1,484 research outputs found

    Immunizing Conic Quadratic Optimization Problems Against Implementation Errors

    Get PDF
    We show that the robust counterpart of a convex quadratic constraint with ellipsoidal implementation error is equivalent to a system of conic quadratic constraints. To prove this result we first derive a sharper result for the S-lemma in case the two matrices involved can be simultaneously diagonalized. This extension of the S-lemma may also be useful for other purposes. We extend the result to the case in which the uncertainty region is the intersection of two convex quadratic inequalities. The robust counterpart for this case is also equivalent to a system of conic quadratic constraints. Results for convex conic quadratic constraints with implementation error are also given. We conclude with showing how the theory developed can be applied in robust linear optimization with jointly uncertain parameters and implementation errors, in sequential robust quadratic programming, in Taguchi’s robust approach, and in the adjustable robust counterpart.Conic Quadratic Program;hidden convexity;implementation error;robust optimization;simultaneous diagonalizability;S-lemma

    A Tensor Analogy of Yuan's Theorem of the Alternative and Polynomial Optimization with Sign structure

    Full text link
    Yuan's theorem of the alternative is an important theoretical tool in optimization, which provides a checkable certificate for the infeasibility of a strict inequality system involving two homogeneous quadratic functions. In this paper, we provide a tractable extension of Yuan's theorem of the alternative to the symmetric tensor setting. As an application, we establish that the optimal value of a class of nonconvex polynomial optimization problems with suitable sign structure (or more explicitly, with essentially non-positive coefficients) can be computed by a related convex conic programming problem, and the optimal solution of these nonconvex polynomial optimization problems can be recovered from the corresponding solution of the convex conic programming problem. Moreover, we obtain that this class of nonconvex polynomial optimization problems enjoy exact sum-of-squares relaxation, and so, can be solved via a single semidefinite programming problem.Comment: acceted by Journal of Optimization Theory and its application, UNSW preprint, 22 page

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Convex Relaxations and Approximations of Chance-Constrained AC-OPF Problems

    Full text link
    This paper deals with the impact of linear approximations for the unknown nonconvex confidence region of chance-constrained AC optimal power flow problems. Such approximations are required for the formulation of tractable chance constraints. In this context, we introduce the first formulation of a chance-constrained second-order cone (SOC) OPF. The proposed formulation provides convergence guarantees due to its convexity, while it demonstrates high computational efficiency. Combined with an AC feasibility recovery, it is able to identify better solutions than chance-constrained nonconvex AC-OPF formulations. To the best of our knowledge, this paper is the first to perform a rigorous analysis of the AC feasibility recovery procedures for robust SOC-OPF problems. We identify the issues that arise from the linear approximations, and by using a reformulation of the quadratic chance constraints, we introduce new parameters able to reshape the approximation of the confidence region. We demonstrate our method on the IEEE 118-bus system

    Extended Formulations in Mixed-integer Convex Programming

    Full text link
    We present a unifying framework for generating extended formulations for the polyhedral outer approximations used in algorithms for mixed-integer convex programming (MICP). Extended formulations lead to fewer iterations of outer approximation algorithms and generally faster solution times. First, we observe that all MICP instances from the MINLPLIB2 benchmark library are conic representable with standard symmetric and nonsymmetric cones. Conic reformulations are shown to be effective extended formulations themselves because they encode separability structure. For mixed-integer conic-representable problems, we provide the first outer approximation algorithm with finite-time convergence guarantees, opening a path for the use of conic solvers for continuous relaxations. We then connect the popular modeling framework of disciplined convex programming (DCP) to the existence of extended formulations independent of conic representability. We present evidence that our approach can yield significant gains in practice, with the solution of a number of open instances from the MINLPLIB2 benchmark library.Comment: To be presented at IPCO 201
    corecore