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Abstract

We show that the robust counterpart of a convex quadratic constraint with ellipsoidal

implementation error is equivalent to a system of conic quadratic constraints. To prove this

result we first derive a sharper result for the S-lemma in case the two matrices involved

can be simultaneously diagonalized. This extension of the S-lemma may also be useful for

other purposes. We extend the result to the case in which the uncertainty region is the

intersection of two convex quadratic inequalities. The robust counterpart for this case is also

equivalent to a system of conic quadratic constraints. Results for convex conic quadratic

constraints with implementation error are also given. We conclude with showing how the

theory developed can be applied in robust linear optimization with jointly uncertain param-

eters and implementation errors, in sequential robust quadratic programming, in Taguchi’s

robust approach, and in the adjustable robust counterpart.

Keywords: Conic Quadratic Program, hidden convexity, implementation error, robust

optimization, simultaneous diagonalizability, S-lemma

JEL Classification: C61

1 Introduction

Robust Optimization (RO) has become an important field in the last decade. For a comprehen-

sive treatment of RO we refer to [3]. The number of applications of RO has increased rapidly in

recent years. Moreover, the RO methodology has recently been implemented into a commercial

mathematical modelling and optimization system [1]. The goal of RO is to immunize an opti-

mization problem against uncertain parameters in the problem. Such uncertain parameters may

arise as a result of estimation errors in the parameter values, or due to implementation errors.

Therefore, a so-called uncertainty region for the uncertain parameters is defined, and then it is

∗Part of this work was done during a visit at CWI, Amsterdam, The Netherlands.
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required that the constraints should hold for all parameter values in this uncertain region. For

several optimization problems, and for several choices of the uncertainty region, the so-called

Robust Counterpart (RC) can be formulated as a tractable optimization problem. For example

the robust counterpart for a linear programming problem with polyhedral or ellipsoidal uncer-

tainty regions can be reformulated as a linear programming and conic quadratic programming

problem, respectively.

In this paper we extend the RO results in the following way. First, we deal with convex quadratic

constraints with ellipsoidal implementation error. From the literature we know that the cor-

responding robust counterpart can be written as a linear matrix inequality (LMI). We show,

however, that the RC can also be cast as a system of conic quadratic constraints, which is in

practice much more tractable than an LMI. To prove this result we first extend the well-known

S-lemma in case the two matrices of the quadratic forms are simultaneously diagonalizable (SD).

We show that in this case the LMI in the S-lemma can be replaced by a much simpler condition.

Second, we deal with conic quadratic constraints with ellipsoidal implementation errors. We

show that the corresponding RC reduces to a system of ‘nearly conic quadratic constraints’.

In practice many (conic) quadratic problems generate optimal solutions which suffer from im-

plementation errors. This is especially the case in engineering and medical applications. For

example, many cancer treatment problems associated with Intensity Modulated Radiation Ther-

apy (IMRT) are modeled as optimization problems with linear constraints and an objective that

is quadratic in the beam intensities. These intensities cannot exactly be realized in practice, and

hence we have a quadratic optimization problem with implementation error. See e.g. [7]. The

same holds for high-dose rate brachytherapy. Again, the problem contains linear constraints and

an objective that is quadratic in the so-called dwell times. These dwell times cannot exactly

be realized in practice, since the dwell times have to be multiples of say 0.1 seconds. For more

details see [10]. There are also many examples of optimization problems that are not conic

quadratic, but can be reformulated as such. In the paper [8] a large number of applications

are mentioned that can be modelled as conic quadratic problems, many of which are proned

to implementation errors. Relevant examples of this type are the logarithmic Chebychev ap-

proximation and quadratic/linear fractional problems. Design centering is another important

engineering problem: Given is a set of constraints (design specifications), whose solutions may

be affected by implementation errors, one would like to find a feasible point that is in the ’center’

of the feasible region. More precisely, the problem is to find the maximal inscribed ellipsoid of

the feasible region. The problem of design centering for convex quadratic inequalities is also

treated on page 418 in [5], where the problem is reformulated as a semi-definite problem (SDP).

In this paper we also show how our results can be used in the following four classes of applications:

1. generating a tractable robust counterpart for robust linear programming with both ellip-

soidal uncertainty in the parameters and the implementation error;

2. treating Taguchi robust optimization approach;

3. processing general uncertain convex nonlinear constraints with uncertainty by a sequence of

robust quadratic programs in which each iteration solves a convex quadratic optimization

problem under ellipsoidal implementation error;

4. extending the linear decision rules in multi-stage problems (see e.g. [3]) by adding pure

quadratic terms.
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The results in this paper are based on the use of hidden convexity for quadratic problems.

Earlier studies of hidden convexity in seemingly nonconvex quadratic problems include [14], [2],

[12], [18], [16], and [19]. In particular, problems with a nonconvex quadratic objective function

and one or two constraints where studied in [19]. It was shown there that such problems, under

suitable assumptions, can be cast as convex SDPs. The assumptions are, among others, the

existence of Slater condition for both the primal SDP relaxation of the quadratic problem and

its dual. The latter typically means that one of the quadratic forms is definite. In this paper

the main goal is to avoid getting an SDP, and this is achieved under a common diagonalizability

condition. Instead of an SDP we get a very simple quadratic problem equivalent to the original

nonconvex problem. No Slater condition is required to obtain this result. The combination

of the results in [19] and those here, then give a more complete picture of when nonconvex

quadratic problems with one or two constraints are in fact equivalent to certain explicit convex

problems.

The paper is organized as follows. In Section 2 we extend the S-lemma in case of simultaneous

diagonalizability. In Section 3 we treat both the convex quadratic case with ellipsoidal uncer-

tainty, and the conic quadratic case. In Section 4 we show that the results can be generalized

to Globalized Robust Optimization methodology (see e.g. [3]). In Section 5 we describe four

possible classes of applications. We conclude the paper with several conclusions and subjects

for further research in Section 6.

2 The case of simultaneously diagonalizable quadratic forms

2.1 Simultaneous diagonalizability

In this paper the concept of simultaneous diagonalizability (SD) appears to play an important

role. Therefore, we first treat this important concept, and summarize some well-known results

from the literature.

Definition 1 Real symmetric matrices A and B are called simultaneously diagonalizable (SD)

if there exists a nonsingular matrix S such that both ST AS and ST BS are diagonal.

This property plays an important role in the generalized eigenvalue problem. See [6] for more

details on this subject. The following theorem, proved in [17], gives a sufficient condition for

simultaneous diagonalizability.

Theorem 2 Let A and B be two real symmetric matrices. Let QA = {x | xT Ax = 0} and

QB = {x | xT Bx = 0}. If

QA ∩ QB = {0} (1)

then A and B can be simultaneously diagonalized.

Note that if one of the matrices A and B is definite, then condition (1) holds and these two

matrices are SD. In the literature different methods for simultaneously diagonalizing two matrices

are given. We refer again to [6] for such methods. Since in this paper we are considering the

case in which one of the matrices is positive definite, we briefly describe a method for this case.

Let B be positive definite, next compute the Cholesky factorization B = GGT , and then

C = G−1AG−T . (Observe that computing G−1 is relatively easy since G is a triangular ma-

trix.) Next use the symmetric QR algorithm to compute the Schur decomposition QT CQ =
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diag (α1, · · · , αn), and finally set S = G−T Q. It is easily verified that ST BS = I and ST AS =

diag (α1, · · · , αn), i.e. A and B are both diagonalized by S. See also [9] for an efficient imple-

mentation of such a method.

2.2 Nonconvex quadratic problems with one or two constraints

We consider the following nonconvex quadratic optimization problem:

(P )

{

minz
1
2zT Dz + eT z

s.t. 1
2zT Az + bT z + c ≤ 0,

where D,A ∈ R
n×n are symmetric but not necessarily definite or semidefinite, z, b, e ∈ R

n, and

c ∈ R. We assume that A and D can be simultaneously diagonalized by a nonsingular S:

ST AS = diag (α1, · · · , αn)

and

ST DS = diag (δ1, · · · , δn).

Using the one-to-one change of variables z = Sx and setting β = ST b, ε = ST e, we can rewrite

problem (P ) as follows:

(P0)

{

minx
∑

i

(

1
2δix

2
i + εixi

)

s.t.
∑

i

(

1
2αix

2
i + βixi

)

+ c ≤ 0.

First we observe the following: if for some i ∈ {1, ..., n} it holds that δi ≤ 0 and αi ≤ 0, with at

least one strict inequality, then

• if δi < 0, then the minimal value of (P0), and thus of (P ), is −∞.

• if αi < 0, then first constraint in (P0), and thus the constraint in (P ), is redundant.

Hence, in this paper we assume the following:

Assumption 3 There does not exist an i ∈ {1, ..., n} such that δi ≤ 0 and αi ≤ 0, with at least

one strict inequality.

By setting yi = 1
2x2

i , problem (P0) is written equivalently as

(P1)







minx,y δT y + εT x

s.t. αT y + βT x + c ≤ 0
1
2x2

i − yi = 0, ∀i.

We consider the following convex relaxation of (P1):

(P2)







min δT y + εT x

s.t. αT y + βT x + c ≤ 0
1
2x2

i − yi ≤ 0, ∀i.

Let (x∗, y∗) be an optimal solution of (P2), and define

J :=

{

i :
1

2
(x∗

i )
2 < y∗i , i = 1, ..., n

}

.
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Then, if J = ∅ then x∗ is an optimal solution of (P1). The following theorem shows the

equivalence of (P1) and (P2), i.e. it shows that if there exists an optimal solution to (P2),

then there exists an optimal solution to (P1). The theorem also shows how to construct such a

solution.

Theorem 4 Consider the nonconvex problem (P ) and its equivalent problem (P1). Let assump-

tion 3 hold. If (x∗, y∗) is an optimal solution of the convex quadratic problem (P2), then (x̄, ȳ)

is an optimal solution of problem (P1), where

x̄i =











x∗
i if (i /∈ J) ∨ [(i ∈ J) ∧ (αi = 0) ∧ (βi 6= 0)]

√

2y∗i if (i ∈ J) ∧ (αi = βi = εi = 0)
1
αi

(

−βi ±
√

β2
i + 2αiθ∗i

)

if (i ∈ J) ∧ (αi 6= 0),

and

ȳi =
1

2
x̄2

i

where

θ∗i = αiy
∗
i + βix

∗
i .

The optimal solution of problem (P ) is then z = Sx̄.

Proof: For i /∈ J we have x̄i = x∗
i and ȳi = y∗i . For i ∈ J we distinguish three cases:

• Case I: αi = βi = εi = 0. For this case it is easy to see that ȳi = y∗i and x̄i =
√

2y∗i is

optimal to (P1).

• Case II: αi = βi = 0, εi 6= 0. For this case we prove that i /∈ J , and we set x̄i = x∗
i and

ȳi = y∗i . To prove this, we choose

x̃i =

{

+
√

2y∗i if εi < 0

−
√

2y∗i if εi > 0,

and ỹi = y∗i . Then, (x̃, ỹ) is a feasible solution, and

εix̃i = −|εi||x̃i| < εi|x∗
i |,

which implies that (x̃, ỹ) is strictly better than (x∗, y∗), which is a contradiction.

• Case III: αi and βi are not both zero. Since (x∗, y∗) is optimal for (P2), it must satisfy

the Fritz-John conditions:

∃µ0 ≥ 0, u ≥ 0, µi ≥ 0, i = 1, ..., n, not all zero, such that ∀i = 1, ..., n : (2)

µ0δi + uαi − µi = 0 (3)

µ0εi + uβi + µixi = 0 (4)

We proceed to show that µ0 > 0. Assume µ0 = 0, then, for i ∈ J , the Fritz-John conditions

reduces to uαi = 0 and uβi = 0, implying u = 0, and then by (3) that µi = 0, i = 1, ..., n.

This contradicts (2).
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Hence, we have µ0 > 0, and the Fritz-John conditions become the KKT conditions, which

are then necessary and sufficient to optimality of (x∗, y∗). The KKT conditions for i ∈ J

are

δi + uαi = 0 (5)

εi + uβi = 0. (6)

Now we distinguish two subcases:

– Case IIIa: αi = 0. For this case we have by (5) that δi = 0 and then x̄i = x∗
i ,

ȳi = 1
2 x̄2

i is an optimal solution of (P1).

– Case IIIb: αi 6= 0. Set θ∗i = αiy
∗
i + βix

∗
i and choose x̄i and ȳi as follows

ȳi =
1

2
x̄2

i ,

and x̄i is a solution of the quadratic equation

1

2
αix̄

2
i + βix̄i = θ∗i . (7)

This means that

x̄i =

{

x∗
i if αi = 0

1
αi

(

−βi ±
√

∆∗
i

)

if αi 6= 0,

provided of course that ∆∗
i = β2

i + 2αiθ
∗
i is nonnegative. Indeed

∆∗
i = β2

i + 2αiθ
∗
i

= β2
i + 2αi(αiy

∗
i + βix

∗
i )

= (βi + αix
∗
i )

2 + 2α2
i

(

y∗i −
1

2
(x∗

i )
2

)

> 0,

where the last inequality follows since y∗i > 1
2(x∗

i )
2. We have shown that the vectors

x̄ ∈ R
n and ȳ ∈ R

n chosen as:

x̄i =

{

x∗
i if i /∈ J

1
αi

(

−βi ±
√

∆∗
i

)

if i ∈ J,

and

ȳi =
1

2
x̄2

i ,

are a feasible pair for problem (P0).

We now show that (x̄, ȳ) achieves the same optimal value as (x∗, y∗). For i /∈ J we

have x̄i = x∗
i and ȳi = y∗i , so

δiy
∗
i + εix

∗
i = δiȳi + εix̄i. (8)

For i ∈ J , we have since µi = 0, and using (5) and (6):

δiȳi + εix̄i = (−uαi)ȳi + (−uβi)x̄i

= −u(αiȳi + βix̄i)

= −u(
1

2
αix̄

2
i + βix̄i)

= −uθ∗i ,
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where the last equality follows from (7). On the other hand, again by (5) and (6), we

have δiy
∗
i + εix

∗
i = −u∗θ∗i . Hence, this verifies (8) for i ∈ J . This shows that (x̄, ȳ)

achieves the same optimal value as (x∗, y∗). Hence, (x̄, ȳ) is an optimal solution for

(P1) and hence for (P0).

�

The final result is that even a nonconvex quadratic problem (P ) can be solved by solving a convex

quadratic optimization problem (P2). We illustrate this by the following simple example.

Example. We consider the following nonconvex quadratic optimization problem:

min −1

2
z2
1 − 1

2
z2
2 − z2

s.t. z2
1 +

1

2
z2
2 + z2 ≤ 1.

This problem is already in diagonal form, and hence the corresponding problem (P2) is:

min −y1 − y2 − x2

s.t. 2y1 + y2 + x2 ≤ 1
1

2
x2

1 − y1 ≤ 0

1

2
x2

2 − y2 ≤ 0.

It can easily be checked that the optimal objective value of this problem is −1, and the optimal

solution x∗
1 = 0, x∗

2 = 0, y∗1 = 0, y∗2 = 1, and the KKT mupliers u = 1, µ1 = 1, µ2 = 0. This

solution clearly does not satisfy y∗i = 1
2(x∗

i )
2. However, such a solution is given by x̄1 = 0, x̄2 =

−1 ±
√

3, ȳ1 = 0, ȳ2 = 2 ∓
√

3, with objective value −1. �

Problem (P2) has a simple dual problem.

Theorem 5 Assume there exists a strictly feasible solution to (P2). Then, the objective values

of (P2) and the following dual problem are equal:

(D2)











maxv∈R −∑

i
(vβi+εi)

2

2(δi+vαi)
+ cv

s.t. δi + vαi ≥ 0, ∀i

v ≥ 0.

Proof: We compute the Lagrange dual of (P2):

L(x, y, u, v) = δT y + εT x +
∑

i

ui(
1

2
x2

i − yi) + v(αT y + βT x + c)

=
∑

i

yi(δi − ui + vαi) +
∑

i

xi(εi +
1

2
uixi + vβi) + vc.

It can easily be verified that the dual objective is

g(v,w) =

{

−∑

i
(vβi+εi)2

2ui
+ vc if δi − ui + vαi = 0, ∀i

−∞ elsewhere.
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Hence, we obtain that (P2) is equivalent to the following problem:











max−∑

i
(vβi+εi)

2

2ui
+ vc

δi − ui + vαi = 0, ∀i

u ≥ 0, v ≥ 0.

By eliminating ui, we obtain problem (D2). �

Problem (D2) is a very simple problem: only one variable and the objective is concave. Note

that problem (D2) can be cast as a conic quadratic one, which is done in Section 3 to obtain

the RC for quadratic constraints affected by ellipsoidal implementation error.

Theorem 4 can be extended to the case that there are two quadratic constraints. We consider

the following optimization problem:

(P̄ )







min 1
2zT Dz + eT z

s.t. 1
2zT Az + bT z + c ≤ 0

1
2zT Gz + hT z + k ≤ 0,

where D,A,G ∈ R
n×n are symmetric, z, b, e, h ∈ R

n, and c, k ∈ R. We assume that A,D and G

can be simultaneously diagonalized: ∃ nonsingular S such that

ST AS = diag (α1, · · · , αn), ST DS = diag (δ1, · · · , δn), ST GS = diag (η1, · · · , ηn).

Important cases that satisfy this simultaneous diagonalizability are the following cases:

1. The second constraint is linear (i.e. G is the zero matrix) and matrices D and A are SD.

Note that an optimization problem with a nonconvex quadratic objective function and one

conic quadratic constraint

‖Ax − b‖ ≤ cT x − d

can be reformulated to such a problem with one nonconvex quadratic constraint and one

linear constraint:
{

‖Ax − b‖2 − (cT x − d)2 ≤ 0

cT x − d ≥ 0.
(9)

2. The two constraints originate from a single two-sided quadratic constraint; in this case

G = −A.

3. Matrix G is the identity matrix, and matrices A and D commute. This case may happen

in robust optimization when using ball uncertainty regions.

4. The three matrices A, D and G commute.

Using the change of variables z = Sx and change of parameters β = ST b, ε = ST e, θ = ST h, we

can rewrite problem (P̄ ) as follows:

(P̄0)







min
∑

i

(

1
2δix

2
i + εixi

)

s.t.
∑

i

(

αix
2
i + βixi

)

+ c ≤ 0
∑

i

(

ηix
2
i + θixi

)

+ k ≤ 0

We will assume the following (cf. Assumption 3):
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Assumption 6 There does not exists an i ∈ {1, ..., n} such that δi ≤ 0, αi ≤ 0, and ηi ≤ 0,

with at least one strict inequality.

By setting yi = 1
2x2

i problem (P0) is written equivalently as

(P̄1)















min δT y + εT x

s.t. αT y + βT x + c ≤ 0

ηT y + θTx + k ≤ 0
1
2x2

i − yi = 0, ∀i.

We consider the following convex relaxation of (P̄1):

(P̄2)















min δT y + εT x

s.t. αT y + βT x + c ≤ 0

ηT y + θTx + k ≤ 0
1
2x2

i − yi ≤ 0, ∀i.

(10)

For the case of two constraints we also need the following assumption:

Assumption 7 Let x∗ be an optimal solution of (P̄2), and u∗ ≥ 0, λ∗ > 0, and µ∗
i ≥ 0 be the

corresponding KKT multipliers of the constraints of (P̄2). Then λ∗ = 0 or u∗ = 0. Henceforth,

we assume λ∗ = 0.

For the case of quadratic objective and conic quadratic constraint mentioned earlier (see (9)) it

can easily be seen that Assumption 7 holds if

(

b

d

)

/∈ R

(

A

cT

)

.

Let (x∗, y∗) be an optimal solution of (P2), and define, as in the case of one constraint,

J :=

{

i :
1

2
(x∗

i )
2 < y∗i , i = 1, ..., n

}

.

Then, if J = ∅ then x∗ is an optimal solution of (P1). The following theorem shows the

equivalence of (P̄1) and (P̄2), i.e. it shows that if there exists an optimal solution to (P̄2),

then there exists an optimal solution to (P̄1). The theorem also shows how to construct such a

solution.

Theorem 8 Consider the nonconvex problem (P̄ ) and its equivalent problem (P̄1). Let assump-

tion 6 and 7 hold. If (x∗, y∗) is an optimal solution of the convex quadratic problem (P̄2), then

(x̄, ȳ) is an optimal solution of problem (P̄1), where

x̄i =















































x∗
i if (i /∈ J) ∨ [(i ∈ J) ∧ (αi = βi = δi = 0) ∧ (εi 6= 0)]

√

2y∗1 if (i ∈ J) ∧ (αi = βi = δi = εi = 0) ∧ (θi ≤ 0)

−
√

2y∗1 if (i ∈ J) ∧ (αi = βi = δi = εi = 0) ∧ (θi > 0)

max(x̃+
i , x̃−

i ) if (i ∈ J) ∧ (αi = βi = 0) ∧ (δi 6= 0) ∧ (ηiεi

δi
≥ θi)

min(x̃+
i , x̃−

i ) if (i ∈ J) ∧ (αi = βi = 0) ∧ (δi 6= 0) ∧ (ηiεi

δi
< θi)

max(x̄+
i , x̄−

i ) if (i ∈ J) ∧ (αi 6= 0) ∧ (ηiβi

αi
≥ θi)

min(x̄+
i , x̄−

i ) if (i ∈ J) ∧ (αi 6= 0) ∧ (ηiβi

αi
< θi)
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and

ȳi =
1

2
x̄2

i ,

where

x̃+
i =

1

δi

(

−εi +
√

2δiσ∗
i

)

,

x̃−
i =

1

δi

(

−εi −
√

2δiσ
∗
i

)

,

x̄+
i =

1

αi

(

−βi +
√

β2
i + 2αiθ∗i

)

,

x̄−
i =

1

αi

(

−βi −
√

β2
i + 2αiθ

∗
i

)

,

and

σ∗
i = δiy

∗
i + εix

∗
i ,

θ∗i = αiy
∗
i + βix

∗
i .

The optimal solution of problem (P̄ ) is then z = Sx̄.

Proof: For i /∈ J we have x̄i = x∗
i and ȳi = y∗i . For i ∈ J we distinguish the following cases:

• Case I: αi = βi = 0 and δi = εi = 0. For this case it is easy to see that ȳi = y∗i and

x̄i =

{

+
√

2ȳi if θi ≤ 0

−√
2ȳi if θi > 0,

is an optimal solution of (P̄1).

• Case II: αi and βi are not both zero. It can easily be shown by using Assumption 7 that

the Fritz-John conditions reduce to KKT conditions.

• Case IIa: αi = 0, βi 6= 0. Using the KKT conditions it can easily be shown that δi = 0,

and hence, by assumption 6, ηi > 0. Hence, this case is basically the same as Case IIIb.

• Case IIb: αi 6= 0. The first part of the proof is the same as the proof for Case IIIb of

Theorem 4. We now only have to show that (x̄, ȳ) also satisfies the second constraint of

problem (P̄2):

ηT y + θTx + k ≤ 0. (11)

First, we prove a needed result for the two roots 1
αi

(

−βi ±
√

β2
i + 2αiθ∗i

)

, denoted by x̄+
i

and x̄−
i . We claim that

min(x̄+
i , x̄−

i ) ≤ x∗
i ≤ max(x̄+

i , x̄−
i ). (12)

To prove this we define

τ(x) =
1

2
αix

2 + βix − (αiy
∗
i + βix

∗
i ).

Let us first assume that αi > 0. Then, it is easy to verify that τ(x̄−
i ) = τ(x̄+

i ) = 0 and

that τ(x) is convex. Moreover,

τ(x∗
i ) = αi

(

1

2
(x∗

i )
2 − y∗i

)

< 0.

10



Hence, x̄−
i ≤ x∗

i ≤ x̄+
i . Let us now assume that αi < 0. Then, it is easy to verify that

τ(x̄−
i ) = τ(x̄+

i ) = 0 and that τ(x) is concave. Moreover,

τ(x∗
i ) = αi

(

1

2
(x∗

i )
2 − y∗i

)

> 0.

Hence, x̄−
i ≤ x∗

i ≤ x̄+
i . This proves (12).

Now we prove that (x̄, ȳ) also satisfies (10). For i /∈ J we have x̄i = x∗
i and ȳi = 1

2 x̄2
i and

hence

ηiȳi + θix̄i ≤ ηiy
∗
i + θix

∗
i .

We are left to show that ∀i ∈ J , we have that x̄i, and ȳi = 1
2 x̄2

i satisfy

ηiȳi + θix̄i < ηiy
∗
i + θix

∗
i ,

where x̄i is one of the two roots x̄+
i and x̄−

i . Indeed

ηiȳi + θix̄i =
1

2
ηix̄

2
i + θix̄i

= ηi

(

y∗i +
βi

αi
x∗

i −
βi

αi
x̄i

)

+ θix̄i

= ηiy
∗
i + θix

∗
i + ηi

βi

αi
(x∗

i − x̄i) + θi(x̄i − x∗
i )

= ηiy
∗
i + θix

∗
i +

(

ηi
βi

αi
− θi

)

(x∗
i − x̄i)

≤ ηiy
∗
i + θix

∗
i .

To prove the last inequality it remains to show that by choosing x̄i one of the two roots

x+
i and x−

i we have
(

ηi
βi

αi
− θi

)

(x∗
i − x̄i) ≤ 0.

Using (12) it is easy to verify that the right choice for ∀i ∈ J, αi 6= 0, is

x̄i =

{

max(x̄+
i , x̄−

i ) if ηi
βi

αi
≥ θi

min(x̄+
i , x̄−

i ) if ηi
βi

αi
< θi.

Finally, similar as in Case IIIb of the proof of Theorem 4 it can be shown that (x̄, ȳ)

achieves the same optimal value as (x∗, y∗). Hence, (x̄, ȳ) is an optimal solution for (P̄1)

and thus for (P̄ ).

• Case IIIa: αi = βi = 0, δi 6= 0. This case is similar as Case IIb, and the proof easily

follows from that case by working with the objective function instead of the first constraint.

• Case IIIb: αi = βi = 0, δi = 0, εi 6= 0. Then by Assumption 6 we have ηi > 0, and then

we choose x̄i = x∗
i and ȳi = 1

2 x̄2
i . This solution has the same objective value as (x∗, y∗)

and also the same value for the first constraint, and is moreover also feasible for the second

constraint since ηiȳi < ηiy
∗
i . Hence this solution is also optimal for (P̄1).

�

Assumption 7 is necessary for the validity of Theorem 8, which is demonstrated by the following

example.
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Example. We consider the following nonconvex quadratic optimization problem with two

constraints:

min −1

2
z2
1 − 1

2
z2
2 − 2z2

s.t. z2
1 +

1

2
z2
2 + z2 ≤ 2

z1 + z2 ≤ −1.

This problem is already in diagonal form, and hence the corresponding problem (P̄2) is:

min −y1 − y2 − 2x2

s.t. 2y1 + y2 + x2 ≤ 2

x1 + x2 ≤ −1
1

2
x2

1 − y1 ≤ 0

1

2
x2

2 − y2 ≤ 0.

It can easily be checked that the unique optimal objective value of this problem is −3
2 , and the

optimal solution x∗
1 = −1, x∗

2 = 0, y∗1 = 1
2 , y∗2 = 1, and the KKT mupliers u = 1, λ = 1, µ1 =

1, µ2 = 0. This solution clearly does not satisfy y∗i = 1
2(x∗

i )
2, hence J = {2}. However, such a

solution is given by x̄1 = −1, x̄2 = −1−
√

3, ȳ1 = 1
2 , ȳ2 = 2 +

√
3, with objective value −1

2 +
√

3.

The objective values are not equal, which is caused by the fact that both u and λ are strictly

positive, and hence assumption 7 is not satisfied. �

The dual problem of (P̄2) is a 2-variable convex problem, given in the following theorem.

Theorem 9 Assume that assumptions 6 and 7 are satisfied. Moreover, assume that there exists

a strictly feasible solution to (P̄2). Then, the objective values of (P̄2) and the following dual

problem are equal:

(D̄2)











maxv1,v2∈R −∑

i
(v1βi+v2θi+εi)2

2(δi+v1αi+v2ηi)
+ cv

s.t. δi + v1αi + v2ηi ≥ 0, ∀i

v1, v2 ≥ 0.

Proof: Similar as the proof of Theorem 5. �

To conclude, the (probably nonconvex) quadratic problem (P̄ ) satisfying the assumptions of

Theorem 8 can be solved by solving a convex quadratic optimization problem (P̄2), or by its

dual (D̄2).

2.3 Refining the S-lemma

We start with the inhomogeneous version of the fundamental S-lemma. For an excellent overview

on the S-lemma we refer to [13].

Lemma 10 Let A, D be symmetric matrices of the same size, and let the quadratic form zT Az+

2bT z + c be strictly positive at some point. Then the implication

zT Az + 2bT z + c ≥ 0 ⇒ zT Dz + 2eT z + f ≥ 0

12



holds true if and only if

∃λ ≥ 0 :

(

D − λA e − λb

eT − λbT f − λc

)

� 0. (13)

�

Before we state a sharpened version of this lemma in case the matrices A and D are SD, we

show that the Slater conditions in Lemma 5 and Lemma 10 are equivalent.

Lemma 11 Suppose that the nonsingular matrix S diagonalizes A, i.e. ST AS = diag(α1, ..., αn).

Then, the condition

∃z : zT Az + 2bT z + c > 0 (14)

is equivalent to

∃x, y :

{

αT y + 2βT x + c > 0

x2
i − yi < 0,

(15)

in which β = ST b.

Proof: First we show that if (14) holds then (15) holds. Suppose that z̄ satisfies z̄T Az̄ +

2b̄T z + c > 0. We substitute z̄ = Sx̄ into (14) and obtain

σ :=
∑

i

αix̄
2
i + 2βT x̄ + c > 0. (16)

We define ȳi = x̄2
i + σ

2‖α‖1

. Evidently we have ȳi > x̄2
i . Moreover, using this expression for ȳ

gives

∑

i

αiȳi + 2βT x̄ + c =
∑

i

αix̄
2
i +

∑

i

αi
σ

2‖α‖1
+ 2βT x̄ + c

≥
∑

i

αix̄
2
i −

1

2
σ + 2βT x̄ + c

> 0,

where the last inequality follows from (16). Hence, x̄ and ȳ satisfy (15).

Now we prove that if (15) holds then (14) holds. First of all, we may assume that all eigenvalues

of A are nonpositive. This is true, since if there exists a positive eigenvalue of A then the

corresponding eigenvector will satisfy (14). It is well-known that a congruence transformation

preserves the signs of the original matrix, and hence we have that αi ≤ 0, ∀i. Suppose now that

(x̄, ȳ) satisfies (15), i.e.
{

αT ȳ + 2βT x̄ + c > 0

x̄2
i − ȳi < 0.

We can write

ȳi = x̄2
i + θi,

where θi > 0. Hence, we have

∑

i

αix̄
2
i +

∑

i

αiθi + 2βT x̄ + c > 0.

13



By substituting z̄ = Sx̄ we obtain

z̄T Az̄ + 2bT z̄ + c > −
∑

i

αiθi ≥ 0.

Hence, z̄ satisfies (15). �

In case that the matrices A and D are SD we can sharpen the S-lemma, i.e., the LMI can be

replaced by a simple convex constraint.

Lemma 12 Let A, D be symmetric matrices of the same size and SD into diag (α1, ..., αn) and

diag (δ1, ..., δn), respectively. Let the quadratic form zT Az + 2bT z + c be strictly positive at some

point. Then the implication

zT Az + 2bT z + c ≥ 0 ⇒ zT Dz + 2eT z + f ≥ 0

holds true if and only if there exist w and v ∈ R such that










−∑

i
(vβi−εi)2

δi−vαi
− cv + f ≥ 0

δi − vαi ≥ 0, ∀i

v ≥ 0,

in which β = ST b and ε = ST e.

Proof: The implication

zT Az + 2bT z + c ≥ 0 ⇒ zT Dz + 2eT z + f ≥ 0

holds true if and only if the optimal value of the following optimization problem is nonnegative:

min
1

2
zT Dz + eT z +

1

2
f

s.t.
1

2
zT Az + bT z +

1

2
c ≥ 0.

Using Theorem 4 we immediately obtain the result of the theorem.

Another proof is by starting from the inhomogeneous S-lemma (Lemma 10). Since a congruence

transformation preserves all signs of the eigenvalues we have that the LMI (13) is equivalent to:

(

S 0

0 I

)T (

D − λA e − λb

eT − λbT f − λc

) (

S 0

0 I

)

=

(

diag (δ1 − λα1, ..., δn − λαn) ε − λβ

(ε − λβ)T f − λc

)

� 0. (17)

The theorem follows easily by using the Schur complement for the most right matrix in (17). �

In the next section we show that this result enables us to prove that the robust counterpart of

a quadratic constraint with ellipsoidal implementation error is equivalent to a system of conic

quadratic constraints instead of LMIs. The above lemma, however, may also be used in other

cases where the S-lemma is used and the matrices are SD, to get a system of conic quadratic

constraints instead of LMIs. Note that, although both conic quadratic programming and SDP

can be solved in polynomial time by interior point methods, in practice SDPs are much more

difficult to solve. Another advantage of our analysis is that it provides an explicit way to extract
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the solution for the original optimization problem (P ) contrary to the S-lemma. Moreover, our

analysis leads to the generalization of an optimization problem with two quadratic constraints

(problem (P̄ )) and even much more general problems, which will be treated in a forthcoming

paper. Finally, our analysis sharpens the above lemma in the sense that the Slater condition

may be dropped, which is stated in the following lemma.

Lemma 13 Let A, D be symmetric matrices of the same size and SD by the matrix S into

diag (α1, ..., αn) and diag (δ1, ..., δn), respectively. Then the implication

zT Az + 2bT z + c ≥ 0 ⇒ zT Dz + 2eT z + f ≥ 0

holds true if and only if there exist x ∈ R
n and y ∈ R

n such that







δT y + 2εT x + f ≥ 0

αT y + 2βT x + c ≥ 0

x2
i − yi ≤ 0, ∀i,

in which β = ST b and ε = ST e.

Proof: The proof is essentially the same as the proof of Theorem 4. �

Finally, we note that by using Theorem 9 the S-lemma can also be generalized to the case of

three quadratic forms.

3 (Conic) quadratic constraint with implementation errors

3.1 Quadratic constraint

We start with a convex quadratic constraint that is affected by ellipsoidal implementation error:

(x + a)T D(x + a) + 2eT (x + a) ≤ f ∀ a : aT Aa ≤ ρ2, (18)

in which a ∈ R
n is the additive implementation error, x, e ∈ R

n, A,D ∈ R
n×n, and ρ, f ∈ R.

We assume that A is positive definite. By setting

d(x) = Dx + e

and

γ(x) = f − (xT Dx + 2eT x)

we get that (18) is equivalent to

aT Da + 2aT d ≤ γ ∀ a : aT Aa ≤ ρ2. (19)

Note that d = d(x) and γ = γ(x) only depend on x and not on a. Moreover, d(x) is linear in x,

and γ(x) is concave in x if D � 0.

We first note that by using the S-lemma, we can rewrite (19) as

∃λ ≥ 0 :

(

λA − D −d(x)

−d(x)T γ(x) − λρ2

)

� 0, (20)
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or by substituting the expressions for d(x) and γ(x):

∃λ ≥ 0 :

(

λA − D −Dx − e

−Dx − e f − xT Dx − 2eT x − λρ2

)

� 0. (21)

This is equivalent to

∃λ ≥ 0 :





f + eT D−1e − λρ2 0 −(x + D−1e)T

0 λA I

−(x + D−1e) I D−1



 � 0, (22)

which can easily be verifed by checking that the Schur complement of D−1 in (22) is exactly the

left hand side of the LMI in (21). However, although theoretically speaking (22) is tractable, we

would like to avoid LMIs, since LMIs are practically speaking intractable. In the remainder of

this section we give an equivalent conic quadratic formulation.

Since A is positive definite, if follows that A and D can be simultaneously diagonalized by a

nonsingular matrix S. This means

ST DS = diag (δ1, ..., δn) and ST AS = diag (α1, . . . , αn).

Using our improved S-lemma, Lemma 12, we obtain the following result.

Lemma 14 Assume that there exists ā such that āT Aā < ρ2. Then (18) holds if and only if

there exist v ∈ R and w ∈ R
n such that

(RQ)



















∑

i wi + ρ2v + xT Dx + 2eT x ≤ f
[

ST (Dx + e)
]2

i
+ (wi − vαi + δi)

2 ≤ (wi + vαi − δi)
2, ∀i

vαi − δi ≥ 0, ∀i

v ≥ 0.

Proof: (19) is equivalent to

aT Aa ≤ ρ2 =⇒ aT Da + 2dT a ≤ γ. (23)

Since A and D are SD by a nonsingular matrix S, we can apply Lemma 12, which yields that

(23) is equivalent to the following: there exists v ∈ R such that











∑

i
(ST d)2

i

vαi−δi
+ ρ2v ≤ γ

vαi − δi ≥ 0, ∀i

v ≥ 0.

This system of constraints can be reformulated as a system of conic quadratic constraints:















∑

i wi + ρ2v ≤ γ

(ST d)2i + (wi − vαi + δi)
2 ≤ (wi + vαi − δi)

2, ∀i

vαi − δi ≥ 0, ∀i

v ≥ 0.

Substituting d = d(x) and γ = γ(x) we immediately obtain the result in the theorem. �

The lemma states that the robust counterpart of a convex quadratic inequality with ellipsoidal

implementation error can be written as a system of conic quadratic constraints. Note that in the
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case of a convex quadratic inequality, i.e., D is positive semi-definite, then also the first constraint

of (RQ) is convex. Note, however, that the lemma still holds in the case of a nonconvex quadratic

inequality, i.e., D is not positive semi-definite. It is interesting to observe that, although in that

case the first constraint of (RQ) is of course nonconvex, the implementation error does not

introduce extra nonconvexities.

Finally, we note that Lemma 14 can also be generalized to the case of two ellipsoidal constraints

by using Theorem 9.

3.2 Conic quadratic constraint

We consider a conic quadratic constraint with implementation error

‖Q(x + a) − q‖2 ≤ [pT (x + a) − r]2

pT (x + a) ≥ r

}

∀ a : aT Aa ≤ ρ2, (24)

in which a ∈ R
n is the additive implementation error, x, p, q ∈ R

n, A,Q ∈ R
n×n, and ρ, r ∈ R.

We assume that A is positive definite. The second constraint is equivalent to:

pT x − r + min
aT Aa≤ρ2

pTa ≥ 0 ⇐⇒ pT x − r − ρ(pT A−1p)1/2 ≥ 0, (25)

which is a linear constraint.

The first constraint of (24) can be written as

‖Qx − q‖2 + aT QT Qa + 2(Qx − q)T Qa ≤ (pT x − r)2 + aT ppTa + 2(pT x − r)pT a

Let us define
D = QT Q − ppT

d = QT (Qx − q) − (pT x − r)p

γ = (pT x − r)2 − ‖Qx − q‖2.

Note that x itself is feasible, i.e. pT x − r ≥ 0, and ‖Qx − q‖2 ≤ (pT x − r)2 so γ ≥ 0. Moreover,

D is symmetric but not necessarily definite or even nonsingular. Then the first constraint of

(24) is equivalent to

aT Da + 2dT a ≤ γ ∀ a : aT Aa ≤ ρ2. (26)

First, we observe that in this case it is not possible to rewrite (26) as an LMI, as we have done

for the quadratic case. Since A is positive definite, if follows that A and D can be simultaneously

diagonalized by a nonsingular matrix S. This means

ST DT = diag (δ1, ..., δn) and ST AS = diag (α1, . . . , αn).

Using our improved S-lemma, Lemma 12, we obtain the following result.

Lemma 15 Assume that there exists ā such that āT Aā < ρ2. Then the first constraint of (24)

holds if and only if there exist v ∈ R and w ∈ R
n such

(RCQ)



























∑

i wi + ρ2v + ‖Qx − q‖2 ≤ (pT x − r)2
[

ST QT Qx − ST QT q − (pT x − r)ST p
]2

i
+ (wi − vαi + δi)

2 ≤ (wi + vαi − δi)
2, ∀i

pT x − r − ρ(pT A−1p)1/2 ≥ 0

vαi − δi ≥ 0, ∀i

v ≥ 0.
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Proof: Since (26) is the same as (19) for the quadratic case (only γ and d differ), we can again

use the proof of Lemma 14. Finally, we obtain that the first constraint of (24) is equivalent to















∑

i wi + ρ2v ≤ γ

(ST d)2i + (wi − vαi + δi)
2 ≤ (wi + vαi − δi)

2, ∀i

vαi − δi ≥ 0, ∀i

v ≥ 0.

The result follows by substitution of d = d(x) and γ = γ(x), and by adding constraint (25). �

Note that the second set of constraints of problem (RCQ) is conic quadratic. The first constraint

of problem (RCQ), however, is not conic quadratic, and even not convex. However, since the

feasible set of (24) is convex, and (RCQ) is equivalent to (24), we also know that the level sets

for the first constraint in (RCQ) are convex. Hence, each KKT point for (RCQ) is a global

optimizer.

Finally, we note that Lemma 15 can also be generalized to the case of two ellipsoidal constraints

by using Theorem 9.

4 Globalized Robust Optimization

In this section we study the Globalized Robust Counterpart (GRC). For the generalized robust

counterpart we define two uncertainty regions:

U1 = {a : aT Aa ≤ ρ2
1}

and

U2 = {a : aT Aa ≤ ρ2
2},

such that ρ1 < ρ2, i.e., U1 ⊂ U2, and in which A � 0. For a ∈ U1 we enforce that (19)

should hold, and for a ∈ U2 we allow some violation θ(dist(a,U1)), where θ(t) is a nondecreasing

function for t ≥ 0, with θ(0) = 0, and θ(t) = 0, for t < 0, and

dist(a,U1) = min
a′∈U1

‖a′ − a‖A = min
a′∈U1

√

(a′ − a)T A(a′ − a)

is the distance of a to U1 measured in the A-norm. Let us now focus on the quadratic case.

Instead of (19) we now get:

aT Da + 2aT d ≤ γ + θ(dist(a,U1)) ∀ a ∈ U2. (27)

Observe that if a ∈ U1 then dist(a,U1) = 0, and the constraint should hold without violation.

Note that this framework is different than the Globalized Robust Optimization approach pro-

posed in [3], where U1 is a compact convex set, and U2 is equal to U1 plus a convex cone. In our

approach both regions are ellipsoid. Moreover, θ(t) = t in [3] , while here we have more freedom

in choosing θ(t).

Constraint (27) can be written as:

max
a∈U2

{aT Da + 2aT d − θ(dist(a,U1))} ≤ γ. (28)
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Since

dist(a,U1) = min
a′∈U1

‖a − a′‖A =

{

0 if a ∈ U1

‖a‖A − ρ1 otherwise

(28) becomes:

max
a∈U2

{aT Da + 2aT d − θ(‖a‖A − ρ1)} ≤ γ. (29)

Since θ(.) is nondecreasing, this is equivalent to

max
ρ1≤t≤ρ2

max
‖a‖A≤t

{aT Da + 2aT d − θ(t − ρ1)} ≤ γ. (30)

Now we focus on the inner problem

max
{

aT Da + 2aT d : ‖a‖A ≤ t
}

.

This is a quadratic optimization problem with one quadratic constraints, for which the results

obtained in the previous section can be applied.

Assuming that A and D can be simultaneously diagonalized we get that (30) is equivalent to


















∑

i wi + maxρ1≤t≤ρ2
{t2v − θ(t − ρ1)} + xT Dx + 2eT x ≤ f

[

ST (Dx + e)
]2

i
+ (wi − vαi + δi)

2 ≤ (wi + vαi − δi)
2, ∀i

vαi − δi ≥ 0, ∀i

v, w ≥ 0.

Note that the function ϕ(v) := maxρ1≤t≤ρ2
{t2v − θ(t − ρ1)} is convex in v, even if θ(.) is not

convex.

Example 1: θ is linear. Let θ(t) = ωt. Then we have

max
ρ1≤t≤ρ2

{t2v − ω(t − ρ1)} = max{ρ2
1v, ρ2

2v − ω(ρ2 − ρ1)}.

Finally x is a GRC solution if and only if x ∈ R
n, v ∈ R and w ∈ R

n solve


















∑

i wi + max{ρ2
1v, ρ2

2v − ω(ρ2 − ρ1)} + xT Dx + 2eT x ≤ f
[

ST (Dx + e)
]2

i
+ (wi − vαi + δi)

2 ≤ (wi + vαi − δi)
2, ∀i

vαi − δi ≥ 0, ∀i

v, w ≥ 0.

Example 2: θ is quadratic. Let us take for example θ(t) = ωt2. Then we have

max
ρ1≤t≤ρ2

{t2v − θ(t − ρ1)} = max
ρ1≤t≤ρ2

{t2v − ω(t − ρ1)
2}.

The function t2v − ω(t − ρ1)
2 is maximal for

t =
ωρ1

ω − v
,

and the corresponding optimal value is ρ2
1ω

(

−1 + ω
ω−v

)

. This optimal t is in the interval [ρ1, ρ2]

if v ≤ ω
(

1 − ρ1

ρ2

)

. It can easily be verified that

ϕ(v) =







ρ2
1ω

(

−1 + ω
ω−v

)

if v < ω
(

1 − ρ1

ρ2

)

ρ2
2v − ω(ρ2 − ρ1)

2 if v ≥ ω
(

1 − ρ1

ρ2

)

,

which is convex.

The derivation of the GRC for the conic quadratic case can be done in a similar way.
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5 Applications

In this section we describe four important classes of applications of the results obtained in this

paper.

Linear optimization with both parameter uncertainty and implementation error.

Consider the following linear constraint

bT x ≤ c,

that is affected by both uncertainty in the parameter b and implementation error:

(b + Bp)T (x + a) ≤ c, ∀p : pTRp ≤ ρ̄2 ∀a : aT Aa ≤ ρ2,

in which the matrices A and R are positive definite. First, we calculate the robust counterpart

with respect to the parameter uncertainty, and obtain

bT (x + a) + ρ̄‖R−1/2BT (x + a)‖ ≤ c, ∀a : aT Aa ≤ ρ2.

This is basically (24), a conic quadratic constraint with implementation error. By using Lemma

15, we obtain the robust counterpart:



























∑

i wi + ρ2v + ρ̄2‖R−1/2BT x‖2 ≤ (c − bT x)2
[

ρ̄2ST BR−1BT x + (c − bT x)ST b
]2

i
+ (wi − vαi + δi)

2 ≤ (wi + vαi − δi)
2, ∀i

c − bT x − ρ(bT A−1b)1/2 ≥ 0

vαi − δi ≥ 0, ∀i

v ≥ 0,

in which S is the matrix that simultaneously diagonalizes A and ρ̄2BR−1BT − bbT .

This situation of both parameter uncertainty and implementation error happens often in prac-

tice, e.g., in engineering. Linear functions are often estimated via simulation or physical exper-

iments, hence there is (much) uncertainty on the coefficients. Moreover, in many cases we also

have implementation errors. For an example we refer to the TV-design problem in [15].

General nonlinear robust optimization. Let us first start with the general nonlinear design

centering problem. Suppose we have a nonlinear (convex) constraint with implementation error,

and we would like to solve the optimization problem in a robust way. Hence, we consider,

f(x + a) ≤ 0, ∀a : aT Aa ≤ ρ2.

One possible way to solve this is by using Sequential Robust Quadratic Programming. In each

iteration i we solve:

qi(x + a) ≤ 0, ∀a : aT Aa ≤ ρ2,

where qi(x) is the quadratic approximation of f(x) in the i-th iteration. This subproblem is

exactly the one studied in the previous section. Note that without loss of generality we may

assume A = I, thereby simplifying the process of simultaneous diagonalizing.

A similar Sequential Robust Quadratic Programming approach may also be used for a more

general problem (i.e., not only for implementation error):

f(x, a) ≤ 0, ∀a : aT Aa ≤ ρ2,
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in which a is the uncertain parameter, and f(x, a) is convex in (x, a). In each iteration i we use

the quadratic approximation qi(x, a) of f(x, a) in the current iterate (x, a), i.e. we solve:

qi(x, a) ≤ 0, ∀a : aT Aa ≤ ρ2. (31)

Note that qi(x, a) is quadratic in x and in a. Hence, we may use the methods of the previous

section to solve subproblem (31). In each iteration we have to simultaneously diagonalize A and

∇2qi(x, a), which process can be simplified by assuming without loss of generality that A = I.

Note that [4] in fact proposes such a sequential method but they use linear approximations.

Moreover, they also work with both parameter uncertainty and implementation error. They

first linearize the nonlinear function both with respect to x and the uncertain parameters (so

there are no cross terms). Then they solve the robust counterpart for this linear model. As

described in the previous section, we can solve the robust counterpart for linear models with

both implementation and parameter uncertainty, hence we can also handle cross terms.

Taguchi. Another important potential class of applications is Taguchi robust optimization. In

Taguchi’s approach we finally get the following response function by doing experiments:

∑

i

bixi +
∑

j

cjzj +
∑

i,j

dijxizj + e

in which xi are the optimization variables and zj the noise factors. See Chapter 11 of [11] for

more details. This function may contain four categories of uncertainty:

1. Simulation / experimental errors, which lead to uncertainty in the coefficients bi, cj, and

dij ;

2. Model errors, which lead to uncertainty in the coefficients bi, cj , and dij;

3. Uncertainty in the noise factors zj ;

4. Implementation error in xi.

Normally speaking Taguchi only looks at uncertainty in the noise factors. We are now able to

deal with e.g. noise factors and implementation error or experimental errors and implementation

errors. Let us consider the case that there is ellipsoidal uncertainty in the noise factor, and

ellipsoidal implementation error. We are then facing the following problem:

min
x

max
a:aT Aa≤ρ2

max
z:zT Rz≤ρ̄2

∑

i

bi(xi + ai) +
∑

j

cjzj +
∑

i,j

dij(xi + ai)zj + e,

in which A and R are positive definite. Note that this problem can be written as:

min
x

max
a:aT Aa≤ρ2

max
z:zT Rz≤ρ̄2

bT (x + a) + zT (c + DT (x + a)) + e,

in which the (i, j) element of D is dij . By first solving the inner most maximization problem,

we get a conic quadratic function with implementation error:

min
x

max
a:aT Aa≤ρ̄2

bT (x + a) + ρ̄‖R−1/2(c + DT (x + a))‖ + e.
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Using Lemma 15 the robust counterpart for this problem can be stated as the following problem

in variables x, v, and w:



























∑

i wi + ρ2v + ρ̄2‖R−1/2(c + DT x)‖2 ≤ (bT x + e)2
[

ρ̄2ST DR−1DTx + ρ̄2ST DR−1c − (bT x + e)ST b
]2

i
+ (wi − vαi + δi)

2 ≤ (wi + vαi − δi)
2, ∀i

bT x + e + ρ(bT A−1b)1/2 ≤ 0

vαi − δi ≥ 0, ∀i

v ≥ 0,

in which S is the matrix that simultaneously diagonalizes A and ρ̄2DR−1DT − bbT .

Adjustable robust counterpart Suppose we have the following constraint, that corresponds

to a multistage optimization problem with fixed recourse:

(a0 + a)T x + bT y ≤ c, ∀a : aT Aa ≤ ρ2, (32)

in which a is the uncertain parameter, a0, b are certain, and x is non-adjustable, y is adjustable.

In [3] linear decision rules y = u+V a are introduced to approximate (32), in which case (32) can

be reformulated as a conic quadratic problem. It is also shown in [3] that using a full quadratic

decision rule yi = ui + vT
i a+

∑

j≤k wijkajak leads to an SDP problem. Although in general such

full quadratic decision rules leads to better solutions, solving large SDP problems is practically

speaking still difficult and time-consuming. We therefore propose partial quadratic decision rule

y = u + V a + Wā, in which āi = a2
i . We show next that for such rules (32) can be reformulated

as a conic quadratic problem. Assume without loss of generality A = I. Then (32) becomes

(a0 + a)T x + bT (u + V a + Wā) ≤ c, ∀(a, ā) : aT Aa ≤ ρ2, āi = a2
i ,

or

aT
0 x + (W T b)T ā + (x + V T b)T a + bT u ≤ c, ∀(a, ā) :

∑

i

āi ≤ ρ2, āi ≥ a2
i .

Using Lemma 12 one can verify that this is equivalent to the following set of conic quadratic

constraints in the variables x, s, u, v, w and z:















aT
0 x + bT u +

∑

i zi + ρ2s ≤ c

(xi + (V T b)i)
2 + (s − (W T b)i − zi)

2 ≤ (s − (W T b)i + zi)
2 ∀i

s − (W T b)i ≥ 0, ∀i

s ≥ 0.

6 Concluding remarks

We have shown that quadratic optimization problems with one or two constraints can be refor-

mulated as convex quadratic optimization problems in the case that the two or three matrices

involved are SD. This result sharpens the S-lemma. Moreover, we have shown that this result

can be used to show that a convex quadratic constraint with ellipsoidal uncertainty error can be

reformulated as a set of conic quadratic constraints. Moreover, a conic quadratic constraint with

ellipsoidal uncertainty error can be reformulated as a set of ‘nearly’ conic quadratic constraints.

The feasible set of this problem is certainly convex. Besides the many direct applications of

(conic) quadratic optimization problems with implementation error, we also described four im-

portant classes of indirect applications.
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For further research we mention the extension of Theorem 4 to other classes of separable prob-

lems. Moreover, an interesting topic for further research is the analysis and numerical testing of

the Sequential Robust Quadratic Programming idea and the numerical testing of the proposed

partial quadratic decision rule in Section 5.
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