16,493 research outputs found

    An optimal feedback model to prevent manipulation behaviours in consensus under social network group decision making

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.A novel framework to prevent manipulation behaviour in consensus reaching process under social network group decision making is proposed, which is based on a theoretically sound optimal feedback model. The manipulation behaviour classification is twofold: (1) ‘individual manipulation’ where each expert manipulates his/her own behaviour to achieve higher importance degree (weight); and (2) ‘group manipulation’ where a group of experts force inconsistent experts to adopt specific recommendation advices obtained via the use of fixed feedback parameter. To counteract ‘individual manipulation’, a behavioural weights assignment method modelling sequential attitude ranging from ‘dictatorship’ to ‘democracy’ is developed, and then a reasonable policy for group minimum adjustment cost is established to assign appropriate weights to experts. To prevent ‘group manipulation’, an optimal feedback model with objective function the individual adjustments cost and constraints related to the threshold of group consensus is investigated. This approach allows the inconsistent experts to balance group consensus and adjustment cost, which enhances their willingness to adopt the recommendation advices and consequently the group reaching consensus on the decision making problem at hand. A numerical example is presented to illustrate and verify the proposed optimal feedback model

    Probabilistic Political Viability: A Methodology for Predictive Political Economy

    Get PDF
    Currently available political economic tools are not very useful for predicting the outcomes of real-world policy problems. Researchers have limited information on which to assign parameters to the mappings from policies to outcomes to utilities or to represent the political process adequately. We present a method for evaluating the viability of political alternatives in complex settings and apply it to an ongoing California water policy debate. Certain options would be "robustly politically viable" if stakeholder groups trusted that they would be implemented as negotiated. Once we incorporate institutional mistrust into the model, none of the alternatives are robustly politically viable.

    Delayed Action and Uncertain Targets. How Much Will Climate Policy Cost?

    Get PDF
    Despite the growing concern about actual on-going climate change, there is little consensus about the scale and timing of actions needed to stabilise the concentrations of greenhouse gases. Many countries are unwilling to implement effective mitigation strategies, at least in the short-term, and no agreement on an ambitious global stabilisation target has yet been reached. It is thus likely that some, if not all countries, will delay the adoption of effective climate policies. This delay will affect the cost of future policy measures that will be required to abate an even larger amount of emissions. What additional economic cost of mitigation measures will this delay imply? At the same time, the uncertainty surrounding the global stabilisation target to be achieved crucially affects short-term investment and policy decisions. What will this uncertainty cost? Is there a hedging strategy that decision makers can adopt to cope with delayed action and uncertain targets? This paper addresses these questions by quantifying the economic implications of delayed mitigation action, and by computing the optimal abatement strategy in the presence of uncertainty about a global stabilisation target (which will be agreed upon in future climate negotiations). Results point to short-term inaction as the key determinant for the economic costs of ambitious climate policies. They also indicate that there is an effective hedging strategy that could minimise the cost of climate policy under uncertainty, and that a short-term moderate climate policy would be a good strategy to reduce the costs of delayed action and to cope with uncertainty about the outcome of future climate negotiations. By contrast, an insufficient short-term effort significantly increases the costs of compliance in the long-term.Uncertainty, Climate Policy, Stabilisation Costs, Delayed Action

    Consensus modeling with probability and cost constraints under uncertainty opinions

    Get PDF
    Goal programming is often applied into uncertain group decision making to achieve the optimal solution. Exiting models focus on either the minimum cost (guaranteeing negotiation budget) or the maximum utility (improving satisfaction level). This paper constructs a stochastic optimization cost consensus group decision making model adopting the minimum budget and the maximum utility as objective function simultaneously to study the negotiation consensus with decision makers' opinions expressed in the forms of multiple uncertain preferences such as utility function and normal distribution. Thus, the proposed model is a generalization of the existing cost consensus model and utility consensus model, respectively. Furthermore in this model, utility priority coefficients cause acceptable budget range and chance constraint shows the probability of reaching consensus. Differing from previous optimization models, the proposed model designs a Monte Carlo simulation combined with Genetic Algorithm to reach an optimal solution, which makes it more applicable to real-world decision making

    Social Contracts and Historical Rules

    Get PDF
    The public choice-school has explained why policy- making is generally disappointing and frequently against the very interest of the public at large. The economics profession has put forward two kinds of allegedly free-market remedies. On the one hand, the mainstream view underscores the need for more expert advice and better agency rules. On the other, the constitutional standpoint emphasizes the role of meta-rules founded on a social contract, so that abuse can be restrained, if not eliminated. This paper questions the foundations of the new contractarian views, which hardly escape the consequentialist and utilitarian problems raised by the orthodox approach to policy- making. In particular, it is argued that in order to understand the nature of today’s policy- making, rational constructivism is of little help; competing explanations, such as those offered by the institutional or the evolutionary schools, are similarly ineffective. The insufficiencies of the mainstream approaches suggest an alternative. We develop the idea that “First Principles” – that is those set of ideas that have characterized Western Civilization during the past two millennia – provide a better lens for understanding the role and characteristics of policy-making.

    Who Said What: Modeling Individual Labelers Improves Classification

    Full text link
    Data are often labeled by many different experts with each expert only labeling a small fraction of the data and each data point being labeled by several experts. This reduces the workload on individual experts and also gives a better estimate of the unobserved ground truth. When experts disagree, the standard approaches are to treat the majority opinion as the correct label or to model the correct label as a distribution. These approaches, however, do not make any use of potentially valuable information about which expert produced which label. To make use of this extra information, we propose modeling the experts individually and then learning averaging weights for combining them, possibly in sample-specific ways. This allows us to give more weight to more reliable experts and take advantage of the unique strengths of individual experts at classifying certain types of data. Here we show that our approach leads to improvements in computer-aided diagnosis of diabetic retinopathy. We also show that our method performs better than competing algorithms by Welinder and Perona (2010), and by Mnih and Hinton (2012). Our work offers an innovative approach for dealing with the myriad real-world settings that use expert opinions to define labels for training.Comment: AAAI 201

    Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium Analysis

    Get PDF
    The electric power sector, which accounts for approximately 40% of U.S. carbon dioxide emissions, will be a critical component of any policy the U.S. government pursues to confront climate change. In the context of uncertainty in future policy limiting emissions, society faces the following question: What should the electricity mix we build in the next decade look like? We can continue to focus on conventional generation or invest in low-carbon technologies. There is no obvious answer without explicitly considering the risks created by uncertainty. // This research investigates socially optimal near-term electricity investment decisions under uncertainty in future policy. It employs a novel framework that models decision-making under uncertainty with learning in an economy-wide setting that can measure social welfare impacts. Specifically, a computable general equilibrium (CGE) model of the U.S. is formulated as a two-stage stochastic dynamic program focused on decisions in the electric power sector. // In modeling decision-making under uncertainty, an optimal electricity investment hedging strategy is identified. Given the experimental design, the optimal hedging strategy reduces the expected policy costs by over 50% compared to a strategy derived using the expected value for the uncertain parameter; and by 12-400% compared to strategies developed under a perfect foresight or myopic framework. This research also shows that uncertainty has a cost, beyond the cost of meeting a policy. Results show that uncertainty about the future policy increases the expected cost of policy by over 45%. If political consensus can be reached and the climate science uncertainties resolved, setting clear, long-term policies can minimize expected policy costs. // Ultimately, this work demonstrates that near-term investments in low-carbon technologies should be greater than what would be justified to meet near-term goals alone. Near-term low-carbon investments can lower the expected cost of future policy by developing a less carbon-intensive electricity mix, spreading the burden of emissions reductions over time, and helping to overcome technology expansion rate constraints—all of which provide future flexibility in meeting a policy. The additional near-term cost of low-carbon investments is justified by the future flexibility that such investments create. The value of this flexibility is only explicitly considered in the context of decision-making under uncertainty.The authors gratefully acknowledge the financial support for this work provided by the U.S. Department of Energy, Office of Science under grants DE-PS02-09ER09-26, DE-FG02-94ER61937, DE-FG02-08ER64597, DE-FG02-93ER61677, DE-SC0003906, DE-SC0007114, XEU-0-9920-01; the U.S. Environmental Protection Agency under grants XA-83240101, PI-83412601-0, RD-83427901-0, XA-83505101-0, XA-83600001-1, and subcontract UTA12-000624; and a consortium of government, industrial and foundation sponsors

    Modeling good research practices - overview: a report of the ISPOR-SMDM modeling good research practices task force - 1.

    Get PDF
    Models—mathematical frameworks that facilitate estimation of the consequences of health care decisions—have become essential tools for health technology assessment. Evolution of the methods since the first ISPOR modeling task force reported in 2003 has led to a new task force, jointly convened with the Society for Medical Decision Making, and this series of seven papers presents the updated recommendations for best practices in conceptualizing models; implementing state–transition approaches, discrete event simulations, or dynamic transmission models; dealing with uncertainty; and validating and reporting models transparently. This overview introduces the work of the task force, provides all the recommendations, and discusses some quandaries that require further elucidation. The audience for these papers includes those who build models, stakeholders who utilize their results, and, indeed, anyone concerned with the use of models to support decision making

    Policymaking under scientific uncertainty

    Get PDF
    Policymakers who seek to make scientifically informed decisions are constantly confronted by scientific uncertainty and expert disagreement. This thesis asks: how can policymakers rationally respond to expert disagreement and scientific uncertainty? This is a work of nonideal theory, which applies formal philosophical tools developed by ideal theorists to more realistic cases of policymaking under scientific uncertainty. I start with Bayesian approaches to expert testimony and the problem of expert disagreement, arguing that two popular approaches— supra-Bayesianism and the standard model of expert deference—are insufficient. I develop a novel model of expert deference and show how it can deal with many of these problems raised for them. I then turn to opinion pooling, a popular method for dealing with disagreement. I show that various theoretical motivations for pooling functions are irrelevant to realistic policymaking cases. This leads to a cautious recommendation of linear pooling. However, I then show that any pooling method relies on value judgements, that are hidden in the selection of the scoring rule. My focus then narrows to a more specific case of scientific uncertainty: multiple models of the same system. I introduce a particular case study involving hurricane models developed to support insurance decision-making. I recapitulate my analysis of opinion pooling in the context of model ensembles, confirming that my hesitations apply. This motivates a shift of perspective, to viewing the problem as a decision theoretic one. I rework a recently developed ambiguity theory, called the confidence approach, to take input from model ensembles. I show how it facilitates the resolution of the policymaker’s problem in a way that avoids the issues encountered in previous chapters. This concludes my main study of the problem of expert disagreement. In the final chapter, I turn to methodological reflection. I argue that philosophers who employ the mathematical methods of the prior chapters are modelling. Employing results from the philosophy of scientific models, I develop the theory of normative modelling. I argue that it has important methodological conclusions for the practice of formal epistemology, ruling out popular moves such as searching for counterexamples

    Voluntary Agreements under Endogenous Legislative Threats

    Get PDF
    The paper analyzes the welfare properties of voluntary agreements (VA) with polluters, when they are obtained under the legislative threat of an alternative stricter policy option. In the model, the threat is an abatement quota. Both the threat and its probability of implementation are endogenous. The latter is the outcome of a rent-seeking contest between a green and a polluter lobby group influencing the legislature. We show that a welfare-improving VA systematically emerges in equilibrium and that it is more efficient than the pollution quota. We also discuss various VA design aspects.Environmental policy, voluntary agreements, bargaining, legislatures, rent seeking, rent-seeking contests
    • 

    corecore