37 research outputs found

    Probabilistic program analysis

    Get PDF

    Confluence and Convergence in Probabilistically Terminating Reduction Systems

    Get PDF
    Convergence of an abstract reduction system (ARS) is the property that any derivation from an initial state will end in the same final state, a.k.a. normal form. We generalize this for probabilistic ARS as almost-sure convergence, meaning that the normal form is reached with probability one, even if diverging derivations may exist. We show and exemplify properties that can be used for proving almost-sure convergence of probabilistic ARS, generalizing known results from ARS.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Confluence of CHR Revisited:Invariants and Modulo Equivalence

    Get PDF
    Abstract simulation of one transition system by another is introduced as a means to simulate a potentially infinite class of similar transition sequences within a single transition sequence. This is useful for proving confluence under invariants of a given system, as it may reduce the number of proof cases to consider from infinity to a finite number. The classical confluence results for Constraint Handling Rules (CHR) can be explained in this way, using CHR as a simulation of itself. Using an abstract simulation based on a ground representation, we extend these results to include confluence under invariant and modulo equivalence, which have not been done in a satisfactory way before.Comment: Pre-proceedings paper presented at the 28th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2018), Frankfurt am Main, Germany, 4-6 September 2018 (arXiv:1808.03326

    Confluence in Probabilistic Rewriting

    Get PDF
    Driven by the interest of reasoning about probabilistic programming languages, we set out to study a notion of uniqueness of normal forms for them. To provide a tractable proof method for it, we define a property of distribution confluence which is shown to imply the desired uniqueness (even for infinite sequences of reduction) and further properties. We then carry over several criteria from the classical case, such as Newman's lemma, to simplify proving confluence in concrete languages. Using these criteria, we obtain simple proofs of confluence for λ1, an affine probabilistic λ-calculus, and for Q*, a quantum programming language for which a related property has already been proven in the literature.Fil: Díaz Caro, Alejandro. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaFil: Martínez, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentin

    Probabilistic Operational Semantics for the Lambda Calculus

    Full text link
    Probabilistic operational semantics for a nondeterministic extension of pure lambda calculus is studied. In this semantics, a term evaluates to a (finite or infinite) distribution of values. Small-step and big-step semantics are both inductively and coinductively defined. Moreover, small-step and big-step semantics are shown to produce identical outcomes, both in call-by- value and in call-by-name. Plotkin's CPS translation is extended to accommodate the choice operator and shown correct with respect to the operational semantics. Finally, the expressive power of the obtained system is studied: the calculus is shown to be sound and complete with respect to computable probability distributions.Comment: 35 page

    On Higher-Order Probabilistic Subrecursion

    Get PDF
    We study the expressive power of subrecursive probabilistic higher-order calculi. More specifically, we show that endowing a very expressive deterministic calculus like Godel's T with various forms of probabilistic choice operators may result in calculi which are not equivalent as for the class of distributions they give rise to, although they all guarantee almost-sure termination. Along the way, we introduce a probabilistic variation of the classic reducibility technique, and we prove that the simplest form of probabilistic choice leaves the expressive power of T essentially unaltered. The paper ends with some observations about the functional expressive power: expectedly, all the considered calculi capture the functions which T itself represents, at least when standard notions of observations are considered

    Probabilistic Termination by Monadic Affine Sized Typing

    Get PDF
    International audienceWe introduce a system of monadic affine sized types, which substantially generalise usual sized types, and allows this way to capture probabilistic higher-order programs which terminate almost surely. Going beyond plain, strong normalisation without losing soundness turns out to be a hard task, which cannot be accomplished without a richer, quantitative notion of types, but also without imposing some affinity constraints. The proposed type system is powerful enough to type classic examples of probabilistically terminating programs such as random walks. The way typable programs are proved to be almost surely terminating is based on reducibility, but requires a substantial adaptation of the technique
    corecore