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Abstract

Driven by the interest of reasoning about probabilistic programming languages, we set out to study a notion
of uniqueness of normal forms for them. To provide a tractable proof method for it, we define a property
of distribution confluence which is shown to imply the desired uniqueness (even for infinite sequences of
reduction) and further properties. We then carry over several criteria from the classical case, such as
Newman’s lemma, to simplify proving confluence in concrete languages. Using these criteria, we obtain
simple proofs of confluence for λ1, an affine probabilistic λ-calculus, and for Q∗, a quantum programming
language for which a related property has already been proven in the literature.
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1 Introduction

In the formal study of programming languages, modelling execution via a small-
step operational semantics is a popular choice. Such a semantics is given by an
abstract rewriting system (ARS) which, mathematically, is no more than a binary
relation on terms specifying whether one term can rewrite to another. This relation
is not required to be a function, and can thus allow for a program to rewrite in two
different ways. In such a case, it is important that the different execution paths for
a given program reach the same final value (if any); thus guaranteeing that any two
determinisations of the semantics (i.e. strategies) coincide on every program.

This correctness property is expressible at the level of relations, and is known
as uniqueness of normal forms (UN): any two irreducible terms reachable from a
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common starting point must be equal. For non-trivial languages, such as the λ-
calculus, it can be hard to prove this property directly. Fortunately, the property
of confluence can serve as a proof method for it, since it trivially implies UN and
yet its proof tends to be more tractable. This was the approach followed by Church
and Rosser in [4, Corollary 2], where UN and confluence were first proven for the
λ-calculus in 1936. Nowadays, confluence is widely used to show the adequacy of
operational semantics in many kinds of programming languages.

Since some decades ago, there has been growing interest in probabilistic program-
ming languages [12,16] and, in particular, those where reduction itself is stochastic.
Properties of such languages have been studied, in particular, from a language-
independent rewriting approach [1–3,15] and for specific calculi [6,8–11]. For exam-
ple, taking the former approach, [1] introduces a notion of probabilistic termination
of rewriting systems and provides techniques to prove it, extending the classical
ones to this probabilistic setting. Following the latter approach, [9] takes a non-
deterministic λ-calculus and endows it with probabilistic call-by-value and call-by-
name operational semantics (in both small-step and big-step style for each) and
proves they simulate each other via CPS translations, following a classic result by
Plotkin [21].

Our focus in this paper is the interaction between probabilistic reductions and
non-determinism, where the latter comes from different possible reduction choices.
Such choices exist, for example, when a given program contains two reducible subex-
pressions, each of which is probabilistic. In that case, the program can take a step
to two different normalised distributions depending on the choice. Given such non-
determinism, a natural question to ask is whether the result of a program (which
is a distribution of values [16]) is not affected by the strategy, analogously to UN
for classical languages. This is precisely the property we set out to study here,
developing an associated notion of confluence for it.

While this same property has already been studied in the literature [8,11], it has
only been done for concrete languages, and so a language-independent study was
previously lacking. Further, the techniques employed are not immediately applicable
to other calculi. There are also other studies of confluence in a probabilistic setting
at a more abstract level [3, 15], but such notions are fundamentally different from
what we previously described, and of limited use for programming languages.

For a concrete example, let us take a hypothetical language for representing
die rolls, where � represents an unrolled die which can reduce to any element in
{1, . . . , 6} with equal probability and ‘−’ represents subtraction. For a pair of dice
(�,�), it should be allowed to choose which one to roll first. Rolling the first die
can give in any term in the set {(i,�)}i=1,6 with equal probability; and similarly for
the second. When continuing the rolls, both alternatives provide the same uniform
distribution. However, this could be not so: consider the term (λx. x− x) �. If the
die is rolled before β-reducing, the result can only be 0, but if one β-reduces first,
obtaining (�,�), the final result can be any number in {−5, . . . , 5}. We shall later
present a similar language and provide conditions to avoid this discrepancy.

Outline. In §2 we introduce probabilistic rewriting and the problem of unique-
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ness of distributions. In §3 we define a rewriting system over distributions giving
rise to our notion of confluence and prove it adequate. In §4 we derive criteria which
simplify the task of proving distribution for concrete languages. In §5 we extend
some of our results to asymptotically terminating terms. In §6 we prove confluence
for two concrete calculi: a simple probabilistic calculus dubbed λ1 and the quantum
lambda calculus Q∗ [8]. Finally, in §7 we conclude, give some insights on future
directions, and analyse some related work.

2 Probabilistic Rewriting

2.1 Preliminaries

We assume familiarity with abstract rewriting. We adopt the terminology from [4]
and call a sequence of expansions followed by a sequence of reductions a peak. When
the order is reversed, such a sequence is called a valley. The property of confluence
can then be expressed as “all peaks have a valley”. When an ARS A is confluent,
we note it by A |= CR, and similarly for UN and other properties. The relation R

modulo E, noted as R/E, is defined for any equivalence relation E as E ·R ·E [14,20].
We denote by L (X) the type of finite lists with elements in X, where ‘[ ]’, ‘:’ and

‘++’ denote the empty list, the list constructor, and list concatenation, respectively.
We also use the notation [a, b, c] for a : b : c : [ ].

We define D(A) = L (R+ × A), used as an explicit representation of (finitely-
supported) distributions. There is no further restriction on D(A). In particular,
any given element might appear more than once, as in [(1/3, a), (1/2, b), (1/6, a)]. For
a point (p, a) of the distribution, p is called the weight and a the element. The
weight of a distribution is defined to be the sum of all weights of its points, and can
be any positive real number. When a normalised distribution is required, we use the
type D1(A), defined as the set of those d ∈ D(A) with unit weight. We abbreviate
the distribution [(p1, a1), (p2, a2), . . . , (pn, an)] by [(pi, ai)]i, where n should be clear
from context. We also write αD for the distribution obtained by scaling every weight
in D by α; that is, α [(pi, ai)]i = [(αpi, ai)]i.

For reasoning about equivalence of distributions, we define a relation ‘∼’ as the
congruence closure of following rules (i.e. the smallest relation satisfying the rules
and such that D ∼ D′ implies E1++D++E2 ∼ E1++D′++E2, for any E1, E2):

Flip

[(p, a), (q, b)] ∼ [(q, b), (p, a)]

Join

[(p, a), (q, a)] ∼ [(p+ q, a)]

Split

[(p+ q, a)] ∼ [(p, a), (q, a)]

Note that ∼ is symmetric, since Join is the inverse of Split and Flip is its own
inverse. We distinguish some subsets of ∼ by limiting the rules that may be used.
We note by S the congruence closure of Split, by (FJ) the congruence closure of
both Flip and Join, and similarly for other subsets.

We call two distributions equivalent when they are related by the reflexive-
transitive closure of ∼, noted ‘≈’. Two distributions are equivalent, then, precisely
when they assign the same total weight to every element, irrespective of order and
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multiplicity.
Arguably, using such a definition of distributions and equivalence is cumbersome

and less clear than using a more semantic one. However, we feel this is outweighed
by the degree of rigor attained in later proofs (especially as we found some of them
to be quite error-prone). As a secondary benefit, most of our development should
be straightforwardly mechanisable, since all equivalence steps are made explicit.

A tangible disadvantage of using lists is that only finitely-supported distributions
can be represented. This restriction (which is anyway lifted for infinite reduction
sequences) is present in other works as well (e.g. [10,22]) and it does not seem severe
for modelling programming languages.

2.2 Probabilistic Abstract Rewriting Systems (PARS)

To model the uncertainty in probabilistic rewriting, we cannot use a simple relation
between elements as used in ARS. We must instead relate elements to distributions
of elements. Further, to model elements such as (�,�), we need to be able to relate
elements to several such distributions. This motivates the following definition.

Definition 2.1 A probabilistic abstract rewriting system (PARS) is a pair (A, �→)

where A is a set and �→ a relation of type P(A × D1(A)) (called the “pointwise
evolution relation”).

It should be clear that every ARS is also a PARS by taking “Dirac” distributions
(i.e. normalised, single-point distributions). We can provide a simple example of a
PARS by extensionally listing �→, as is commonly done for ARS.

Example 2.2 Let A be the PARS given by

a �→ [(2/3, b), (1/3, c)] a �→ [(2/5, a), (3/5, d)] b �→ [(1/2, c), (1/2, d)] c �→ [(1, d)]

Here, a is the only non-deterministic element. We call d a terminal element since it
has no successor distributions. More significant examples are presented in §6.

Execution in a PARS is a mixture of non-deterministic and probabilistic choices.
The first kind, corresponding to the P operator, occur when the machine chooses a
successor distribution for the current element. The second kind, corresponding to
the D1 operator, is a random choice between the elements of the chosen successor
distribution. To model such execution, we use the notion of computation tree.

Definition 2.3 Given a PARS (A, �→), we define the set of its (finite) “computation
trees” with root a (noted T (a)) inductively by the following rules. We also sometimes
consider infinite computation trees, by taking the coinductively defined set instead.

a ∈ T (a)
a �→ [(p1, a1), . . . , (pn, an)] ti ∈ T (ai)

[a; (p1, t1); . . . ; (pn, tn)] ∈ T (a)
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a

b c

c d d

2/3 1/3

1/2 1/2 1

A graphical representation of a tree for the PARS in Example 2.2
is given to the right. A tree in T (a) represents one possible (un-
certain) evolution of the system after starting on a. There is no
further assumption about trees: in particular, if an element is
expanded many times in a given tree, different successor distribu-
tions may be used each time. In other words, we do not assume a
“Markovian scheduler” [1, 2].

Collecting the leaves of a tree, along with their accumulated probabilities, gives
rise to a normalised list distribution.

Definition 2.4 The “support” of a tree T is a normalised distribution, defined by:

supp(a) = [(1, a)]

supp([a; (p1, t1); . . . ; (pn, tn)]) = p1supp(t1)++ . . .++pnsupp(tn)

When all the leaves of a tree are terminal elements, we call the tree maximal (as
there is no proper supertree of it). We can now state our property of interest.

Definition 2.5 (UTD) A PARS A has “unique terminal distributions” when for
every a and T1, T2 ∈ T (a) maximal, we have supp(T1) ≈ supp(T2).

We stated before that proving UN (for ARS) directly is usually hard. Since PARS
subsume ARS, the same difficulties arise for proving UTD directly. Therefore, we
seek a property akin to confluence, providing a compositional and more tractable
proof method.

3 Rewriting Distributions and Confluence

To arrive at a notion of confluence we shall first define a rewriting over distributions
(Definition 3.4) that is more liberal than that of computation trees (Definition 2.3).

Definition 3.1 Given a PARS A = (A, �→), we define the relation �P (of type
P(D(A)×D(A))) (called “parallel evolution”) by the rules:

a �→ A ds �P ds′

(p, a) : ds �P pA++ds′
ds �P ds′

(p, a) : ds �P (p, a) : ds′ [ ] �P [ ]

Note that without using the first rule, this is just the identity relation on distribu-
tions. We note the subset of this relation where the first rule must be used at least
once in a step as �1

P , and call it proper evolution. The �P relation can simulate
computation trees in this system, since it can be used to rewrite their supports in
the sense of Lemma 3.3.

Definition 3.2 We call a relation→ “compositional” when, if D1→E1 and D2→E2,
then αD1++βD2→ αE1++βE2 for all α, β ∈ R

+.

Lemma 3.3 If T ∈ T (a), then [(1, a)] �∗
P supp(T )
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Proof. First, note that �P is compositional. The result then follows by induction
on T , using compositionality. �

We now define an ARS over distributions, combining both parallel evolution and
equivalence steps. Our definition of confluence for a PARS A is then simply the
usual confluence of that relation.

Definition 3.4 Given a PARS A = (A, �→), we define an associated ARS Det(A)
(called the “determinisation” of A) over the set D(A) by the relation � = (�P ∪≈).

Definition 3.5 (Distribution confluence) We say a PARS A is “distribution
confluent” (or simply “confluent”) when Det(A) is confluent in the classical sense.

Reduction in Det(A) is more liberal than the expansion of trees, since it al-
lows for “partial” evolutions. Indeed, if a �→ D, then [(1, a)] � [(1/2, a), (1/2, a)] �
1/2D++ [(1/2, a)]. Nevertheless, Lemma 3.7 shows that its confluence implies UTD.

Lemma 3.6 If D1 is terminal and D1 �∗ D2, then D1 ≈ D2 and D2 is terminal.

Proof. It is clear, from the definition of �P , that if D1 is terminal and D1 �P D′,
then D1 = D′ (that is, exactly equal). The result then follows by induction on the
number of steps, and the transitivity and reflexivity of ≈. �

Lemma 3.7 If A |= CR, then A |= UTD.

Proof. Take T1, T2 ∈ T (a) maximal. We have from Lemma 3.3 that supp(T2) �∗

[(1, a)] �∗ supp(T1). By confluence, there must exist C such that supp(T2) �∗

C �∗ supp(T1). Since T1, T2 are maximal, their supports are terminal. Then, from
Lemma 3.6, we get that supp(T2) ≈ C ≈ supp(T1), as needed. �

Furthermore, beyond UTD, distribution confluence implies that diverging com-
putations (with no terminal distribution) can also be joined. As a consequence of
that, confluence gives a neat method for proving the consistency of the equational
theory induced by �, as long as two distinct terminal elements exist.

Lemma 3.8 If D1, D2 are terminal distributions and A is confluent, then D1 ��∗

D2 if and only if D1 ≈ D2.

Proof. The way back is trivial, so we detail the way forward. From confluence
(repeatedly), D1 and D2 must have a common reduct. The result then follows from
Lemma 3.6. �

Then, if a and b are distinct terminal elements, it follows that �-convertibility
is a consistent theory as [(1, a)] �≈ [(1, b)]. Summarizing, in a confluent PARS, rea-
soning about equivalence of programs is simplified and there is a strong consistency
guarantee about convertibility, much like in the classical case.

Readers familiar with rewriting modulo equivalence [14, 20] may wonder why
we are not studying confluence modulo ≈, or the stronger Church-Rosser property
modulo ≈. It turns out both of these are too strong for our purposes. The following
system:

a �→ [(1/2, a), (1/2, b)]
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should undoubtedly be considered confluent due to being deterministic; but in it we
can form the following diagram

[(1/2, a), (1/2, b)] �P [(1, a)] ≈ [(1/3, a), (2/3, a)]

which cannot be closed by �∗
P · ≈ · �∗

P , due to a factor of 3 present in one side
and not the other. Thus this system is neither confluent modulo ≈ nor CR modulo
≈, yet it is clearly distribution confluent. We therefore study the strictly weaker
distribution confluence, which is strong enough for our purposes and easier to reason
about.

4 Proving Distribution Confluence

4.1 Introduction

In the previous section, we introduced our definition of confluence and argued about
its correctness. For it to be useful in practice, it should also be amenable to be
proven. In this section we provide several simplified criteria for this task, obtaining
analogues to the most usual methods for proving classical confluence.

Since distribution confluence is simply the classical confluence of �, all existing
classical criteria (e.g. the diamond property or Newman’s lemma) are valid without
modification. However, they are not very useful. One issue is that one needs to
consider all distributions (instead of single elements) and the presence of equivalence
steps in the peaks. Also, Det(A) is never strongly (or even weakly) normalising, so
Newman’s lemma is useless here. With respect to the diamond property, consider a
system with a �→ D, then the following reductions are possible:

[(1, a)] � [(1/2, a), (1/2, a)] � 1/2D++ [(1/2, a)]

and these two distributions cannot in general be joined in a single step, even if a
has no other successor distribution.

Thus, a priori, it seems as if distribution confluence is even harder to prove
than classical confluence. To relieve that, we shall prove various syntactic lemmas
about the � relation, allowing us to decompose it into more manageable forms. We
then show how we can limit our reasoning to Dirac distributions, ignore equivalence
steps in the peaks and allow to use them freely in the valleys. Lastly, we carry over
classical criteria for confluence into our setting, such as the aforementioned diamond
property and Newman’s lemma.

4.2 Decomposing the � relation

Since both �P and ≈ are reflexive, (�P ∪≈)∗ coincides with (�P/≈)∗. Thus, since
confluence is a property over the reflexive-transitive closure of a relation, it suffices
to study the confluence of �P/≈, where equivalence steps do not have a “cost”, but
are pervasive (as in rewriting modulo equivalence).

A. Díaz-Caro, G. Martínez / Electronic Notes in Theoretical Computer Science 338 (2018) 115–131 121



Given the precise syntactic definition for both relations, we can prove by
analysing the reductions that any step of �P/≈ can be made by first splitting,
then evolving, and then joining back elements, as Lemma 4.3 states. We first intro-
duce the following notion of commutation. 2

Definition 4.1 (Sequential commutation) We say that a relation R

“commutes over” S when S ·R ⊆ R ·S, and note it as R � S. The
property can be expressed by the diagram on the right. Intuitively, it
means that R can be “pushed” before S.

.

. .

.

S R

R S

A key property of sequential commutation is that if R � S, then (R ∪ S)∗ =

R∗ ·S∗. It is also preserved when taking the n-fold composition (i.e. “n steps”) or
reflexive-transitive closures on each side. We now prove some commutations relating
evolution and equivalence steps (the last one needs some “administrative” steps).

Lemma 4.2 We have �P � (FJ)∗; S � (FJ)∗ and �P ·S ⊆ S ·�P ·(FJ)∗.

Proof. By induction on the shape of the reductions. �

Lemma 4.3 The relations (�P/≈) and S∗ ·�P ·(FJ)∗ coincide.

Proof. The backwards inclusion is trivial, so we detail only the forward direction.
By making use of the second commutation in Lemma 4.2 we get that ≈ = S∗ ·(FJ)∗.
Thus, we need to show S∗ ·(FJ)∗ ·�P ·S∗ ·(FJ)∗ ⊆ S∗ ·�P ·(FJ)∗. The proof then
proceeds by using the other two commutations to reorder the relations. �

Further, this equivalence extends to n-fold compositions and therefore to the
reflexive-transitive closure.

Lemma 4.4 The relations (�P/≈)n and S∗ ·�n
P ·(FJ)∗ coincide.

Proof. By induction on n, and using the previous lemma and commutations. �

4.3 Simplifying diagrams

With the previous decompositions, we can now prove a very generic result about
diagram simplification with a specific root D, which then easily generalizes to the
whole system.

Definition 4.5 We say a pair of relations (γ, δ) “closes” another pair
(α, β) “on a” if whenever b ←α a →β c then there exists d such that
b→γ d ←δ c. The diagram for the property can be seen on the right.
When this occurs for all a, we simply say “(γ, δ) closes (α, β)”. Note
that → is confluent precisely when (→∗,→∗) closes (→∗,→∗).

a

b c

d

α β

γ δ

Definition 4.6 We call a relation → “local”, when if αD1++βD2 → E, then there
exist E1, E2 such that E = αE1++βE2 and Di→Ei. (Note that �P and S are local).

2 Note that this is not the usual notion of commuting relations, defined as S−1 ·R ⊆ R ·S−1, which is a
symmetric property and could be described as “parallel”.
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Theorem 4.7 Let α, β be local relations and γ, δ compositional relations. If
(γ/≈, δ/≈) closes (α, β) for the Dirac distributions of D, then (γ/≈, δ/≈) closes
(S∗ ·α ·(FJ)∗, S∗ ·β ·(FJ)∗) for D.

Proof. We give a sketch of the proof, more details can be found in [17]. We need to
close (S∗ ·α ·(FJ)∗, S∗ ·β ·(FJ)∗). First, note that closing (S∗ ·α, S∗ ·β∗) is enough
since we can revert the (FJ)∗ steps with (FS)∗ steps. Now, since α and β are
local, S∗ ·α and S∗ ·β are as well. Thus, we can limit ourselves to closing the Dirac
distributions of D, and combine the reductions since γ, δ are compositional. We
now need to close (S∗ ·α, S∗ ·β) when starting from some [(1, a)]. Note that the left
(right) branch is then of the form p1D1++ . . .++pnDn (q1E1++ . . .++qmEm), where
a reduces via α (β) to each Di (Ej). We can apply our hypothesis to get a Ci,j

closing each Di, Ej . By first splitting each branch appropriately, we can close them
in p1q1C1,1++ . . .++p1qmC1,m++ . . .++pnqmCn,m. �

From this theorem, we get as corollaries several simplified criteria for confluence,
applicable at the level of a particular distribution or to the whole system.

Criterion 4.8 (Dirac confluence) If for every element a of D and distributions
E,F such that E �∗

P [(1, a)] �∗
P F there is a C such that E �∗ C �∗ F , then D

is confluent.

Proof. A corollary of Theorem 4.7, taking α = β = γ = δ = �∗
P . �

Criterion 4.9 (Semi-confluence) If for every element a of D and distributions
E,F such that a �→ E and [(1, a)] �∗

P F there is a C such that E �∗ C �∗ F , then
D is semi-confluent for �P/≈.

Proof. A corollary of Theorem 4.7, taking α = �P and β = γ = δ = �∗
P . �

Criterion 4.10 (Diamond property) If for every element a of D and distribu-
tions E,F such that E ←� a �→ F there is a C such that E �P/≈ C �P/≈ F , then
D has the diamond property for �P/≈.

Proof. A corollary of Theorem 4.7, taking α = β = γ = δ = �P . �

Note that in all these criteria, we need not consider any equivalence in the peak,
and can use them freely in the valley, both before and after evolving. Also, proving
any of these criteria for every element a entails the confluence of the system.

Another common tool for proving confluence is switching the relation to another
one with equal reflexive-transitive closure (and thus an equivalent confluence) but
which might be easier to analyse. For distribution confluence, a similar switch is
allowed, slightly simplified by Lemma 4.12.

Definition 4.11 Given �→1 and �→2 over the same set A, if for every a �→1 D, we
have [(1, a)] �∗

2 D we say that �→1 is simulated by �→2.

Lemma 4.12 If �→1 is simulated by �→2, then �1 ⊆�∗
2. If both relations simulate

each other, then �∗
1 = �∗

2, and their confluences are equivalent.
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Proof. The first part follows by case analysis on the reduction �1. The second
part is trivial. �

4.4 Newman’s lemma

Newman’s lemma [18] states that, for a strongly normalising system, local confluence
and confluence are equivalent, yet we have remarked previously that �P is never
a strongly normalising relation. To get an analogue to Newman’s lemma, we thus
provide a specialized notion of strong normalisation.

Definition 4.13 A infinite sequence Di such that D1→D2→D3→· · · is called an
“infinite →-chain” (of root D1).

Definition 4.14 (SN) We call a distribution D “strongly normalising” when there
is no infinite �1

P -chain of root D. 3 We call a PARS strongly normalising when
every distribution is strongly normalising.

There are indeed systems which do satisfy this requirement, and it is intuitively
what one would expect. Now a probabilistic analogue to Newman’s lemma can be
obtained, following a proof style very similar to that of [13].

Definition 4.15 (LC) We say that a distribution D is “locally confluent” when
E �1

P D �1
P F implies that there exists C such that E �∗ C �∗ F .

Note that strong normalisation over Dirac distributions implies it for all distri-
butions, and likewise for local confluence.

Lemma 4.16 (Newman’s) If A |= LC and A |= SN, then A |= CR.

D

E′ F ′

E FC

LC

IH
IH

C ′

C ′′

P 1 P 1

P 1∗ P 1∗

* *

* *

**

Proof. We shall prove, by well-founded induction over�1
P ,

that every distribution is confluent. For a given distribu-
tion, it suffices to show that that any peak of proper evo-
lutions can be closed by �∗. Then, by Corollary 4.8 (and
since �∗

P = �1∗
P ), confluence follows. We want to close a

diagram of shape E �1∗
P D �1∗

P F . If either of the branches
is zero steps long, then we trivially conclude. If not, we can
form the diagram on the right, completing the proof by local
confluence and the induction hypotheses for E′ and F ′. �

5 Limit Distributions

In classical abstract rewriting, an element can either be non-normalising, weakly
normalising or strongly normalising (corresponding to the situations where it will
not, may, and will normalise, respectively). In probabilistic rewriting, the story is
not as simple. Consider the following PARS, where b is a terminal element:

a �→ [(1/2, a), (1/2, b)]

3 Note that infinite (�1
P /≈)-chains always exist because of partial evolution.
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Is a normalising? One could say “no” since, indeed, it does not have a finite
maximal computation tree, as there is always some probability for the system to be
in the non-terminal a state. However, such a probability will be made arbitrarily
small by taking sufficient steps, and the distribution [(1, b)] is reached in the limit.
In this case a is called almost surely terminating [1]. Certainly, a desirable fact is
that almost-surely-terminating elements have a unique final distribution. We will
prove that distribution confluence guarantees such uniqueness.

We first introduce a notion of distance between mathematical distributions,
i.e. normalised functions of type A→ [0, 1]. The reason we move away from list
distributions is to allow for infinitely-supported limit distributions. We note with
�D� the mathematical distribution obtained from the list distribution D (with the
expected definition). We also extend definitions over mathematical distributions to
list distributions by applying �−� where appropriate.

Definition 5.1 Given D,E mathematical distributions, we define the distance be-
tween them as d(D,E) =

∑
a∈A|D(a)− E(a)|.

Definition 5.2 (Limit of a sequence) Given an infinite sequence of mathemat-
ical distributions D0, D1, . . . we say that L is a limit for the sequence if for every
ε > 0, there exists N > 0 such that for all i ≥ N , d(Di, L) < ε.

Note that this distance is the L1 distance and the definition of limit is the usual
one for metric spaces. It is then well known that limits for a given sequence are
unique. We are interested in limits composed of terminal elements, representing a
distribution of values. For that, the following definition is useful.

Definition 5.3 For a mathematical distribution D, we define its “liveness” as the
sum of weights for non-terminal elements. That is, Liv(D) =

∑
a∈dom( �→) D(a)

Note that the liveness of a list distribution cannot increase by evolution, and that
Liv(D) = 0 iff D is terminal. Moreover, since the normalised part of a distribution
cannot evolve, liveness provides an upper bound on the possible distance to be
attained by evolution, as the following lemma states.

Lemma 5.4 If D �∗ E, then d(D,E) ≤ 2 · Liv(D).

Proof. By Lemma 4.4 there existD′ and E′ such thatD ≈ D′ �∗
P E′

≈ E. Because
of the equivalences, it suffices to show the result for D′ and E′. Assume, without
loss of generality, that D′ = Dl++Dt, where all elements of Dl are not terminal, and
all those of Dt are. Since parallel evolution is local and terminal elements cannot
evolve, we have that E′ = E′′++Dt for some E′′. Then, d(D′, E′) is simply d(Dl, E

′′).
Note that Liv(D′) is the weight of Dl and of E′′. Since distance is bounded by total
weight, it follows that it is at most 2 · Liv(D′) = 2 · Liv(D). �

Now, we can extend our notion of uniqueness of terminal distributions to limit
distributions of terminal elements, accounting for an infinite sequence of reductions.

Definition 5.5 (ULD) A PARS A has “unique limit distributions” when for every
D that is the root of two infinite �-chains Ei and Fj with respective limits E∞ and
F∞ terminal distributions, then E∞ = F∞.
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Lemma 5.6 If A |= CR, then A |= ULD.

D

Ei Fj

E∞ F∞C

* *

[0
,
ε/

3)

*

[0
,
ε /
3
)

*

[0
,
ε /
6
)

*

[0
,
ε/

6)

*

Proof. Take ε > 0. By the definition of limit, we know
there are i, j such that d(Ei, E∞) < ε/6 and d(Fj , F∞) <
ε/6. Since E∞ and F∞ are terminal, Liv(Ei) and Liv(Fj)

must be less than ε/6. The distributions Ei and Fj are
reachable by a finite amount of � steps, so by confluence
there exists a distribution C such that Ei �∗ C �∗ Fj .
From Lemma 5.4, we get that d(Ei, C) < ε/3 and likewise
for Fj . From these four bounds and the triangle inequality we get that d(E∞, F∞) <

ε. Since this is the case for any positive ε, d(E∞, F∞) must be exactly 0, and
therefore E∞ = F∞. �

6 Case Studies

6.1 An affine probabilistic λ-calculus: λ1

In our introductory example, we used the term (λx. x − x) � as an example of
a non-confluent computation. There seem to be three ingredients needed for this
failure of confluence of a term (λx.M)N : (1) x appears free more than once in M

(2) N has a non-Dirac terminal distribution (3) both call-by-name and call-by-value
reductions are possible.

In this section we define a probabilistic λ-calculus, dubbed λ1, that prevents
the combination of these three features by providing two kinds of abstractions, one
restricting duplication and one restricting evaluation order. 4 We show λ1 to be
confluent (by a diamond property), giving evidence that little more than affinity of
probabilistic arguments is required to achieve a confluent probabilistic programming
language.

The calculus is heavily based on the one defined in [23]. The set of pre-terms is
given by the following grammar

M,N ::= x | MN | λx.M | λ!x.M | !M | M ⊕p N

where the main novelty is the probabilistic choice operator ⊕p, for any real number p
in the open interval (0, 1). For an abstraction λx.M , x must be affine in M , that is,
M can have at most one free occurrence of x. If there is exactly one such occurrence,
we say x is linear in M . Banged abstractions (λ!) have no such restriction. Affinity
is enforced by a well-formedness judgment, whose definition is straightforward and
which we thus omit. We work only with well-formed pre-terms, which form the set
of terms. For the sake of brevity, given a term M and distribution D = [(pi, Ni)] we
use the notation MD to represent the distribution [(pi,MNi)], and similarly for all
other syntactic constructs.

The operational semantics is provided as a PARS in Fig. 1. Terms of the form
!M do not reduce and are called thunks. A banged abstraction can only β-reduce

4 For more expressivity, a third kind without either restriction, but forbidding probabilistic arguments, could
be added. We do not deem this as interesting for the scope of this paper.
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R-β

(λx.M)N �→ [(1,M [N/x])]

R-β!

(λ!x.M)!N �→ [(1,M [N/x])]

R-⊕

M ⊕p N �→ [(p,M), (1−p,N)]

R-⊕-L

M �→ D

M ⊕p N �→ D ⊕p N

R-⊕-R

N �→ D

M ⊕p N �→M ⊕p D

R-AppL
M �→ D

MN �→ DN

R-AppR
N �→ D

MN �→MD

R-λ
M �→ D

λx.M �→ λx.D

R-λ!
M �→ D

λ!x.M �→ λ!x.D

Fig. 1. Full semantics for λ1

when applied to a thunk. This effectively implies that banged abstractions follow
a fixed strategy (which is, morally, call-by-value until the argument is reduced to a
thunk and call-by-name afterwards). 5

To prove the diamond property for λ1, we first need two substitution lemmas.
WhenD = [(pi, ai)]i, we writeD[M/x] for the distribution [(pi, ai[M/x])]i. Similarly,
M [D/x] denotes [(pi,M [ai/x])]i.

Lemma 6.1 If M �→ D, then M [N/x] �→ D[N/x].

Proof. By induction on M �→ D. �

Lemma 6.2 If M �→ D, and x is linear in N , then N [M/x] �→ N [D/x].

Proof. By induction on the well-formedness of N . �

Lemmas 6.1 and 6.2 are analogous to both statements of [23, Lemma 3.1]. Armed
with both, we can prove the following theorem, which implies the diamond property.

Theorem 6.3 If D ←� M �→ E then there exist C,C ′ such that D �P C and
E �P C ′ with C ≈ C ′.

Proof. By induction on the shape of M �→ D and M �→ E. �

By this theorem and Corollary 4.10 we conclude that λ1 is confluent, and thus enjoys
both UTD and ULD.

6.2 A quantum λ-calculus: Q∗

The Q∗ calculus [8] is a quantum programming language which models measure-
ment, an inherently probabilistic operation. Reduction occurs between configura-
tions, which are terms coupled with a quantum state, and which we will not detail
further. Its semantics does not fix a strategy and, as λ1, is also based on [23].

5 We are thus adopting “surface reduction” only since “internal reductions” [23] hinder confluence.
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Quantum variables in Q∗ are linear (and not affine), so they cannot be duplicated
nor discarded, as per the no-cloning [25] and no-erasure [19] properties of quantum
physics. Reduction steps are paired with a label describing the reduction (e.g. which
qubit was measured).

The authors prove a property called strong confluence which asserts that any two
maximal (possibly infinite) computation trees with a common root have an equiva-
lent normalized support (that is, the normalized part of both support distributions
are equivalent) and, further, that any normal form appears in an equal amount of
leaves on both trees.

As they note, this property is quite strong, and not enjoyed by the classical λ-
calculus. Consider the term (λx.λy.y)Ω. It has an infinite computation tree without
any normal form (as the term reduces to itself in call-by-value) and also a finite tree
with a single λy.y leaf, which of course does not have an equivalent normalized
support. Note that the Q∗ well-formedness judgment rejects this term as it is not
linear.

To prove strong confluence, a crucial lemma called quasi-one-step confluence is
proved, which is morally a diamond property but with slightly different behaviours
according to the reductions taken. Reductions are distinguished between two sets,
N and K, and measurements of the form measr. We will not describe these sets nor
Q∗’s semantics (its full description is found in [8]), and will merely state the lemma.
The notation C →p

α D means “C reduces to D with probability p via the label α”;
and C→p

N D means C→p
α D for some α ∈ N (idem K).

Lemma 6.4 (Quasi-one-step Confluence for Q∗ [7, Proposition 4])
Let C,D,E be configurations and C→p

α D, C→s
β E, then:

• If α ∈ K and β ∈ K, then either D = E or there is F with D→1
K F and E→1

K F .
• If α ∈ K and β ∈ N , then either D→1

N E or there is F s.t. D→1
N F and E→1

KF .
• If α ∈ K and β = measr, then there is F with D→s

measr F and E→1
K F .

• If α ∈ N and β ∈ N , then either D = E or there is F with D→1
N F and E→1

N F .
• If α ∈ N and β = measr, then there is F with D→s

measr F and E→1
N F .

• If α = measr and β = measq (with r �= q), then there are t, u ∈ [0, 1] and an F

such that pt = su, D→t
measq F and E→u

measr F .

From this lemma, the fact that there are no infinite K sequences, and a “proba-
bilistic strip lemma”, the authors prove strong confluence [8, Theorem 5.4].

For distribution confluence, a simpler proof can be obtained. After modelling Q∗

as a PARS (roughly using successor distribution per label) we can readily reinterpret
Lemma 6.4 to prove the diamond property for it (by Corollary 4.10). From this
result, distribution confluence follows, and therefore also uniqueness of both terminal
and limit distributions. Notably, neither the normalisation requirement for K nor
the probabilistic strip lemma are needed for this fact.

Our obtained distribution confluence is similar, but neither weaker nor stronger
than strong confluence. It is not weaker as distribution confluence guarantees that
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divergences of computations without any normal form can be joined, which strong
confluence does not. It is also not stronger as it implies nothing of limit distributions
that are not terminal, while it follows from strong confluence that they must coincide
in their normalized part. 6

7 Conclusions

We have studied the problem of showing that a probabilistic operational semantics
is not affected by the choice of strategy. For this purpose, we provided a definition
of confluence for probabilistic systems by defining a classical relation over distri-
butions. We showed our property of distribution confluence to be appropriate as,
in particular, it implies a uniqueness of terminal distributions, both for finite and
infinite reductions, and gives an equational consistency guarantee.

We believe this development demonstrates that distribution confluence provides
a reasonable “sweet spot” for proving the correctness of probabilistic semantics, as
it provides the expected guarantees about execution while allowing tractable proofs.
Concretely, the provided proofs for λ1 and Q∗ are in line with what one would expect
for linear calculi.

The proof about Q∗ also partially answers the conjecture posed in [8, Section 8]
(“any rewriting system enjoying properties like Proposition 4 [our Lemma 6.4] enjoys
confluence in the same sense as the one used here”) positively. The answer is partial
since distribution confluence is not strictly equivalent.

Looking ahead, there are several interesting directions to explore. Firstly, a study
of confluence dealing with terms (and not just abstract elements) should provide
more insights applicable to concrete languages. For terms, we expect concepts such
as orthogonality to be of interest. Secondly, as a generalization, it seems possible
to take distribution weights from any mathematical field and not only the positive
reals. Even if interpreting such systems is not obvious, most of our results would
hold: interestingly, we have not once assumed that weights actually represent prob-
abilities. Finally, a quantitative notion of confluence could also be explored, where
a distribution is considered confluent if any divergence of it can be joined “up to ε”;
in particular, obtaining useful simplified criteria for said property seems difficult.

7.1 Related work

In [6], similar definitions of evolution and confluence are introduced. A subtle yet
key difference with ours is that equivalent distributions are identified and there is no
partial evolution. This means that evolution is not compositional; and in fact the
diamond property over Dirac distributions does not extend over to all distributions.
This was wrongly stated in an early version [5] of the paper and subsequently fixed.

In [11], a notion of confluence is defined and proven for an extension of λq [24]
(a quantum λ-calculus) with measurements. The proposed property is basically

6 It also does not imply the equality between the amount of leaves on each tree. This can in fact be recovered
by removing the Split and Join rules and (straightforwardly) deriving criteria following §4. One can then
conclude not only that there is the same amount but that they are paired with the same weights.
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a confluence on computation trees, and the one we study in this paper is strictly
weaker, yet sufficient for UTD and consistency.

In [8], already amply discussed, the introduced property is a strong confluence
over maximal trees (either finite or infinite) which is very related, but neither weaker
nor stronger than distribution confluence.

Finally, in [3] and subsequently in [15], a property of confluence is defined
and studied over probabilistic rewriting systems which do not contain any non-
determinism (i.e. where �→ is a partial function). This is a very different notion
of confluence, dealing with punctual final results instead of distributions, and with
different applications. In this setting, distribution confluence trivially holds.
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