15,930 research outputs found

    Connection Between System Parameters and Localization Probability in Network of Randomly Distributed Nodes

    Full text link
    This article deals with localization probability in a network of randomly distributed communication nodes contained in a bounded domain. A fraction of the nodes denoted as L-nodes are assumed to have localization information while the rest of the nodes denoted as NL nodes do not. The basic model assumes each node has a certain radio coverage within which it can make relative distance measurements. We model both the case radio coverage is fixed and the case radio coverage is determined by signal strength measurements in a Log-Normal Shadowing environment. We apply the probabilistic method to determine the probability of NL-node localization as a function of the coverage area to domain area ratio and the density of L-nodes. We establish analytical expressions for this probability and the transition thresholds with respect to key parameters whereby marked change in the probability behavior is observed. The theoretical results presented in the article are supported by simulations.Comment: To appear on IEEE Transactions on Wireless Communications, November 200

    An initial approach to distributed adaptive fault-handling in networked systems

    Get PDF
    We present a distributed adaptive fault-handling algorithm applied in networked systems. The probabilistic approach that we use makes the proposed method capable of adaptively detect and localize network faults by the use of simple end-to-end test transactions. Our method operates in a fully distributed manner, such that each network element detects faults using locally extracted information as input. This allows for a fast autonomous adaption to local network conditions in real-time, with significantly reduced need for manual configuration of algorithm parameters. Initial results from a small synthetically generated network indicate that satisfactory algorithm performance can be achieved, with respect to the number of detected and localized faults, detection time and false alarm rate

    Griffiths phases and localization in hierarchical modular networks

    Get PDF
    We study variants of hierarchical modular network models suggested by Kaiser and Hilgetag [Frontiers in Neuroinformatics, 4 (2010) 8] to model functional brain connectivity, using extensive simulations and quenched mean-field theory (QMF), focusing on structures with a connection probability that decays exponentially with the level index. Such networks can be embedded in two-dimensional Euclidean space. We explore the dynamic behavior of the contact process (CP) and threshold models on networks of this kind, including hierarchical trees. While in the small-world networks originally proposed to model brain connectivity, the topological heterogeneities are not strong enough to induce deviations from mean-field behavior, we show that a Griffiths phase can emerge under reduced connection probabilities, approaching the percolation threshold. In this case the topological dimension of the networks is finite, and extended regions of bursty, power-law dynamics are observed. Localization in the steady state is also shown via QMF. We investigate the effects of link asymmetry and coupling disorder, and show that localization can occur even in small-world networks with high connectivity in case of link disorder.Comment: 18 pages, 20 figures, accepted version in Scientific Report

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page

    Towards Distributed and Adaptive Detection and Localisation of Network Faults

    Get PDF
    We present a statistical probing-approach to distributed fault-detection in networked systems, based on autonomous configuration of algorithm parameters. Statistical modelling is used for detection and localisation of network faults. A detected fault is isolated to a node or link by collaborative fault-localisation. From local measurements obtained through probing between nodes, probe response delay and packet drop are modelled via parameter estimation for each link. Estimated model parameters are used for autonomous configuration of algorithm parameters, related to probe intervals and detection mechanisms. Expected fault-detection performance is formulated as a cost instead of specific parameter values, significantly reducing configuration efforts in a distributed system. The benefit offered by using our algorithm is fault-detection with increased certainty based on local measurements, compared to other methods not taking observed network conditions into account. We investigate the algorithm performance for varying user parameters and failure conditions. The simulation results indicate that more than 95 % of the generated faults can be detected with few false alarms. At least 80 % of the link faults and 65 % of the node faults are correctly localised. The performance can be improved by parameter adjustments and by using alternative paths for communication of algorithm control messages

    Space-Time Hierarchical-Graph Based Cooperative Localization in Wireless Sensor Networks

    Full text link
    It has been shown that cooperative localization is capable of improving both the positioning accuracy and coverage in scenarios where the global positioning system (GPS) has a poor performance. However, due to its potentially excessive computational complexity, at the time of writing the application of cooperative localization remains limited in practice. In this paper, we address the efficient cooperative positioning problem in wireless sensor networks. A space-time hierarchical-graph based scheme exhibiting fast convergence is proposed for localizing the agent nodes. In contrast to conventional methods, agent nodes are divided into different layers with the aid of the space-time hierarchical-model and their positions are estimated gradually. In particular, an information propagation rule is conceived upon considering the quality of positional information. According to the rule, the information always propagates from the upper layers to a certain lower layer and the message passing process is further optimized at each layer. Hence, the potential error propagation can be mitigated. Additionally, both position estimation and position broadcasting are carried out by the sensor nodes. Furthermore, a sensor activation mechanism is conceived, which is capable of significantly reducing both the energy consumption and the network traffic overhead incurred by the localization process. The analytical and numerical results provided demonstrate the superiority of our space-time hierarchical-graph based cooperative localization scheme over the benchmarking schemes considered.Comment: 14 pages, 15 figures, 4 tables, accepted to appear on IEEE Transactions on Signal Processing, Sept. 201
    • …
    corecore