1,055 research outputs found

    From SpaceStat to CyberGIS: Twenty Years of Spatial Data Analysis Software

    Get PDF
    This essay assesses the evolution of the way in which spatial data analytical methods have been incorporated into software tools over the past two decades. It is part retrospective and prospective, going beyond a historical review to outline some ideas about important factors that drove the software development, such as methodological advances, the open source movement and the advent of the internet and cyberinfrastructure. The review highlights activities carried out by the author and his collaborators and uses SpaceStat, GeoDa, PySAL and recent spatial analytical web services developed at the ASU GeoDa Center as illustrative examples. It outlines a vision for a spatial econometrics workbench as an example of the incorporation of spatial analytical functionality in a cyberGIS.

    e-Science Infrastructure for the Social Sciences

    Get PDF
    When the term „e-Science“ became popular, it frequently was referred to as “enhanced science” or “electronic science”. More telling is the definition ‘e-Science is about global collaboration in key areas of science and the next generation of infrastructure that will enable it’ (Taylor, 2001). The question arises to what extent can the social sciences profit from recent developments in e- Science infrastructure? While computing, storage and network capacities so far were sufficient to accommodate and access social science data bases, new capacities and technologies support new types of research, e.g. linking and analysing transactional or audio-visual data. Increasingly collaborative working by researchers in distributed networks is efficiently supported and new resources are available for e-learning. Whether these new developments become transformative or just helpful will very much depend on whether their full potential is recognized and creatively integrated into new research designs by theoretically innovative scientists. Progress in e-Science was very much linked to the vision of the Grid as “a software infrastructure that enables flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions and resources’ and virtually unlimited computing capacities (Foster et al. 2000). In the Social Sciences there has been considerable progress in using modern IT- technologies for multilingual access to virtual distributed research databases across Europe and beyond (e.g. NESSTAR, CESSDA – Portal), data portals for access to statistical offices and for linking access to data, literature, project, expert and other data bases (e.g. Digital Libraries, VASCODA/SOWIPORT). Whether future developments will need GRID enabling of social science databases or can be further developed using WEB 2.0 support is currently an open question. The challenges here are seamless integration and interoperability of data bases, a requirement that is also stipulated by internationalisation and trans-disciplinary research. This goes along with the need for standards and harmonisation of data and metadata. Progress powered by e- infrastructure is, among others, dependent on regulatory frameworks and human capital well trained in both, data science and research methods. It is also dependent on sufficient critical mass of the institutional infrastructure to efficiently support a dynamic research community that wants to “take the lead without catching up”.

    CC*IIE Networking Infrastructure - NSF Award #1440646 Project Description

    Get PDF
    CC*IIE Networking Infrastructure: Accelerating science, translational research, and collaboration at the University of Pittsburgh through the implementation of network upgrades

    Extensible Terascale Facility (ETF): Indiana-Purdue Grid (IP-Grid)

    Get PDF
    NSF Award ID: ACI-0338618 Project Dates: 10/1/03-9/30/0

    What is Cyberinfrastructure?

    Get PDF
    Cyberinfrastructure is a word commonly used but lacking a single, precise definition. One recognizes intuitively the analogy with infrastructure, and the use of cyber to refer to thinking or computing – but what exactly is cyberinfrastructure as opposed to information technology infrastructure? Indiana University has developed one of the more widely cited definitions of cyberinfrastructure: "Cyberinfrastructure consists of computing systems, data storage systems, advanced instruments and data repositories, visualization environments, and people, all linked together by software and high performance networks to improve research productivity and enable breakthroughs not otherwise possible." A second definition, more inclusive of scholarship generally and educational activities, has also been published and is useful in describing cyberinfrastructure: "Cyberinfrastructure consists of systems, data and information management, advanced instruments, visualization environments, and people, all linked together by software and advanced networks to improve scholarly productivity and enable knowledge breakthroughs and discoveries not otherwise possible." In this paper, we describe the origin of the term cyberinfrastructure based on the history of the root word infrastructure, discuss several terms related to cyberinfrastructure, and provide several examples of cyberinfrastructure

    SIMDAT

    No full text

    Workshop Report: Campus Bridging: Reducing Obstacles on the Path to Big Answers 2015

    Get PDF
    For the researcher whose experiments require large-scale cyberinfrastructure, there exists significant challenges to successful completion. These challenges are broad and go far beyond the simple issue that there are not enough large-scale resources available; these solvable issues range from a lack of documentation written for a non-technical audience to a need for greater consistency with regard to system configuration and consistent software configuration and availability on the large-scale resources at national tier supercomputing centers, with a number of other challenges existing alongside the ones mentioned here. Campus Bridging is a relatively young discipline that aims to mitigate these issues for the academic end-user, for whom the entire process can feel like a path comprised entirely of obstacles. The solutions to these problems must by necessity include multiple approaches, with focus not only on the end user but on the system administrators responsible for supporting these resources as well as the systems themselves. These system resources include not only those at the supercomputing centers but also those that exist at the campus or departmental level and even on the personal computing devices the researcher uses to complete his or her work. This workshop report compiles the results of a half-day workshop, held in conjunction with IEEE Cluster 2015 in Chicago, IL.NSF XSED

    From Artifacts to Aggregations: Modeling Scientific Life Cycles on the Semantic Web

    Full text link
    In the process of scientific research, many information objects are generated, all of which may remain valuable indefinitely. However, artifacts such as instrument data and associated calibration information may have little value in isolation; their meaning is derived from their relationships to each other. Individual artifacts are best represented as components of a life cycle that is specific to a scientific research domain or project. Current cataloging practices do not describe objects at a sufficient level of granularity nor do they offer the globally persistent identifiers necessary to discover and manage scholarly products with World Wide Web standards. The Open Archives Initiative's Object Reuse and Exchange data model (OAI-ORE) meets these requirements. We demonstrate a conceptual implementation of OAI-ORE to represent the scientific life cycles of embedded networked sensor applications in seismology and environmental sciences. By establishing relationships between publications, data, and contextual research information, we illustrate how to obtain a richer and more realistic view of scientific practices. That view can facilitate new forms of scientific research and learning. Our analysis is framed by studies of scientific practices in a large, multi-disciplinary, multi-university science and engineering research center, the Center for Embedded Networked Sensing (CENS).Comment: 28 pages. To appear in the Journal of the American Society for Information Science and Technology (JASIST

    The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Get PDF
    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services

    Digital Preservation, Archival Science and Methodological Foundations for Digital Libraries

    Get PDF
    Digital libraries, whether commercial, public or personal, lie at the heart of the information society. Yet, research into their long‐term viability and the meaningful accessibility of their contents remains in its infancy. In general, as we have pointed out elsewhere, ‘after more than twenty years of research in digital curation and preservation the actual theories, methods and technologies that can either foster or ensure digital longevity remain startlingly limited.’ Research led by DigitalPreservationEurope (DPE) and the Digital Preservation Cluster of DELOS has allowed us to refine the key research challenges – theoretical, methodological and technological – that need attention by researchers in digital libraries during the coming five to ten years, if we are to ensure that the materials held in our emerging digital libraries are to remain sustainable, authentic, accessible and understandable over time. Building on this work and taking the theoretical framework of archival science as bedrock, this paper investigates digital preservation and its foundational role if digital libraries are to have long‐term viability at the centre of the global information society.
    • 

    corecore