13,948 research outputs found

    Architecture for Mobile Heterogeneous Multi Domain Networks

    Get PDF
    Multi domain networks can be used in several scenarios including military, enterprize networks, emergency networks and many other cases. In such networks, each domain might be under its own administration. Therefore, the cooperation among domains is conditioned by individual domain policies regarding sharing information, such as network topology, connectivity, mobility, security, various service availability and so on. We propose a new architecture for Heterogeneous Multi Domain (HMD) networks, in which one the operations are subject to specific domain policies. We propose a hierarchical architecture, with an infrastructure of gateways at highest-control level that enables policy based interconnection, mobility and other services among domains. Gateways are responsible for translation among different communication protocols, including routing, signalling, and security. Besides the architecture, we discuss in more details the mobility and adaptive capacity of services in HMD. We discuss the HMD scalability and other advantages compared to existing architectural and mobility solutions. Furthermore, we analyze the dynamic availability at the control level of the hierarchy

    Network properties of mobile tactical scenarios

    Get PDF
    The mobile tactical network is a practical implementation of the mobile ad hoc network. Formed across tactical radios operating in the military very high frequency and low ultrahigh frequency bands, the mobile tactical network has distinctive characteristics when compared with generic mobile ad hoc networks, in particular with respect to its network topological behaviors and connectivity attributes. These characteristics must be understood and considered when selecting suitable network protocols. To this end, in this paper, a network science-based systematic modeling approach is applied to analyze typical deployment scenarios and identify fundamental tactical network properties. The novel framework employs realistic scenario models as well as radio physical layer performance parameters and channel models to effectively capture the dynamic network behavior that needs to be considered for protocol design. The results provide critical insights and guidance to the development of tactical network solutions

    Automatic Optimisation of Reliable Collaborative Services in OLSR Mobile Ad Hoc Networks

    Get PDF
    International audienceFuture Network based Operations (NbO) will strongly rely on Mobile Ad hoc Networks (MANET), due to urban area, tactical mobility and assymetric operation management. These networks will support multiple collaborative services, such as sensor to shooters, reachback, maintenance of Common Operational Picture (COP). Both networks and services will have to be managed with no or limited operator intervention, still providing reliable behavior in spite of aggressive environments. At routing level, we present how to preserve 2-connectivity by adapting the Optimised Link State Routing Protocol (OLSR). We also introduce the concept of active subnet management to retrieve maximal operational gain from collaborative services. Following a constraint solving method, the paper shows how to maximise the subnet of actors, while satisfying 2-connectivity, reactivity and communication quality constraints. We demonstrate the approach on simulating real world NbO

    Selected Issues of QoS Provision in Heterogenous Military Networks

    Get PDF
    Tactical ad-hoc networks are evolving today towards complex heterogeneous networks in terms of architecture, protocols and security. Due to the difference in network resources and reliability, end-to-end quality of service provisioning becomes very challenging. If we also take into account communication issues such as unpredictable connectivity, preferential forwarding for special traffic classes, intermittency due to node or communication link failure, the problem is further aggravated.In this article, we examine the major challenges that must be solved in order to provide efficient QoS provisioning in the heterogeneous network. Finally we describe QoS-aware mechanisms for inter-domain and intra-domain heterogeneous networks, also including real-time services provision in highly mobile environments.

    Tactical communication systems based on civil standards: Modeling in the MiXiM framework

    Full text link
    In this paper, new work is presented belonging to an ongoing study, which evaluates civil communication standards as potential candidates for the future military Wide Band Waveforms (WBWFs). After an evaluation process of possible candidates presented in [2], the selection process in [1] showed that the IEEE 802.11n OFDM could be a possible military WBWF candidate, but it should be further investigated first in order to enhance or even replace critical modules. According to this, some critical modules of the physical layer has been further analyzed in [3] regarding the susceptibility of the OFDM signal under jammer influences. However, the critical modules of the MAC layer (e.g., probabilistic medium access CSMA/CA) have not been analysed. In fact, it was only suggested in [2] to replace this medium access by the better suited Unified Slot Allocation Protocol - Multiple Access (USAP-MA) [4]. In this regard, the present contribution describes the design paradigms of the new MAC layer and explains how the proposed WBWF candidate has been modelled within the MiXiM Framework of the OMNeT++ simulator.Comment: Published in: A. F\"orster, C. Sommer, T. Steinbach, M. W\"ahlisch (Eds.), Proc. of 1st OMNeT++ Community Summit, Hamburg, Germany, September 2, 2014, arXiv:1409.0093, 201
    • 

    corecore