline. There is a common perception that NURBS are slow to evaluate and complex to implement. Whereas computer-aided design commonly deals with surfaces, the engineering community must deal with materials that have thickness. Traditional visualization techniques have avoided NURBS, and there has been little cross-talk between the rich spline approximation community and the larger engineering field. Recently there has been a strong desire to marry the modeling and analysis phases of the iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting design. Research has demonstrated that employing a single representation throughout the cycle has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous materials require the introduction of volumetric modeling representations. There is little question that fields such as scientific visualization and mechanical engineering could benefit from the powerful approximation properties of splines. In this dissertation, we remove several hurdles to the application of NURBS to problems in engineering and demonstrate how their unique properties can be leveraged to solve problems of interest

    High fidelity radiosity rendering at interactive rates

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (p. 66-69).by Stephen Lincoln Hardt.M.Eng

    Spatial Decompositions for Geometric Interpolation and Efficient Rendering

    Get PDF
    Interpolation is fundamental in many applications that are based on multidimensional scalar or vector fields. In such applications, it is possible to sample points from the field, for example, through the numerical solution of some mathematical model. Because point sampling may be computationally intensive, it is desirable to store samples in a data structure and estimate the values of the field at intermediate points through interpolation. We present methods based on building dynamic spatial data structures in which the samples are computed on-demand, and adaptive strategies are used to avoid oversampling. We first show how to apply this approach to accelerate realistic rendering through ray-tracing. Ray-tracing can be formulated as a sampling and reconstruction problem, where rays in 3-space are modeled as points in a 4-dimensional parameter space. Sample rays are associated with various geometric attributes, which are then used in rendering. We collect and store a relatively sparse set of sampled rays, and use inexpensive interpolation methods to approximate the attribute values for other rays. We present two data structures: (1) the &lt;i&gt;ray interpolant tree (RI-tree)&lt;/i&gt;, which is based on a kd-tree-like subdivision of space, and (2) the &lt;i&gt;simplex decomposition tree (SD-tree)&lt;/i&gt;, which is based on a hierarchical regular simplicial mesh, and improves the functionality of the RI-tree by guaranteeing continuity. For compact storage as well as efficient neighbor computation in the mesh, we present a pointerless representation of the SD-tree. An essential element of this approach is the development of a location code that enables efficient access and navigation of the data structure. For this purpose we introduce a location code, called an LPTcode, that uniquely encodes the geometry of each simplex of the hierarchy. We present rules to compute the neighbors of a given simplex efficiently through the use of this code. We show how to traverse the associated tree and how to answer point location and interpolation queries. Our algorithms work in arbitrary dimensions. We also demonstrate the use of the SD-tree for rendering atmospheric effects. We present empirical evidence that our methods can produce renderings of good quality significantly faster than simple ray-tracing

    Occlusion points identification algorithm

    Get PDF
    In this paper a very simple and efficient algorithm is proposed, to calculate the invisible regions of a scene, or shadowed side of a body, when it is observed from a pre-set point. This is done by applying a deterministic numerical procedure to the portion of scene in the field of view, after having been projected in the observer reference frame. The great advantage of this approach is its generality and suitability for a wide number of applications. They span from real time renderings, to the simulation of different types of light sources, such as diffused or collimated, or simply to calculate the effective visible surface for a camera mounted on board of an aircraft, in order to optimize its trajectory if remote sensing or aerial mapping task should be carried out. Optimizing the trajectory, by minimizing at any time the occluded surface, is also a powerful solution for a search and rescue mission, because a wider area in a shorter time can be observed, particularly in situations where the time is a critical parameter, such as, during a forest fire or in case of avalanches. For its simplicity of implementation, the algorithm is suitable for real time applications, providing an extremely accurate solution in a fraction of a millisecond. In this paper, the algorithm has been tested by calculating the occluded regions of a very complex mountainous scenario, seen from a gimbal-camera mounted on board of a flying platform

    Une approche fréquentielle pratique pour l'échantillonnage adaptatif en espace image

    Get PDF
    En synthèse d'images réalistes, l'intensité finale d'un pixel est calculée en estimant une intégrale de rendu multi-dimensionnelle. Une large portion de la recherche menée dans ce domaine cherche à trouver de nouvelles techniques afin de réduire le coût de calcul du rendu tout en préservant la fidelité et l'exactitude des images résultantes. En tentant de réduire les coûts de calcul afin d'approcher le rendu en temps réel, certains effets réalistes complexes sont souvent laissés de côté ou remplacés par des astuces ingénieuses mais mathématiquement incorrectes. Afin d'accélerer le rendu, plusieurs avenues de travail ont soit adressé directement le calcul de pixels individuels en améliorant les routines d'intégration numérique sous-jacentes; ou ont cherché à amortir le coût par région d'image en utilisant des méthodes adaptatives basées sur des modèles prédictifs du transport de la lumière. L'objectif de ce mémoire, et de l'article résultant, est de se baser sur une méthode de ce dernier type[Durand2005], et de faire progresser la recherche dans le domaine du rendu réaliste adaptatif rapide utilisant une analyse du transport de la lumière basée sur la théorie de Fourier afin de guider et prioriser le lancer de rayons. Nous proposons une approche d'échantillonnage et de reconstruction adaptative pour le rendu de scènes animées illuminées par cartes d'environnement, permettant la reconstruction d'effets tels que les ombres et les réflexions de tous les niveaux fréquentiels, tout en préservant la cohérence temporelle.In realistic image synthesis, a pixel's final intensity is computed by estimating a multi-dimensional shading integral. A large part of the research in this domain is thus aimed at finding new techniques to reduce the computational cost of rendering while preserving the fidelity and correctness of the resulting images. When trying to reduce rendering costs to approach real-time computation, complex realistic effects are often left aside or replaced by clever but mathematically incorrect tricks. To accelerate rendering, previous directions of work have either addressed the computation of individual pixels by improving the underlying numerical integration routines; or have sought to amortize the computation across regions of an image using adaptive methods based on predictive models of light transport. This thesis' - and resulting paper's - objective is to build upon the latter of the aforementioned classes of methods[Durand2005], and foray into fast adaptive rendering techniques using frequency-based light transport analysis to efficiently guide and prioritize ray tracing. We thus propose an adaptive sampling and reconstruction approach to render animated scenes lit by environment lighting and faithfully reconstruct all-frequency shading effects such as shadows and reflections while preserving temporal coherency

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation

    Improved estimation of surface biophysical parameters through inversion of linear BRDF models

    Get PDF
    corecore