2,181 research outputs found

    Communication and Control in Collaborative UAVs: Recent Advances and Future Trends

    Full text link
    The recent progress in unmanned aerial vehicles (UAV) technology has significantly advanced UAV-based applications for military, civil, and commercial domains. Nevertheless, the challenges of establishing high-speed communication links, flexible control strategies, and developing efficient collaborative decision-making algorithms for a swarm of UAVs limit their autonomy, robustness, and reliability. Thus, a growing focus has been witnessed on collaborative communication to allow a swarm of UAVs to coordinate and communicate autonomously for the cooperative completion of tasks in a short time with improved efficiency and reliability. This work presents a comprehensive review of collaborative communication in a multi-UAV system. We thoroughly discuss the characteristics of intelligent UAVs and their communication and control requirements for autonomous collaboration and coordination. Moreover, we review various UAV collaboration tasks, summarize the applications of UAV swarm networks for dense urban environments and present the use case scenarios to highlight the current developments of UAV-based applications in various domains. Finally, we identify several exciting future research direction that needs attention for advancing the research in collaborative UAVs

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects

    Distributed estimation techniques forcyber-physical systems

    Get PDF
    Nowadays, with the increasing use of wireless networks, embedded devices and agents with processing and sensing capabilities, the development of distributed estimation techniques has become vital to monitor important variables of the system that are not directly available. Numerous distributed estimation techniques have been proposed in the literature according to the model of the system, noises and disturbances. One of the main objectives of this thesis is to search all those works that deal with distributed estimation techniques applied to cyber-physical systems, system of systems and heterogeneous systems, through using systematic review methodology. Even though systematic reviews are not the common way to survey a topic in the control community, they provide a rigorous, robust and objective formula that should not be ignored. The presented systematic review incorporates and adapts the guidelines recommended in other disciplines to the field of automation and control and presents a brief description of the different phases that constitute a systematic review. Undertaking the systematic review many gaps were discovered: it deserves to be remarked that some estimators are not applied to cyber-physical systems, such as sliding mode observers or set-membership observers. Subsequently, one of these particular techniques was chosen, set-membership estimator, to develop new applications for cyber-physical systems. This introduces the other objectives of the thesis, i.e. to present two novel formulations of distributed set-membership estimators. Both estimators use a multi-hop decomposition, so the dynamics of the system is rewritten to present a cascaded implementation of the distributed set-membership observer, decoupling the influence of the non-observable modes to the observable ones. So each agent must find a different set for each sub-space, instead of a unique set for all the states. Two different approaches have been used to address the same problem, that is, to design a guaranteed distributed estimation method for linear full-coupled systems affected by bounded disturbances, to be implemented in a set of distributed agents that need to communicate and collaborate to achieve this goal

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    Intelligent and Low Overhead Network Synchronization over Large-Scale Industrial Internet of Things Systems

    Get PDF
    With the extensive development of information and communication technologies and vertical industry applications, industrial IoT (IIoT) systems are expected to enable a wide variety of applications, including advanced manufacturing, networked control, and smart supply chain, which all exclusively hinge on the efficient cooperation and coordination among the involved IIoT machines and infrastructures. The ubiquitous connection among IIoT entities and the associated exchange of collaborative information necessitate the achievement of accurate network synchronization, which can guarantee the temporal alignment of the critical information. To enhance the temporal correlation of heterogeneous devices in large-scale IIoT systems, this thesis aims at designing industry-oriented network synchronization protocols in terms of accuracy improvement, resource-saving, and security enhancement with the assistance of learning-based methods. Initially, the real-time timestamps and historical information of each IIoT devices are collected and analyzed to explore the varying rate of the skew (VRS) at each enclosed clock. K-means clustering algorithm is adopted to organize the distributed devices into a few groups, and each of them is assigned with an optimized synchronization frequency to avoid potential resource waste while ensuring synchronization accuracy. Historical VRS values are further utilized as the identification of each clock for providing verification information so that the security against message manipulation attacks during network synchronization can be enhanced. Moreover, a digital twin-enabled clock model is established by comprehensively investigating the characteristics of each clock with diversified operating environments. A cloud-edge-collaborative system architecture is orchestrated to enhance the efficiency of data gathering and processing. With the assistance of the accurate estimation generated by the digital twin model for each clock, the situation-awareness of network synchronization is enhanced in terms of a better understanding of the clock feature and necessary synchronization frequency. Meanwhile, since temporal information generated at each local IIoT devices are efficiently gathered at the edge devices, the effect of packet delay variation is significantly reduced while the synchronization performance under various network conditions can be guaranteed. To further reduce the network resource consumption and improvement the performance under abnormal behaviors during network synchronization, a passive network synchronization protocol based on concurrent observations is proposed, where timestamps are exchanged without occupying dedicated network resources during synchronization. The proposed scheme is established based on the fact that a group of IIoT devices close to each other can observe the same physical phenomena, e.g., electromagnetic signal radiation, almost simultaneously. Moreover, multiple relay nodes are coordinated by the cloud center to disseminate the reference time information throughout the IIoT system in accomplishing global network synchronization. Additionally, a principal component analysis-assisted outlier detection mechanism is designed to tackle untrustworthy timestamps in the network according to the historical observation instants recorded in the cloud center. Simulation results indicate that accurate network synchronization can be achieved with significantly reduced explicit interactions

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte
    • 

    corecore