15 research outputs found

    Efficient Encoding of n-D Combinatorial Pyramids

    Full text link
    International audienceCombinatorial maps define a general framework which allows to encode any subdivision of an n-D orientable quasi-manifold with or without boundaries. Combinatorial pyramids are defined as stacks of successively reduced combinatorial maps. Such pyramids provide a rich framework which allows to encode fine properties of objects (either shapes or partitions). Combinatorial pyramids have first been defined in 2D, then extended using n-D generalized combinatorial maps. We motivate and present here an implicit and efficient way to encode pyramids of n-D combinatorial maps

    Removal and Contraction for n-Dimensional Generalized Maps

    Get PDF
    International audienceRemoval and contraction are basic operations for several methods conceived in order to handle irregular image pyramids, for multi-level image analysis for instance. Such methods are often based upon graph-like representations which do not maintain all topological information, even for 2-dimensional images. We study the definitions of removal and contraction operations in the generalized maps framework. These combinatorial structures enable us to unambiguously represent the topology of a well-known class of subdivisions of n-dimensional (discrete) spaces. The results of this study make a basis for a further work about irregular pyramids of n-dimensional images

    Merge-and-simplify operation for compact combinatorial pyramid definition

    Get PDF
    International audienceImage pyramids are employed for years in digital image processing. They permit to store and use different scales/levels of details of an image. To represent all the topological information of the different levels, combinatorial pyramids have proved having many interests. But, when using an explicit representation, one drawback of this structure is the memory space required to store such a pyramid. In this paper, this drawback is solved by defining a compact version of combinatorial pyramids. This definition is based on the definition of a new operation, called "merge-and-simplify", which simultaneously merges regions and simplifies their boundaries. Our experiments show that the memory space of our solution is much smaller than the one of the original version. Moreover, the computation time of our solution is faster, because there are less levels in our pyramid than in the original one

    31th International Conference on Information Modelling and Knowledge Bases

    Get PDF
    Information modelling is becoming more and more important topic for researchers, designers, and users of information systems.The amount and complexity of information itself, the number of abstractionlevels of information, and the size of databases and knowledge bases arecontinuously growing. Conceptual modelling is one of the sub-areas ofinformation modelling. The aim of this conference is to bring together experts from different areas of computer science and other disciplines, who have a common interest in understanding and solving problems on information modelling and knowledge bases, as well as applying the results of research to practice. We also aim to recognize and study new areas on modelling and knowledge bases to which more attention should be paid. Therefore philosophy and logic, cognitive science, knowledge management, linguistics and management science are relevant areas, too. In the conference, there will be three categories of presentations, i.e. full papers, short papers and position papers

    Proceedings of the tenth international conference Models in developing mathematics education: September 11 - 17, 2009, Dresden, Saxony, Germany

    Get PDF
    This volume contains the papers presented at the International Conference on “Models in Developing Mathematics Education” held from September 11-17, 2009 at The University of Applied Sciences, Dresden, Germany. The Conference was organized jointly by The University of Applied Sciences and The Mathematics Education into the 21st Century Project - a non-commercial international educational project founded in 1986. The Mathematics Education into the 21st Century Project is dedicated to the improvement of mathematics education world-wide through the publication and dissemination of innovative ideas. Many prominent mathematics educators have supported and contributed to the project, including the late Hans Freudental, Andrejs Dunkels and Hilary Shuard, as well as Bruce Meserve and Marilyn Suydam, Alan Osborne and Margaret Kasten, Mogens Niss, Tibor Nemetz, Ubi D’Ambrosio, Brian Wilson, Tatsuro Miwa, Henry Pollack, Werner Blum, Roberto Baldino, Waclaw Zawadowski, and many others throughout the world. Information on our project and its future work can be found on Our Project Home Page http://math.unipa.it/~grim/21project.htm It has been our pleasure to edit all of the papers for these Proceedings. Not all papers are about research in mathematics education, a number of them report on innovative experiences in the classroom and on new technology. We believe that “mathematics education” is fundamentally a “practicum” and in order to be “successful” all new materials, new ideas and new research must be tested and implemented in the classroom, the real “chalk face” of our discipline, and of our profession as mathematics educators. These Proceedings begin with a Plenary Paper and then the contributions of the Principal Authors in alphabetical name order. We sincerely thank all of the contributors for their time and creative effort. It is clear from the variety and quality of the papers that the conference has attracted many innovative mathematics educators from around the world. These Proceedings will therefore be useful in reviewing past work and looking ahead to the future

    Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education

    Get PDF
    International audienceThis volume contains the Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (ERME), which took place 9-13 February 2011, at Rzeszñw in Poland

    Subject Index Volumes 1–200

    Get PDF

    Annual Report

    Get PDF

    Unmet goals of tracking: within-track heterogeneity of students' expectations for

    Get PDF
    Educational systems are often characterized by some form(s) of ability grouping, like tracking. Although substantial variation in the implementation of these practices exists, it is always the aim to improve teaching efficiency by creating homogeneous groups of students in terms of capabilities and performances as well as expected pathways. If students’ expected pathways (university, graduate school, or working) are in line with the goals of tracking, one might presume that these expectations are rather homogeneous within tracks and heterogeneous between tracks. In Flanders (the northern region of Belgium), the educational system consists of four tracks. Many students start out in the most prestigious, academic track. If they fail to gain the necessary credentials, they move to the less esteemed technical and vocational tracks. Therefore, the educational system has been called a 'cascade system'. We presume that this cascade system creates homogeneous expectations in the academic track, though heterogeneous expectations in the technical and vocational tracks. We use data from the International Study of City Youth (ISCY), gathered during the 2013-2014 school year from 2354 pupils of the tenth grade across 30 secondary schools in the city of Ghent, Flanders. Preliminary results suggest that the technical and vocational tracks show more heterogeneity in student’s expectations than the academic track. If tracking does not fulfill the desired goals in some tracks, tracking practices should be questioned as tracking occurs along social and ethnic lines, causing social inequality
    corecore