
Roskilde
University

Confluence and convergence modulo equivalence in probabilistically terminating
reduction systems

Kirkeby, Maja Hanne; Christiansen, Henning

Published in:
International Journal of Approximate Reasoning

DOI:
10.1016/j.ijar.2018.11.018

Publication date:
2019

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Kirkeby, M. H., & Christiansen, H. (2019). Confluence and convergence modulo equivalence in probabilistically
terminating reduction systems. International Journal of Approximate Reasoning, 105, 217-228.
https://doi.org/10.1016/j.ijar.2018.11.018

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@ruc.dk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 02. Dec. 2021

https://doi.org/10.1016/j.ijar.2018.11.018
https://doi.org/10.1016/j.ijar.2018.11.018

Confluence and Convergence Modulo Equivalence in
Probabilistically Terminating Reduction SystemsI

Maja H. Kirkeby and Henning Christiansen

Roskilde University, Denmark
majaht@ ruc. dk and henning@ ruc. dk

Abstract

Convergence of an abstract reduction system is the property that the possible
derivations from a given initial state all end in the same final state. Relaxing
this by “modulo equivalence” means that these final states need not be identical,
only equivalent wrt. a specified equivalence relation.

We generalize this notion for probabilistic abstract reduction systems,
naming it almost-sure convergence modulo equivalence, such that the final states
are reached with probability 1. We relate it to the well-studied properties of
almost-sure termination and confluence/convergence of probabilistic and non-
probabilistic systems. In addition, we provide a transformational approach for
proving – or disproving – almost-sure convergence modulo equivalence of given
systems.

Keywords: almost-sure convergence modulo equivalence, almost-sure
termination, probabilistic abstract reduction systems, abstract reduction
systems, confluence modulo equivalence
2010 MSC: 00-01, 99-00

1. Introduction

Abstract reduction systems (ARS) are ubiquitous in computer science and
logic, as theoretical models of computational systems that develop over time
in discrete steps. In their probabilistic version (PARS), the choice of successor
state is governed by a probability distribution, which in turn induces a global,5

probabilistic behaviour of the system. We consider an important intersection of
two classes of PARS, namely those having the properties of

• almost-sure termination: even if infinite reduction sequences exists, the
probability of termination is 1;

IThis work is supported by The Danish Council for Independent Research, Natural Sci-
ences, grant no. DFF 4181-00442.

Preprint submitted to International Journal of Approximate Reasoning September 24, 2018

majaht@ruc.dk
henning@ruc.dk

• convergence: any reduction sequence from a given state must end in the10

same final state.

Convergence generalizes to almost-sure convergence: such a final state is reached
with probability 1 (although there may be diverging reduction sequences).

In this paper, we generalize previous approaches to characterize and prove
almost-sure convergence to take into account an equivalence on states. We15

introduce the notion of almost-sure convergent modulo an equivalence relation
meaning that all equivalent initial states reduce to equivalent final states, and
for each such initial state, the total probability of these reductions is 1.

This generalization opens up for studying a much larger class of systems
with alternative final states which are “semantically” the same, but differs syn-20

tactically. One example is redundant data representations in which, e.g., the
order of elements in a list are considered immaterial, or “the same” tree may be
rebalanced. Other examples are systems that search for one of perhaps many
acceptable solutions to a problem.

Related work25

Abstract Reduction Systems and studies of their properties have emerged
from a variety of areas, with the work on the lambda calculus by Church and
Rosser [1] in the 1930s as a noticeable example.

The notion of confluence has been extensively studied for ARS, see, e.g., [2, 3]
for overview. Confluence means that whenever alternative repeated reductions30

are possible from some state, these can be extended to join in a common state.
While the focus in the present paper is on convergence (modulo equivalence),
confluence (modulo equivalence) plays an important role since convergence can
be defined as the combination of confluence and termination.

Newman’s lemma [4] from 1942 is a central result for ARS: a terminating35

system is confluent if and only if it satisfies a simpler property of local confluence.
The property of confluence modulo equivalence was introduced in 1972 by Aho et
al [5]; a system is confluent modulo equivalence whenever every pair of equivalent
states with alternative reduction sequences join in equivalent states. In 1980,
Huét [3] generalized Newman’s lemma for confluence modulo equivalence. It40

is well-known that these results do not generalize to non-terminating systems
(and thus neither to almost-sure terminating ones); see, e.g., [3].

In 1991, Curien and Ghelli [6] described a powerful method for proving con-
fluence of normalizing non-probabilistic systems, using suitable transformations
from the original system into one, known to be confluent. This was extended45

by Kirkeby and Christiansen [7] that also allows disproving confluence using
transformations into a non-confluent system.

In term rewriting [2], proving local confluence may be reduced to a finite
number of cases, described by critical pairs (for a definition, see the reference),
which may be checked automatically. Similar results have been shown for a50

subset of the programming language Constraint Handling Rules, CHR [8], in
the 1990s by Abdennadher et al [9, 10], assuming a theoretical, logic-based
semantics. Recent work by Christiansen and Kirkeby [11, 12] generalize these

2

results to confluence modulo equivalence under a different semantics that reflects
the implemented CHR systems (taking into account runtime errors and non-55

logical predicates).
Almost-sure convergence and almost-sure termination were introduced in an

early 1983 paper [13] by Hart et al for a specific class of probabilistic programs
with finite state spaces. Almost-sure convergence was introduced in the context
of PARS by Kirkeby and Christiansen [7], and shown equivalent to almost-sure60

termination and confluence. The related notion of almost-sure confluence was
introduced concurrently by Frühwirth et al. [14] – in the context of a proba-
bilistic version of CHR – and by Bournez and Kirchner [15] in more generality
for PARS. They also formulated the simple concept of PARS and almost-sure
termination in that context. Bournez and Garnier [16] generalized PARS to non-65

deterministic PARS, introducing a nondeterministic choice of transition prob-
abilities, leading to methods for proving almost-sure termination [16, 17, 18],
and studies of uniqueness of limit distributions [19, 20].

Contributions

We broaden previous work on PARS by the introduction of state equivalence70

and investigate its consequences for convergence. More specifically, we propose
the novel notion of almost-sure convergence modulo equivalence and provide re-
sults that may be used for proving or disproving this for given systems. In
a previous paper [7], we studied almost-sure convergence (without equivalence)
and gave precise and self-contained definitions for PARS with proofs of their ba-75

sic results, which had been lacking in the literature so far. For completeness, we
repeat some results of [7] together with their proofs, i.e., Propositions 5, 6, Lem-
mas 10, 12, Theorem 25, while the central results in the present paper are novel
generalizations for modulo equivalence. This includes a suitable generalization
of the result by Curien and Ghelli [6] explained above, and we demonstrate its80

application in relation to almost-sure convergence modulo equivalence.

Overview of this paper

In Section 2, we review definitions for abstract reduction systems and intro-
duce and motivate our choices of definitions for their probabilistic counterparts;
a proof that the defined probabilities indeed constitute a probability distri-85

bution is found in the Appendix. Section 3 formulates and proves important
properties, relevant for showing almost-sure convergence modulo equivalence.
Section 4 goes in detail with applications of the transformational approach [6]
to (dis-) proving almost-sure convergence modulo equivalence, and in Section 5
we demonstrate the use of this approach for a naive probabilistic sorting al-90

gorithm for non-repeating lists and for repeating lists. Finally, we provide a
summary and suggestions for future work in Section 6.

2. Basic definitions

The definitions for non-probabilistic systems are standard; see, e.g., [2, 3].
Basic definitions and properties for probabilistic abstract reduction systems are95

3

rephrased from [7].

Definition 1 (ARS). An Abstract Reduction System is a pair R = (A,→)
where the reduction → is a binary relation on a countable set A. An equiva-
lence relation ≈ is a binary relation ≈⊆ A× A that is reflexive, transitive and
symmetric.100

Instead of (s, t) ∈→, we write s→ t (or t← s when convenient). The relation
↔ refers to (← ∪ →),

≈→ to (→ ∪ ≈), and
≈↔ to (↔ ∪ ≈). The notation

s →∗ t denotes the transitive reflexive closure of →, and analogously for the
other relations mentioned.

In the literature, an ARS is often required to have only finite branching. i.e.,105

for any element s, the set {t | s → t} is finite. We do not require this, as the
implicit restriction to countable branching is sufficient for our purposes.

The set of normal forms RNF are those s ∈ A for which there is no t ∈ A
such that s→ t. For given element s, the normal forms of s, are defined as the
set RNF (s) = {t ∈ RNF | s →∗ t}. An element which is not a normal form is110

said to be reducible; i.e., an element s is reducible if and only if {s′ | s→ s′} 6= ∅.
A path from an element s is a (finite or infinite) sequence of reductions

s→ s1 → s2 → · · · ; a finite path s→ s1 → s2 → · · · → sn has length n (n ≥ 0);
in particular, we recognize an empty path (of length 0) from a given state to
itself. For given elements s and t ∈ RNF (s), ∆(s, t) denotes the set of finite115

paths s→ · · · → t (including the empty path); ∆∞(s) denotes the set of infinite
paths from s. A system is

• confluent if for all s1 ←∗ s→∗ s2 there is a t such that s1 →∗ t←∗ s2,

• confluent modulo ≈ if for all s′1 ←∗ s1 ≈ s2 →∗ s′2 there exist t1 and t2
such that s′1 →∗ t1 ≈ t2 ←∗ s′2,120

• terminating1 iff it has no infinite path,

• convergent iff it is terminating and confluent, and

• normalizing2 iff every element s has a normal form, i.e., there is an element
t ∈ RNF such that s→∗ t.

The following property indicates the complexity of the probability measures125

that are needed in order to cope with paths in probabilistic abstract reduction
systems defined over countable sets.

Proposition 2. Given an ARS as above and given elements s and t ∈ RNF (s),
it holds that ∆(s, t) is countable, and ∆∞(s) may or may not be countable.

1A terminating system is also called strongly normalizing elsewhere, e.g., [6].
2A normalizing system is also called weakly normalizing or weakly terminating elsewhere,

e.g., [6].

4

Proof. For the first part, ∆(s, t) is isomorphic to a subset of
⋃
n=1,2,...A

n. A130

countable union of countable sets is countable, so ∆(s, t) is countable.
For the second part, consider the ARS 〈{0, 1}, {i→ j | i, j ∈ {0, 1}}〉. Each

infinite path can be read as a real number in the unit interval, and any such
real number can be described by an infinite path. The real numbers (in the unit
interval) are uncountable.135

This means that we can define discrete and summable probabilities over ∆(s, t),
and – which we will avoid – considering probabilities over the space ∆∞(s)
requires more advanced measure theory.

In the next definition, a path is considered a Markov process/chain, i.e., each
reduction step is independent of the previous ones, and thus the probability of140

a path is defined as a product in the usual way.

Definition 3 (PARS). A Probabilistic Abstract Reduction System is a pair
RP = (R,P) where R = (A,→) is an ARS, and for each reducible element
s ∈ A \ RNF , P (s → ·) is a probability distribution over the reductions from s,
i.e.,

∑
s→t P (s → t) = 1; it is assumed, that for all s and t, P (s → t) > 0 if145

and only if s→ t.
The probability of a finite path s0 → s1 → . . .→ sn with n ≥ 0 is given as

P (s0 → s1 → . . .→ sn) =

n∏
i=1

P (si−1 → si).

For any element s and normal form t ∈ RNF (s), the probability of s reaching
t, written P (s→∗ t), is defined as

P (s→∗ t) =
∑

δ∈∆(s,t)

P (δ);

the probability of s not reaching a normal form (or diverging) is defined as

P (s→∞) = 1−
∑

t∈RNF (s)

P (s→∗ t).

When referring to confluence, local confluence, termination, and normalization
of a PARS, we refer to these properties for the underlying ARS.

Our definition of PARS is similar to that of [15] except that they allow transi-
tions with zero probabilities. This gives no difference in the derived probabilities150

but the absence of zero probability transitions simplifies the connection between
a PARS and its underlying ARS.

Notice that when s is a normal form then P (s →∗ s) = 1 since ∆(s, t)

contains only the empty path with probability
∏0
i=1 P (si−1 → si) = 1. It is

important that P (s →∗ t) is defined only when t is a normal form of s since155

otherwise, the defining sum may be ≥ 1, as demonstrated by the following
example.

5

0 1
1

1

(a)

0 1 a
1 1/2

1/2

(b)

a 0 1 b
1/2

1/2

1/2

1/2

(c)

0 1 2 3 . . .

. . .
a

1−1/4

1/4

1−1/42

1/42

1−1/43

1/43

1−1/44

1/44

(d)

Figure 1: PARS with different properties, see Table 1.

Example 4. Consider the PARS RP given in Figure 1(a); formally, RP =
(({0, 1}, {0 � 1, 1 � 1}), P) with P (0 � 1) = 1 and P (1 � 1) = 1. An attempt
to define P (0→∗ 1) as in Def. 3, for the reducible element 1, does not lead to a160

probability, i.e., P (0→∗ 1) 6≤ 1: P (0→∗ 1) = P (0�1) + P (0�1�1) + P (0�1�
1�1) + . . . =∞.

The authors of [15] use a different (and more complicated) probability measure
that allows to define the probability of visiting also non-normal forms, which
seems necessary for defining a notion of almost-sure confluence. Our definitions165

are sufficient for characterizing and proving almost-surely convergence modulo
equivalence.

The following proposition shows that P is indeed a probability distribution.

Proposition 5. For an arbitrary finite path π, 1 ≥ P (π) > 0. For every170

element s, P (s →∗ ·) and P (s →∞) comprise a probability distribution, i.e.,
∀t ∈ RNF (s) : 0 ≤ P (s →∗ t) ≤ 1; 0 ≤ P (s →∞) ≤ 1; and

∑
t∈RNF (s) P (s →∗

t) + P (s→∞) = 1.

Proof. The proofs are simple but lengthy and are given in the Appendix.

Proposition 6 justifies that we refer to P (s→∞) as a probability of divergence.175

Proposition 6. Consider a PARS which has an element s for which ∆∞(s) is
countable (finite or infinite). Let P (s1→ s2→· · ·) =

∏
i=1,2,...P (si→ si+1) be

the probability of an infinite path, then P (s→∞) =
∑
δ∈∆∞(s) P (δ).

Proof. See Appendix.180

We can now define probabilistic and almost-sure (abbreviated “a-s.”) versions
of important notions for derivation systems. A system is

• almost-surely convergent if for all s1 ←∗ s →∗ s2 there is a normal form
t ∈ RNF such that s1 →∗ t←∗ s2 and P (s1 →∗ t) = P (s2 →∗ t) = 1,

• almost-surely convergent modulo ≈ if for all s′1 ←∗ s1 ≈ s2 →∗ s′2 there185

are two normal forms t1, t2 ∈ RNF such that s1 →∗ t1 ≈ t2 ←∗ s2 and∑
t1∈RNF (s′1) P (s′1 →∗ t1) =

∑
t2∈RNF (s′2) P (s′2 →∗ t2) = 1,

6

(a) (b) (c) (d) (d ′)
Confl. + + – + +
Term. – – – – –
A-s. conv. – + – – +
A-s. term. – + + – +

Table 1: A property overview of the systems (a)–(d) in Figure 1 and (d ′) with same ARS as
(d), but with all probabilities replaced by 1/2.

0 1

a b

1/2

1 1/2

(a)

0 1

a b

≈

1/2

1 1/2

(b)

0

a 1

b

≈

1/2

1

1/2

(c)

0 1 2 3 . . .

a b c d . . .≈ ≈ ≈ ≈

1−1/4

1/4

1−1/42

1/42

1−1/43

1/43

1−1/44

1/44

(d)

Figure 2: PARS with different “modulo ≈”-properties, see Table 2.

• almost-surely terminating3 iff every element s has P (s→∞) = 0, and

• probabilistically normalizing iff every element s has a normal form t such
that P (s→∗ t) > 0.190

Example 7. The four probabilistic systems in Figure 1 demonstrate the prop-
erties of confluence, termination, a-s. termination and a-s. convergence. We
notice that (b)–(d) are normalizing. Furthermore, they are all non-terminating:
system (b) and (c) are a-s. terminating, which is neither the case for (a) nor (d);
for element 0 in system (d) we have P (0→∞) =

∏∞
i=1(1−(1/4)i) ≈ 0.6885 > 0.4195

Table 1 summarizes their properties of (almost-sure) (local) confluence; (d ′)
refers to a PARS with the same underlying ARS as (d) and with all probabilities
= 1/2. The difference between system (d) and (d ′) emphasizes that the choice
of probabilities do matter for whether or not different probabilistic properties
hold. For any element s in (d ′), the probability of reaching the normal form a200

is 1/2 + 1/22 + 1/23 + · · · = 1.

Example 8. The four probabilistic systems in Figure 2 demonstrate the prop-
erties confluence modulo ≈, (non)termination, a-s. termination and a-s. con-
vergence modulo ≈. We notice that all systems are normalizing and non-
terminating and that systems (a)–(c) are a-s. terminating, which is not the205

3Almost-sure termination is named probabilistic termination elsewhere, e.g., [21, 14].
4Verified by Mathematica. The exact result is

(
1
4

; 1
4

)
∞; see [22] for the definition of this

notation.

7

Figure 2: (a) (b) (c) (d) (d ′)
Confl. mod. ≈ + – – + +
Term. – – – – –
A-s. conv. mod. ≈ + – – – +
A-s. term. + + + – +

Table 2: A property overview of the systems (a)–(d) in Figure 2 and (d ′) with same ARS as
(d), but with all probabilities replaced by 1/2.

case for (d). The system (a) has “=” as ≈; (a) together with (b) demonstrates
that different equivalence relations influence confluence modulo ≈ and a-s. con-
vergence modulo ≈. Since a ≈ 1 → b is in system (c) and a 6≈ b, it is not
confluent modulo ≈. Table 2 summarizes their properties of (almost-sure) ter-
mination, confluence modulo ≈ and a-s. confluence modulo ≈; (d ′) refers to a210

PARS with the same underlying ARS as (d) and with all probabilities = 1/2 and
emphasizes that the choice of probabilities do matter. For any element s in (d ′),
the probability of reaching the normal form a is 1/2 + 1/22 + 1/23 + · · · = 1.

3. Properties of Probabilistic Abstract Reduction Systems

With a focus on almost-sure convergence modulo equivalence, we consider215

now relevant relationships between the properties of probabilistic and their un-
derlying non-probabilistic systems. Lemmas 10 and 12, below, have been sug-
gested by [15] without proofs. The most important properties are summarized
as follows. For any PARS RP :

• RP is normalizing if and only if it is probabilistically normalizing (Lemma 10),220

• if RP is almost-surely terminating then it is normalizing (Lemma 11),

• if RP is terminating then it is almost-surely terminating (Lemma 12),

• RP is almost-surely terminating and confluent modulo ≈, if and only if it
is almost-surely convergent modulo ≈ (Theorem 18),

• RP is almost-surely terminating and confluent, if and only if it is almost-225

surely convergent (Corollary 19).

The following inductive characterization of the probabilities for reaching a given
normal form is useful for the proofs that follow.

Proposition 9. For any reducible element s, the following holds.∑
t∈RNF

P (s→∗ t) =
∑
s→s′

(
P (s→ s′)×

∑
t∈RNF

P (s′ →∗ t)
)

8

Proof. Any path from s to a normal form t will have the form s→ s′ → · · · →
t, for some direct successor s′ of s. The other way round, any normal form for230

a direct successor s′ of s will also be a normal form of s. With this observation,
the proposition follows directly from Definition 3 (prob. of path).

Lemma 10 ([15]). A PARS is normalizing if and only if it is probabilistically
normalizing.

Proof. Every element s in a normalizing PARS has a normal form t such that235

s →∗ t and by definition of PARS, P (s →∗ t) > 0, which makes it proba-
bilistically normalizing. The other way round, the definition of probabilistic
normalizing includes normalization.

Prob. normalization differs from the other properties by nature (requiring prob-
ability > 0 instead of = 1), and is the only one which is equivalent to its non-240

probabilistic counterpart. Thus, the existing results on proving and disproving
normalization can be used directly to determine probabilistic normalization.
The following lemma is a consequence of [15, Prop. 7.3,7.5].

Lemma 11. If a PARS is almost-surely terminating then it is normalizing.245

Proof. For every element s in an a-s. terminating system, Proposition 5 gives
that

∑
t∈RNF

P (s →∗ t) = 1, and hence s has at least one normal form t such
that P (s→∗ t) > 0. By Lemma 10, the system is also normalizing.

The opposite is not the case, as demonstrated by system (d) in Figure 1; every
element has a normal form, but the system is not almost-surely terminating.250

Lemma 12 ([15]). If a PARS is terminating then it is almost-surely terminat-
ing.

Proof. In a terminating PARS, ∆∞(s) = ∅ for any element s. By Proposition 6
we have P (s→∞) = 0.

The opposite is not the case, as demonstrated by systems (b)–(d) in Figure 1.255

The following lemma provides the first insight into the implications of almost-
surely convergence modulo equivalence.

Lemma 13. If a PARS is almost-surely convergent modulo ≈ then it is almost-
surely terminating .

Proof. Let RP = ((A,→), P) be a-s. convergent modulo ≈, and s an arbitrary260

element of A. We may write s ←∗ s ≈ s →∗ s and by definition of a-s. con-
vergent modulo ≈,

∑
tRNF (s) P (s →∗ t) = 1. A-s. termination follows from

Proposition 5.

Lemma 14. In a system R = (A,→) that is confluent modulo ≈, it holds for
any s ∈ A and t1, t2 ∈ RNF (s), that t1 ≈ t2.265

9

Proof. Assume the notion of the lemma. We may write t1 ←∗ s ≈ s →∗ t2
and since t1 and t2 are normal forms, confluence modulo ≈ yields t1 ≈ t2.

This immediately gives the following.

Proposition 15. In a normalizing system R = (A,→) that is confluent modulo
≈, it holds for any s ∈ A, that RNF (s) 6= ∅ and t1, t2 ∈ RNF (s)⇒ t1 ≈ t2.270

The opposite is not the case, as demonstrated by the underlying ARS of (b) in
Figure 2. However, if ≈ is reduced to “=”, a normalizing system is confluent if
only if every element has a unique normal form [7].

Lemma 16. In a system RP = ((A,→), P) that is almost-surely convergent
modulo ≈, it holds for any s∈A, that RNF (s) 6= ∅ and t1, t2 ∈RNF (s)⇒ t1 ≈ t2.275

Proof. This is a direct consequence of Lemmas 11 and 13, yielding that RP is
normalizing, and Proposition 15.

The opposite is not the case, as demonstrated by system (b) in Figure 2. Huét
presented a lemma concerning confluence modulo equivalence and equivalence of
normal forms for normalizing systems; this lemma is relevant later in Lemma 24.280

Proposition 17 ([3, Lem. 2.6]). A normalizing system is confluent modulo
≈ if and only if

s′1 ←∗ s1(↔ ∪ ≈)∗s2 →∗ s′2 ⇒ ∀t1 ∈ RNF (s′1),∀t2 ∈ RNF (s′2) t1 ≈ t2.

The following theorem is essential when proving almost-sure convergence mod-
ulo equivalence.

Theorem 18. A PARS is almost-surely terminating and confluent modulo ≈
if and only if it is almost-surely convergent modulo ≈.285

Corollary 19. A PARS is almost-surely terminating and confluent if and only
if it is almost-surely convergent.

Thus, to prove almost-sure convergence of a given PARS, one may use the meth-
ods of [16, 17, 18] to prove almost-sure termination and prove classical confluence
– referring to Newman’s lemma (cf. our discussion in the Introduction), or using290

the method of mapping the system into another system, already known to be
confluent, as described in Section 4, below.

Proof (Theorem 18). We split the proof into smaller parts, referring to prop-
erties that are shown below: “if”: by Lemmas 13 and 20. “only if”: by
Lemma 21.295

Lemma 20. If a PARS is almost-surely convergent modulo ≈ then it is conflu-
ent modulo ≈

10

Proof. Assume almost-sure convergence modulo ≈, then for each s1 ←∗ s→∗
s2 there exist two t1, t2 (a normal form) such that s1 →∗ t1 ≈ t2 ←∗ s2.

Lemma 21. If a PARS is almost-surely terminating and confluent modulo ≈300

then it is almost-surely convergent modulo ≈.

Proof. Let RP = ((A,→), P) be a-s. terminating and confluent modulo ≈
and let s′1 ←∗ s1 ≈ s2 →∗ s′2. According to Lemma 11, RP is normalizing,
and consequently there are normal forms t1 and t2 such that t1 ←∗ s′1 ←∗
s1 ≈ s2 →∗ s′2 →∗ t2, obtaining t1 ←∗ s1 ≈ s2 →∗ t2. Confluence modulo305

≈ implies t1 ≈ t2 (as t1 and t2 are normal forms). A-s. terminating gives, via
Proposition 5, that

∑
t∈RNF (s′i)

P (s′i →∗ t) = 1 for i ∈ {1, 2}.

4. Showing Almost-sure Convergence Modulo ≈ by Transformation

Theorem 18 shows that a PARS cannot be almost-surely convergent mod-
ulo ≈ if it is not almost-surely terminating. To show almost-sure convergence310

modulo ≈ of an almost-surely terminating system, it needs to be shown conflu-
ent modulo equivalence. The following proposition is a weaker formulation and
consequence of Theorem 18; it shows that (dis)proving confluence modulo ≈
for almost-surely terminating systems is crucial when (dis)proving almost-sure
convergence modulo ≈.315

Proposition 22. An almost-surely terminating PARS is almost-surely conver-
gent modulo ≈ if and only if it is confluent modulo ≈.

Proof. This is a direct consequence of Theorem 18.

Curien and Ghelli [6] presented a method for proving confluence by transform-
ing5 the system of interest (under some restrictions) to a new system which is320

known to be confluent. We start by repeating their relevant result.

Lemma 23 ([6]). Given two ARS R = (A,→R) and R′ = (A′,→R′) and a
mapping G : A→ A′, then R is confluent if the following holds.

(C1) R′ is confluent,

(C2) R is normalizing,325

(C3) if s→R t then G(s)↔∗R′G(t),

(C4) ∀t ∈ RNF , G(t) ∈ R′NF , and

(C5) ∀t, u ∈ RNF , G(t) = G(u) ⇒ t = u

5This is also referred to as interpreting a system elsewhere, e.g., [6].

11

An extended method for proving and disproving confluence was presented by
Kirkeby and Christiansen [7]; in that method a system R is confluent if and330

only if its transformed system R′ is confluent. Both these results follow from
the subsequent lemma.

Lemma 24. Given two ARS R = (A,→R) and R′ = (A′,→R′), an equivalence
≈⊆ A×A and a mapping G : A→ A′, satisfying

(C1 ′) (surjective) ∀s′ ∈ A′, ∃s ∈ A,G(s) = s′,335

(C2 ′) R and R′ are normalizing,

(C3 ′) if s
≈→R t then G(s)↔∗R′ G(t), and

if G(s)↔∗R′ G(t) then s
≈↔∗R t,

(C4 ′) ∀t ∈ RNF , G(t) ∈ R′NF , and
∀t′ ∈ R′NF , G

−1(t′) ⊆ RNF , where G−1(t′) = {t ∈ A | G(t) = t′}340

(C5 ′) ∀t, u ∈ RNF , G(t) = G(u)⇔ t ≈ u,

then R is confluent modulo ≈ iff R′ is confluent.

Proof. “⇒”: Assume that R is confluent modulo ≈ and R′ is not confluent,
i.e., there exist s′1←∗R′ s′→∗R′ s′2 for which @t′ ∈ R′ : s′1→∗R′ t′←∗R′ s′2.

By (C2′): ∃t′1, t′2 ∈ R′NF : t′1←∗R′ s′1←∗R′ s′→∗R′ s′2→∗R′ t′2 obtaining t′1↔∗R′ t′2345

where t′1 6= t′2.
By (C1′) and (C4′): ∃t1, t2 ∈ RNF : G(t1) = t′1 ∧G(t2) = t′2
By (C5′): t′1 6= t′2 yields t1 6≈ t2
By (C3′): t′1↔∗R′ t′2 ⇒ t1

≈↔∗R t2
Since R is confluent modulo ≈ we apply Lemma 17 and obtain t1 ≈ t2 which350

contradicts t1 6≈ t2.
“⇐”: Assume that R′ is confluent and R is not confluent modulo ≈, i.e., there
exist s1←∗R sa ≈ sb→∗R s2 for which @t1, t2 ∈ R : s1→∗R t1 ≈ t2←∗R s2.

By (C2′): ∃t1, t2 ∈ RNF : t1←∗R s1←∗R sa ≈ sb→∗R s2→∗R t2 where t1 6≈ t2.
By (C3′): G(t1)↔∗R′ G(s1)↔∗R′ G(sa)↔∗R′ G(sb)↔∗R′ G(s2)↔∗R′ G(t2) obtain-355

ing G(t1)↔∗R′ G(t2).
By (C1′) and (C4′): ∃t′1, t′2 ∈ R′NF : G(t1) = t′1 ∧ G(t2) = t′2, obtaining

t′1↔∗R′ t′2.
Since R′ is confluent it also has the Church-Rosser property, i.e., x ↔∗ y ⇒

∃z, x→∗ z ←∗ y. Because t′1 and t′2 are normal forms they are irreducible, thus,360

∃z, x→0 z ←0 y yielding t′1 = t′2.
By (C5′): t1 6≈ t2 ⇒ t′1 6= t′2 which contradicts t′1 = t′2.

To apply Lemma 24 for a given system R, one may search for an R′ which is as
simple or as small as possible to reduce the complexity of especially the second365

part of C3′, as demonstrated in the following examples.
We summarize the application of the above to probabilistic systems in The-

orems 25 and 27.

12

num a

(b)

a num b

(c)

num

a

(d)

Figure 3: Systems (b)–(d) are transformed systems of the underlying ARS system in Figure 1
with the same names.

Theorem 25 ([7]). An almost-surely terminating PARS RP = ((A,→R), P)
is almost-surely convergent if there exists an ARS R′ = (A′,→R′) and a mapping370

G : A→ A′ which together with (A,→R) satisfy (C1)–(C5).

Proof. Since RP is a-s. terminating, R is normalizing (Lemma 11). So, given
an ARS R′ and G be a mapping from R to R′ satisfying (C1), (C3)–(C5), we
can apply Lemma 23 and obtain that R and thereby RP is confluent. A-s. con-
vergence of RP follows from Prop. 22 since RP is confluent and a-s. terminating.375

Example 26. We consider the nonterminating, almost-surely terminating sys-
tem RP (below to the left) with the underlying normalizing system R (below,
middle), the confluent system R′ (below to the right) and the mapping G(0)= 0,
G(a)= a.

RP :
0 a

p

1-p R :
0 a

R′ : 0 a

The systems R, R′ and the mapping G satisfy (C1)–(C5), and therefore we can
conclude that RP is almost-surely convergent.

Theorem 27. Given an almost-surely terminating PARS RP = (R,P) with
R = (A,→R), an equivalence relation ≈ over A, an ARS R′ = (A′,→R′) and a
mapping G from A to A′ which together with R satisfy (C1′)–(C5′), then system380

RP is almost-surely convergent modulo ≈ if and only R′ is confluent.

Proof. Assume notation as above. Since RP is a-s. terminating, R is normal-
izing (Lemma 11), satisfying the first part of (C2′). Thus, given an ARS R′ and
a mapping G which together with R and ≈ satisfy (C1′)–(C5′), we can apply
Lemma 24 obtaining that R is confluent modulo ≈ iff R′ is confluent. Prop. 22385

gives that the a-s. terminating RP is a-s. convergent iff R′ is confluent.

Corollary 28. Given an almost-surely terminating PARS RP = (R,P) with
R = (A,→R), an ARS R′ = (A,→R′) and a mapping G from A to A′ which
together with R satisfy (C1′)–(C5′), then system RP is almost-surely convergent
if and only R′ is confluent.390

13

0 1

a b

(a)

01

a b

(b)

01

a b

(c)

num

letter

(d)

Figure 4: Examples of transformed systems where the original systems are those of Figure 2.

Example 29. The systems (b)–(d) in Figure 3 are transformed systems of the
underlying normalizing ARS in Figure 1 with the same names. The transfor-
mation is done by mapping all numbers to num and all letters to themselves. By
Corollary 28 the confluence of the transformed systems (b), and (d) imply that
the ditto systems in Figure 1 are confluent; and that non-confluence of (c) in395

Figure 3 implies that (c) in Figure 1 is not confluent.

Example 30. The systems (a)–(d) in Figure 4 are transformed systems of the
underlying normalizing ARS in Figure 2 with the same names. There are three
mappings; G(a) is used when transforming system (a): it maps the states to
states of the same name, e.g., G(a)(1) = 1; G(b)(c) is used when transforming (b)400

and (c) and is defined by G(b)(c)(a) = a, G(b)(c)(a) = b, G(b)(c)(0) = G(b)(c)(1)01;
and the third mapping G(d) is used when transforming (d) and is defined such
that all numbers are mapped to num and all normal forms to letter.

The confluence of transformed systems (a) and (d) imply that the ditto orig-
inal systems in Figure 2 are confluent. The fact that (b) and (c) in Figure 4405

are not confluent imply that their original systems are not confluent.

5. Examples

In the following we show almost-sure convergence (modulo equivalence) in
two different cases that exemplify Theorem 27 and Corollary 28. As shown
by [16, 17, 18], to prove that a PARS RP = ((A,→), P) is almost-surely ter-410

minating, it suffices to show existence of a Lyapunov ranking function, i.e., a
function V : A→ R+ where ∀s ∈ A there exists an ε > 0 so the inequality of s,
V(s) ≥

∑
s→s′ P (s→ s′) · V(s′) + ε holds.

5.1. A naive sorting algorithm

We consider a naive sorting algorithm, which stops when the list is sorted415

and, otherwise, randomly chooses two elements and interchange them; all el-
ement pairs have an equal probability of being interchanged. We study two
simple cases, one with non-repeating elements and one with repeating elements.
For the repeating case we assume that each element has both a value and a
unique identifier, for instance 2a and 2b both have value 2, but different identi-420

fiers a and b, respectively. We assume that the input list has three elements; in
the non-repeating case the list contains 1, 2, and 3, and in the repeating case
the list contains 1a, 2b, and 2c.

14

[123]

[321] [213] [132]

[231] [312]

1/3
1/3

1/3

1/3 1/3 1/3 1/3

1/3 1/3

(a) Original RP .

[123]

[321] [213] [132]

[231] [312]

(b) Underlying R.

unsorted

[123]

(c) Confl. R′

Figure 5: Naive sorting of a non-repeating list.

In the following we display the two PARS system described by the algorithm
and the possible lists. Our objective is to show almost-sure convergence for425

the case with non-repeating elements and almost-sure convergence modulo an
equivalence defining that any two value-ordered lists are equivalent, for instance
[1a 2b 2c] ≈ [1a 2c 2b].

5.1.1. Non-repeating lists

We consider RP = (R,P), shown in Figure 5(a), and start by showing it430

a-s. terminating using a Lyapunov ranking function. Then, we show RP a-s.
convergent using Corollary 28; let ≈ be = and provide a mapping G that satisfy
(C1′)–(C5′).

The function V is defined by V([123]) = 1, V([321]) = V([213]) =
V([132]) = 3, and V([231]) = V([312]) = 4. The following calculations
show that V is in fact a Luyapunov ranking function for RP .

4 = V([231]) > 1
3V([321]) + 1

3V([213]) + 1
3V([132]) = 3

3 + 3
3 + 3

3 = 3

4 = V([312]) > 1
3V([321]) + 1

3V([213]) + 1
3V([132]) = 3

3 + 3
3 + 3

3 = 3

3 = V([321]) > 1
3V([231]) + 1

3V([312]) + 1
3V([123]) = 4

3 + 4
3 + 1

3 = 2 + 2
3

3 = V([213]) > 1
3V([231]) + 1

3V([312]) + 1
3V([123]) = 4

3 + 4
3 + 1

3 = 2 + 2
3

3 = V([132]) > 1
3V([231]) + 1

3V([312]) + 1
3V([123]) = 4

3 + 4
3 + 1

3 = 2 + 2
3

1 = V([123]) > 0

Since RP is a-s. terminating, it suffice to let R′ = ({unsorted, [123]}, unsorted→
[123]), see Figure 5(c), and the mapping G defined by G([231]) = G([312]) =435

G([321]) = G([213]) = G([132]) = unsorted and G([123]) = [123].
Because RP is a-s. terminating, R′ is (trivially) a confluent system, and the

mapping G satisfies (C1′)–(C5′), we get (by Cor. 28) RP is a-s. convergent.

5.1.2. Repeating lists

We consider RP = (R,P), shown in Figure 6(a), and proceed as above440

showing it a-s. terminating using a Lyapunov ranking function. Then, we show

15

[1a 2b 2c] [1a 2c 2b]

[2b 1a 2c] [2c 1a 2b]

[2c 2b 1a] [2b 2c 1a]

≈

1/3

1/3

1/3

1/3

1/3
1/3

1/3 1/3

(a) Original RP .

[1a 2b 2c] [1a 2c 2b]

[2b 1a 2c] [2c 1a 2b]

[2c 2b 1a] [2b 2c 1a]

≈
(b) Underlying R.

unsorted

sorted

(c) Confl. R′

Figure 6: Naive sorting of a repeating list.

RP a-s. convergent using Theorem 27 by a mapping G that satisfy (C1′)–(C5′),
and the mapped system is trivially confluent.

We define the function V by V([1a 2b 2c]) = V([1a 2c 2b]) = 1 and V([2b 1a 2c]) =
V([2c 1a 2b]) = V([2c 2b 1a]) = V([2b 2c 1a]) = 3. The following calculations show
that V is in fact a Luyapunov ranking function for RP .

3 = V([2c 2b 1a]) >
1
3V([2b 2c 1a]) + 1

3V([2c 1a 2b]) + 1
3V([1a 2b 2c]) = 2 + 1

3

3 = V([2b 2c 1a]) >
1
3V([2c 2b 1a]) + 1

3V([2b 1a 2c]) + 1
3V([1a 2c 2b]) = 2 + 1

3

3 = V([2b 1a 2c]) >
1
3V([2b 2c 1a]) + 1

3V([2c 1a 2b]) + 1
3V([1a 2b 2c]) = 2 + 1

3

3 = V([2c 1a 2b]) >
1
3V([2c 2b 1a]) + 1

3V([2b 1a 2c]) + 1
3V([1a 2c 2b]) = 2 + 1

3

1 = V([1a 2b 2c]) > 0

1 = V([1a 2c 2b]) > 0

SinceRP is a-s. terminating, it suffice to defineR′ = ({unsorted, sorted}, unsorted→
sorted), see Figure 6(c), and the mappingG defined byG([2c 2b 1a])=G([2b 2c 1a])=445

G([2b 1a 2c])=G([2c 1a 2b])= unsorted and G([1a 2b 2c])=G([1a 2c 2b])= sorted.
Because RP is a-s. terminating, R′ is (trivially) a confluent system, and the

mapping G satisfies (C1′)–(C5′), we get (by Thm. 27) that RP is a-s. convergent
modulo ≈.

6. Conclusion450

We have introduced and characterized a novel notion of almost-sure con-
vergence modulo equivalence for probabilistic abstract reduction systems. This
generalization of earlier results without the equivalence [15, 7] is important, as
it opens up for studying a much larger class of interesting systems having a
convergent behaviour, and we gave some indicative examples of systems with455

this property.
Our main results aim to facilitate proving – or disproving – almost-sure con-

vergence modulo equivalence of given systems. As a central theorem (Th. 18),
we have shown that almost-sure convergence modulo equivalence is the same
as almost-sure termination plus confluence modulo equivalence. The picture is460

completed by our generalization to modulo equivalence of an important result [6]

16

on proving confluence by relating the system of interest to another, known to
be confluent.

It would be useful to automate the construction of the transformations, espe-
cially for rule-based systems like term rewriting systems or CHR; as this would465

provide a fully automatic method for proving confluence modulo equivalence
of such systems and a step towards proving almost-sure convergence modulo
equivalence automatically.

A related property which have been disregarded is local confluence; local
confluence is essential for proving confluence (with or without equivalence) for470

terminating systems [3, 4]. An almost-sure terminating system may not be ter-
minating and thus Newman’s Lemma cannot be applied directly, but it is highly
relevant to investigate local properties for almost-surely terminating systems.

References

[1] A. Church, J. B. Rosser, Some properties of conversion, Transactions of the475

American Mathematical Society 39 (3) (1936) 472–482.

[2] F. Baader, T. Nipkow, Term rewriting and all that, Cambridge University
Press, 1999.

[3] G. P. Huet, Confluent reductions: Abstract properties and applications to
term rewriting systems, J. ACM 27 (4) (1980) 797–821. doi:10.1145/480

322217.322230.

[4] M. H. A. Newman, On theories with a combinatorial definition of “equiv-
alence”, Annals of Mathematics 43 (2) (1942) 223–243.

[5] A. V. Aho, R. Sethi, J. D. Ullman, Code Optimization and Finite Church-
Rosser Systems, in: R. Rustin (Ed.), Design and Optimization of Compil-485

ers, Prentice-Hall, 1972, pp. 89–106.

[6] P. Curien, G. Ghelli, On confluence for weakly normalizing systems, in:
RTA-91, 1991, pp. 215–225. doi:10.1007/3-540-53904-2_98.

[7] M. H. Kirkeby, H. Christiansen, Confluence and Convergence in Probabilis-
tically Terminating Reduction Systems, in: F. Fioravanti, J. P. Gallagher490

(Eds.), LOPSTR 2017, Vol. 10855 of LNCS, Springer, 2018, pp. 164–179.
doi:10.1007/978-3-319-94460-9_10.

[8] T. Fruhwirth, Constraint Handling Rules, Cambridge University Press,
Cambridge, 2009. doi:10.1017/CBO9780511609886.

[9] S. Abdennadher, Operational semantics and confluence of constraint prop-495

agation rules, in: CP97, Vol. 1330 of LNCS, Springer, 1997, pp. 252–266.
doi:10.1007/BFb0017444.

[10] S. Abdennadher, T. W. Frühwirth, H. Meuss, On confluence of Constraint
Handling Rules, in: CP96, Vol. 1118 of LNCS, Springer, 1996, pp. 1–15.

17

http://dx.doi.org/10.1145/322217.322230
http://dx.doi.org/10.1145/322217.322230
http://dx.doi.org/10.1145/322217.322230
http://dx.doi.org/10.1007/3-540-53904-2_98
http://dx.doi.org/10.1007/978-3-319-94460-9_10
http://dx.doi.org/10.1017/CBO9780511609886
http://dx.doi.org/10.1007/BFb0017444

[11] H. Christiansen, M. H. Kirkeby, Confluence Modulo Equivalence in Con-500

straint Handling Rules, in: M. Proietti, H. Seki (Eds.), LOPSTR 2014.
Revised Selected Papers, Vol. 8981 of LNCS, Springer, 2014, pp. 41–58.

[12] H. Christiansen, M. H. Kirkeby, On proving confluence modulo equivalence
for Constraint Handling Rules, Formal Aspects of Computing 29 (1) (2017)
57–95. arXiv:1611.03628, doi:10.1007/s00165-016-0396-9.505

[13] S. Hart, M. Sharir, A. Pnueli, Termination of probabilistic concurrent pro-
gram, ACM Trans. Program. Lang. Syst. 5 (3) (1983) 356–380. doi:

10.1145/2166.357214.

[14] T. W. Frühwirth, A. D. Pierro, H. Wiklicky, Probabilistic Constraint
Handling Rules, Electr. Notes Theor. Comput. Sci. 76 (2002) 115–130.510

doi:10.1016/S1571-0661(04)80789-8.

[15] O. Bournez, C. Kirchner, Probabilistic rewrite strategies. Applications to
ELAN, in: S. Tison (Ed.), RTA 2002, Vol. 2378 of LNCS, Springer, 2002,
pp. 252–266. doi:10.1007/3-540-45610-4_18.

[16] O. Bournez, F. Garnier, Proving positive almost sure termination under515

strategies, in: F. Pfenning (Ed.), RTA 2006, Vol. 4098 of LNCS, Springer,
2006, pp. 357–371. doi:10.1007/11805618_27.

[17] L. M. F. Fioriti, H. Hermanns, Probabilistic termination: Soundness,
completeness, and compositionality, in: POPL 2015, 2015, pp. 489–501.
doi:10.1145/2676726.2677001.520

[18] M. Avanzini, U. D. Lago, A. Yamada, On probabilistic term rewriting, in:
J. P. Gallagher, M. Sulzmann (Eds.), FLOPS 2018, Vol. 10818 of LNCS,
Springer, 2018, pp. 132–148. doi:10.1007/978-3-319-90686-7_9.

[19] C. Faggian, Probabilistic rewriting: Relations between normalization, ter-
mination, and unique normal forms, CoRR abs/1804.05578. arXiv:1804.525

05578.

[20] A. Dı́az-Caro, G. Martinez, Confluence in probabilistic rewriting, in: 12th
Workshop on Logical and Semantic Frameworks with Applications, LFSA
2017, 2017. arXiv:1708.03536.

[21] J. Sneyers, D. D. Schreye, Probabilistic termination of CHRiSM530

programs, in: LOPSTR 2011, 2011, pp. 221–236. doi:10.1007/

978-3-642-32211-2_15.

[22] E. W. Weisstein, q-Pochhammer Symbol, MathWorld – A Wolfram Web
Resource, 2017.
URL http://mathworld.wolfram.com/q-PochhammerSymbol.html535

18

http://arxiv.org/abs/1611.03628
http://dx.doi.org/10.1007/s00165-016-0396-9
http://dx.doi.org/10.1145/2166.357214
http://dx.doi.org/10.1145/2166.357214
http://dx.doi.org/10.1145/2166.357214
http://dx.doi.org/10.1016/S1571-0661(04)80789-8
http://dx.doi.org/10.1007/3-540-45610-4_18
http://dx.doi.org/10.1007/11805618_27
http://dx.doi.org/10.1145/2676726.2677001
http://dx.doi.org/10.1007/978-3-319-90686-7_9
http://arxiv.org/abs/1804.05578
http://arxiv.org/abs/1804.05578
http://arxiv.org/abs/1804.05578
http://arxiv.org/abs/1708.03536
http://dx.doi.org/10.1007/978-3-642-32211-2_15
http://dx.doi.org/10.1007/978-3-642-32211-2_15
http://dx.doi.org/10.1007/978-3-642-32211-2_15
http://mathworld.wolfram.com/q-PochhammerSymbol.html
http://mathworld.wolfram.com/q-PochhammerSymbol.html

Appendix A. Selected proofs

Proposition 5. For an arbitrary finite path π, 1 ≥ P (π) > 0. For every
element s, P (s →∗ ·) and P (s →∞) comprise a probability distribution, i.e.,
∀t ∈ RNF (s) : 0 ≤ P (s →∗ t) ≤ 1; 0 ≤ P (s →∞) ≤ 1; and

∑
t∈RNF (s) P (s →∗

t) + P (s→∞) = 1.540

Proof. Part one follows by Definition 3. Part two is shown by defining a
sequence of distributions P (n), n ∈ N, only containing paths up to length n,
and show that it converges to P . Let∆(n)(s, t) be the subset of ∆(s, t) with
paths of length n or less, and ∆(n)(s,]) be the set of paths of length n, starting
in s and ending in a reducible element.545

We can now define P (n) over {∆(n)(s, t) | t ∈ RNF (s)}] {∆(n)(s,])} as follows:

P (n)(s→∗ t) =
∑
δ∈∆(n)(s,t) P (δ), and (A.1)

P (n)(s→∞) =
∑
π∈∆(n)(s,]) P (π). (A.2)

First, we prove by induction that P (n) is a distribution for all n. The P (0) is
a distribution because: (i) If s is irreducible, P (0)(s →∗ s) = 1 (the empty-
path); and P (0)(s →∞) = 0 (a sum of zero elements). (ii) If s is reducible,
P (0)(s→∗ s) = 0; and P (0)(s→∞) =

∑
s→t P (s→ t) = 1 by Definition 3.550

The inductive step: The sets ∆(n+1)(s, t), t ∈ RNF (s), and ∆(n+1)(s,]) can be
constructed by, for each path in ∆(n)(s,]), create its possible extensions by one
reduction. When an extension leads to a normal form t, it is added to ∆(n)(s, t).
Otherwise, i.e., if the new path leads to a reducible, it is included in ∆(n+1)(s,]).
Formally, for any normal form t of s, we write:

∆(n+1)(s, t) = {(s� · · · �u� t) | (s� · · · �u) ∈ ∆(n)(s,]), u→ t}] ∆(n)(s, t)
∆(n+1)(s,]) = {(s� · · · �u�v) | (s� · · · �u) ∈ ∆(n)(s,]), u�v, u 6∈ RNF (s)}

We show that for a given s, the probability mass added to the ∆(·)(s, t) sets is
equal to the probability mass removed from ∆(·)(s,]) as follows (where δsu =
(s� · · · �u)).∑

t∈RNF (s)

P (n+1)(s→∗ t) + P (n+1)(s→∞) =
∑

t∈RNF (s)

δ∈∆(n+1)(s,t)

P (n+1)(δ) + P (n+1)(s→∞)

=
∑

t∈RNF (s)

δst∈∆(n)(s,t)

P (n)(δ) +
∑

δsu∈∆(n)(s,]),
u→v,v∈RNF (s)

P (n)(δ)P (u→v) +
∑

δsu∈∆(n)(s,]),
u→v,v 6∈RNF (s)

P (n)(δ)P (u→v)

=
∑

t∈RNF (s)

P (n)(s→∗ t) +
∑

δsu∈∆(n)(s,]),
u→v

P (n)(δ)P (u→v) =
∑

t∈RNF (s)

P (n)(s→∗ t) +
∑

δsu∈∆(n)(s,])

P (n)(δ)

(∑
u→v

P (u→v)

)

=
∑

t∈RNF (s)

P (n)(s→∗ t) + P (n)(s→∞) = 1

19

Thus, for given s, P (n+1) defines a probability distribution. Notice also that555

the equations above indicate that P (n+1)(s →∗ t) ≥ P (n)(s →∗ t), for all
t ∈ RNF (s).

Finally, for any s and t ∈ RNF (s), limn→∞∆(n)(s, t) = ∆(s, t), we get (as we
consider increasing sequences of real numbers in a closed interval)
limn→∞ P (n)(s→∗ t) = P (s→∗ t), and as a consequence of this,560

limn→∞ P (n)(s→∞) = P (s→∞). This finishes the proof.

Proposition 6. Consider a PARS which has an element s for which ∆∞(s) is
countable (finite or infinite). Let P (s1→ s2→· · ·) =

∏
i=1,2,...P (si→ si+1) be

the probability of an infinite path, then P (s→∞) =
∑
δ∈∆∞(s) P (δ).

Proof. We assume the characterization in the proof of Proposition 5 above,565

of P by the limits of the functions P (n)(s →∗ t) and P (n)(s →∞) given by
equations (A.1) and (A.2). When ∆∞(s) is countable, limn→∞ P (n)(s →∞) =∑
δ∈∆∞(s) P (δ).

20

	Introduction
	Basic definitions
	Properties of Probabilistic Abstract Reduction Systems
	Showing Almost-sure Convergence Modulo by Transformation
	Examples
	A naive sorting algorithm
	Non-repeating lists
	Repeating lists

	Conclusion
	Selected proofs

