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Abstract

This thesis addresses the challenge of inferring information about the probabilities of
a program’s output or its resource usage. Given the probabilities of the program’s in-
put, a deterministic program, and a set of output/resource usages, we want to analyze
the probability of this set. In general, it is not always possible to compute precise
probabilities, and our strategy is to apply different abstractions and compute a pair
of upper and lower bounds of the probabilities.

We (i) present a transformation-based probability analysis for discrete probabili-
ties yielding upper probability bounds of discrete output events, (ii) show how to ap-
ply the transformation-based probability analysis to resource instrumented programs
and obtain upper probability bounds of discrete resource events, and (iii) present two
approaches that reuse established non-probabilistic (forward or backwards) analyses
and obtain upper and lower probability bounds for the output events. Furthermore,
we (iv) present approaches to analyse non-deterministic and probabilistic programs;
that is, we identify properties that if established ensure that the programs may be
considered as functional, deterministic programs and are thereby amenable to apply
the presented approaches of (iii).





Abstract (Danish)

Denne afhandling analyserer sandsynligheder for forskellige hændelser relateret til
et programs udførsel. En hændelse kan være bestemte output eller ressourceforbrug.
Givet et deterministisk program, sandsynlighederne for programmets input, samt en
gruppe af hændelser, det vil sige mængder af output eller ressourceforbrug, vil vi
analysere sandsynlighederne for disse hændelser. Det er ikke altid muligt at beregne
præcise sandsynligheder men ved at bruge forskellige abstraktioner kan vi beregne
øvre og nedre grænser for hændelsernes sandsynligheder.

Vi præsenterer først en transformationsbaseret sandsynlighedsanalyse for diskrete
input-sandsynligheder, der giver øvre sandsynlighedsgrænser for diskrete outputhæn-
delser. Derefter viser vi hvordan man kan anvende denne transformationsbaserede
sandsynlighedsanalyse på ressource-instrumenterede programmer og derved opnå
øvre sandsynlighedsgrænser for diskrete ressourcehændelser. Herefter udvider vi
fokus til det mere generelle tilfælde hvor programmernes input-sandsynlighederne
ikke er begrænsede til det diskrete tilfælde. Vi præsenterer to metoder, der gen-
bruger etablerede ikke-probabilistiske (forlæns eller baglæns orienterede) analyser
til at beregne øvre og nedre sandsynlighedsgrænser for output-hændelserne. I den
sidste del præsenterer vi forskellige tilgange til at analysere ikke-deterministiske og
probabilistiske programmer. Målet her er således at identificere egenskaber, der, hvis
de etableres, sikrer, at programmerne kan betragtes som funktionelle, determinis-
tiske programmer og at man derved f.eks. kan anvende de to metoder, der genbruger
eksisterende analyser.
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1

Introduction

In this thesis, we will develop static analyses that infer information about the prob-
abilities of a program’s output or its resource usage. We want to answer questions
such as “what is the probability that a given program yields a result between 0 and
10?” and “what is the probability that a given program uses more than 10 resource
units, e.g., time steps, before it stops?”.

In the following, we will introduce the necessary concepts such as program se-
mantics, properties, and probabilities. Afterwards, we will formulate the challenge of
the thesis and describe the approaches that we take; the descriptions include pointers
to their respective chapters. Then, we outline the research fields that form the basis
of this thesis, and finally, we provide a list of our key contributions together with
references to the related articles in which they are published.

1.1 Basic concepts of thesis

In this thesis, we consider the semantics of a program prg, namely |prg|, to be a
relation between input X and output Y , i.e., a set of input-output pairs |prg| ⊆ X ×
Y . For the special case where the program is instrumented with a resource model,
the program semantics is a relation between input and output together with resource
usage, a value from R, i.e., a set of pairs |prg| ⊆ X × (Y ×R). For a deterministic
program, the input-output relation is functional, i.e., each input is related to at most
one output. Programs that terminate for all inputs x ∈ X define total relations, i.e.,
each input relates to at least one output. Depending on the analysed language, Y
could contain special elements for program results that are not per se outputs, for
instance, error or nontermination.

An input property is a subset of the input X , an output property is a subset of
the output Y , and a resource property is a subset of the resource usage R. The input
properties and output/resource properties are related through the program relation;
each output/resource property A has a pre-image pre |prg|(A), i.e., the set of inputs
that relate to an output occurring in A, pre |prg|(A) = {x | ∃y ∈ A : (x, y) ∈ |prg|}.
Moreover, every input property A has an image img |prg|(A), i.e., the outputs that are
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related to some element in A, img |prg|(A) = {y | ∃x ∈ A : (x, y) ∈ |prg|}. See
Figure 1.1 for examples of pre-images and images.

x

y

X

a

b

Y

|prg|

(a) pre|prg|

x

y

X

a

b

Y

|prg|

(b) img |prg|

Fig. 1.1: The diagrams (arrows) depict the same total function |prg| from the input set X =
{x, y} and to the output set Y = {a, b}. A color indicates the pre-image (a) and
respectively the image (b) of the singleton event with the same color. For instance,
in (a), the blue output event {a} has the blue input event {x, y} as the pre-image
pre |prg|({a}) = {x, y}. Note that the pre-image of the green output event {b} is the
empty input event.

It may be the case that some inputs are more likely to be fed to the program;
this can be described using probabilities. For the purpose of this thesis, an event
is a property, namely, a set of inputs or outputs. Informally, a probability measure
describes “the chance that a given event will occur” [90]; a probability measure over
a set is a mapping from subsets of the set, the events, to their probability. In case there
is a countable set (finite or infinite) with probability 1, a probability distribution, i.e.,
a mapping from each individual element to its probability, suffices.

The probability of an output (or resource) property depends on (i) the pre-image,
specifying which input leads to the output (or resource) property, and (ii) the proba-
bility that those inputs are fed to the program. To describe this, we define a function
Pprg = λµ.λA.µ(pre |prg|(A)), where µ is a probability measure over input events
and A is an output event; if |prg| ⊆ X × Y is a total function, i.e., the program prg

is deterministic, pre |prg| is the programs pre-image function, and µX is a probability
measure over X , then P|prg|(µX) can be shown to define a probability measure over
output properties. However, more generally, when |prg| is a total relation, for in-
stance, when the program prg is nondeterministic, then Pprg(µX) is in general non-
additive1 and, thus, is not a probability measure, as demonstrated in Example 1.1.
Instead, P|prg|(µX)(A) gives an upper bound of the probability that the output event
A occurs.

Example 1.1. Let µX be a discrete probability measure defined by µX({x}) = 70%
and µX({y}) = 30%. Let prg′ be a nondeterministic program as defined in Fig-

1 A function f from a power set to the reals is additive if and only if, for all disjoint sets A
and B, f(A ]B) = f(A) + f(B); otherwise, f is non-additive.
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ure 1.2a, where |prg′| is a total relation with the pre-image function pre |prg′|. The
upper probability bound function of prg′, namely, Pprg′(µX), yields the bounds
given in Figure 1.2b; here, the fact that Pprg′(µX)({a}) + Pprg′(µX)({b}) 6=
Pprg′(µX)({a, b}) shows that Pprg′(µX) is non-additive and, thus, is not a proba-
bility measure.

x

y

X

a

b

Y
|prg′|

(a)

Pprg′(µX)

∅ 0%

{a} 100%

{b} 30%

{a, b} 100%

(b)

Fig. 1.2: (a): The relation |prg′| is a total relation. (b): The discrete probability measure µX
is defined by µx({x}) = 70% and µx({y}) = 30%, and Pprg′(µx) defines upper
probability bounds of the output events of |prg|.

The function Pprg is a special case of a more general formulation P ′|prg| of the
upper probability bounds; the upper probability bound of an output event depends on
(i) the inputs that may lead to the output and (ii) the probability that those inputs are
fed to the program. We let pre]|prg| be a function that relates to the pre-image pre |prg|
such that pre |prg|(A) ⊆ pre]|prg|(A) and use that to define the more general P ′|prg| =

λµ.λA.µ(pre]|prg|(A)). There exists a P ′|prg| for each pre]|prg|. Such a P ]|prg|(A) =

P ′|prg|(µX)(A) can be shown to be an upper bound of the probability that the output

event A occurs. Each P ]|prg| determines not only the upper probability bounds of the
output properties but also, as we will show in Theorem 5.10, their lower probability
bounds; it defines a function P [|prg|, i.e., P [|prg|(A) = 1 − P ]|prg|(A

{) from output
events to their lower probability bounds. When |prg| is total, P [|prg|(A) can be shown

to be the probability of the dual2 (approximated) pre-image pre]|prg|(A), namely,

p̃re
{]
|prg|(A). For a functional and total |prg| whereby pre]|prg| = pre |prg|, P

[
|prg| =

P ]|prg| is a probability measure.
A formal introduction to probability measures/distributions and inferences over

functions will be given in Chapter 2.

2 Two functions f, f̃ : ℘(X)→ ℘(Y ) are dual if and only if f̃(A) = f(A{)
{
.
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1.2 Background and contributing fields

Related work is commented on and discussed when relevant throughout the chapters;
see Chapters 3.8, 4.7,6.8, 7.6, and 8.4. Here, we summarize the four fields of research
that form the background to the results presented in the thesis.

• One of the pillars is static analysis, which is analysis performed without execut-
ing the programs. A framework to describe such analysis is abstract interpreta-
tion [28, 29], which was introduced by Cousot and Cousot in 1997; correspond-
ing subfields are cost analysis [6, 87] and complexity analysis [116, 141].
• Another foundation on which this thesis builds is probability theory, e.g. [72,

119], providing us with a “language” with which we can describe how often
events occur. Probability theory can be dated back to the 16th century, but the
modern definition using measurable spaces was formulated by Kolmogorov3 in
1933 [81]. This theory relies on set theory, e.g. [73] In contrast to precise prob-
abilities, the field of imprecise probabilities, e.g. [10, 49, 140, 147], generalizes
probability theory so that we may approximate a probability measure by, for
instance, sets of probability measures.

• The following fields build on both of the above fields; probabilistic seman-
tics [42, 82], i.e., semantics of programs that may contain random generators,
and probabilistic analysis [4, 33, 41, 95, 120], which can be used to analyse such
programs.

• The field of term rewriting systems, e.g. [5, 11, 34, 70, 105, 137], forms the basis
for both the transformation-based nondeterministic language constraint handling
rules [1, 2, 54, 55] and probabilistic abstract reduction systems [20], which of
course also builds on probability theory.

The relations of the fields listed above to the individual chapters are summarized in
Figure 1.3.

1.3 Challenge and Approaches

Thesis challenge:

Given a deterministic program, a probability measure over the program in-
puts and an output/resource property, we want to analyse the probability
of the output/resource property. In addition, we want to examine practical
approaches to create such probabilistic analyses.

We focus on deterministic programs, but even for this class of programs, the proba-
bilities of output properties are uncomputable in general, i.e. it is not always possible
to compute a single probability measure for the desired output properties. Our strat-
egy for attacking this problem is to introduce various abstractions and compute an
upper bound u and lower bound l for each output or resource property A ⊆ Y , re-
spectively A ⊆ R. In practice, we compute a function from events to a pair of upper
3 Kolmogorov published in German under the name Kolmogoroff.
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static analysis

abstract interpretation

complexity & cost
analysis

probabilistic
analysis

probability theory

chapter 3 &
chapter 4

chapter 5

functional and
relational semantics

term rewriting systems

constraint handling rules probabilistic abstract
reduction systems

chapter 7
chapter 6

Fig. 1.3: Overview of the research fields that this thesis builds on.

and lower probability bounds f(A) = (l, u) and let it define a set of probability mea-
sures, namely, {µ | µ is a prob. measure ∧ ∀A : f(A) = (l, u) ⇒ l ≤ µ(A) ≤ u}.
We can always derive upper or lower bounds alone and simply consider the lower or
upper bound, respectively, to be 0 or 1, respectively.

1.3.1 Thesis Outline

Discrete output probability distributions. In Chapter 3, we address discrete input and
output measures that are perhaps parametrized, e.g. a uniform distribution between
0 and a natural number n. For a given output event A, we express Pprg(µ)(A) as the
sum of probabilities of all inputs that the program relates to the output, and we ap-
proximate it by manipulating and transforming this sum-expression or parts of it. The
analysis stops when it reaches a closed-form expression, which in our case means
an expression without summations, products or recursive expressions. The analy-
sis draws upon recurrence equation methods known from resource analysis [109]
and uses the computer algebra system Mathematica [146] to handle summations and
products symbolically. The analysis yields upper probability bounds.

Discrete resource probability distributions. In Chapter 4, we apply these ideas to ob-
tain a discrete probabilistic resource analysis that derives upper probability bounds
for the resource usage of deterministic and terminating programs. First, we instru-
ment the programs with a discrete and deterministic resource model and slice the
program to output only resource usages. Then, we apply the previously developed
probabilistic output analysis to obtain upper probability bounds for the resource us-
age. The model used in the examples describe the step counters.
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Output probability measures. In Chapter 5, we take a step back and return to the
general case wherein the input is described by a probability measure. We consider
using established methods that provide over-approximations of the program’s pre-
image or image relation and present simple techniques that derive both upper and
lower probability bounds for the output properties. Current analyses often provide a
monotone function that we can use to define either a pre-image over-approximating
function, i.e., backwards analysis, or an image over-approximating function, i.e., a
forward analysis.

We show that an over-approximation of the pre-image pre](A) of an output event
A may be used to define a pair of upper and lower bounds in the same manner as
P ]|prg| and P [|prg|. The input set pre](A) of an output event A may not be an input
event, i.e., µX may be undefined for this set, and we cannot use it to define P ′|prg|.
Therefore, we introduce an abstraction ↑ that maps the input sets to input events (for
which µX is defined) such that pre](A) ⊆ ↑pre](A), and we let ↑ ◦ pre] define
P ′|prg| = λµ.λA.µ((↑ ◦ pre])(A)). This method requires a re-computation for each
input probability measure and for each output property in which we are interested.

When the analysis instead provides a function img] that over-approximates the
images, i.e., img(A) ⊆ img](A), we can indirectly determine a computable pre-
image over-approximation pre] and apply the “backwards” method. We recall that
the image over singletons defines the program relation, which in return defines the
pre-image, i.e., pre(A) , {x ∈ X | img({x}) ∩ A 6= ∅}; a function that over-
approximates the images img] defines an over-approximation of the pre-image pre]

in the same way, i.e., pre](A) , {x ∈ X | img]({x}) ∩ A 6= ∅}. However, the
input set may be infinite or insufficiently large such that a computation of such a pre-
image over-approximation becomes intractable. In these cases, we instead suggest
using a partition4 T of the inputs X and defining a (perhaps less accurate) over-
approximating pre-image of an outputA as the set of partition elements whose image
overlaps with A, i.e., pre][T ](A) ,

⋃{t ∈ T | img](t) ∩A 6= ∅}.
We exemplify how to apply the method for the forward analysis and illustrate

how the choice of the partition impacts the precision and computation cost; for this,
we use two well-known analyses: a sign analysis and an interval analysis.

1.3.1.1 Other Directions

We have previously focused on deterministic programs, and in this section, we
broaden the perspective to programs that are not necessarily deterministic yet still
have a functional input-output relation. When programs have functional input-output
relations, we can re-use the framework discussed above, and we may, for instance,
apply the methods discussed in Chapter 5 to infer probability bounds for their output
properties.

Proving Confluence. Hence, we focus on proving program properties that ensure
that the program semantics (or an abstraction thereof) is a total function. We draw

4 A partition over a set X is a set of pairwise disjoint subsets of X that covers X .
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on proof methods from Term Rewriting Systems and, more generally, Abstract Re-
duction Systems. Specifically, we make use of variations of the important property
confluence, which is the property whereby, for each state that can reduce into differ-
ent states, there exist another state to which all these reductions may lead. For ter-
minating programs, confluence implies that all alternative program runs for a single
input lead to the exact same output, ensuring a total and functional program rela-
tion. Furthermore, for terminating Term Rewriting Systems, this has been shown to
be decidable [70], i.e. there exists a terminating algorithm that can correctly decide
whether a program is confluent. In the following, we will build on these results.

Confluence modulo equivalence in terminating and nondeterministic programs. In
Chapter 6, we address terminating nondeterministic programs in the form of pro-
grams written in Constraint Handling Rules (CHR), a nondeterministic committed-
choice language [54, 55]. By definition, any program has a total and functional pro-
gram relation if, for any single input, all alternative program runs lead to an output
and always to the same output, e.g. the program is terminating and confluent. Con-
fluence has also been shown to be decidable for terminating CHR programs [1].
Here, we will focus on a more general type of confluence, where “the same output”
may be different but equally acceptable, e.g. a set may be represented by any list
containing the set elements. Such nondeterministic programs, which are intended to
compute any of the equally acceptable results, are typically not confluent but may yet
be confluent modulo an equivalence (tailored for the given program). For terminating
programs, a program is confluent modulo equivalence if all alternative program runs
for the same input only lead to outputs that are equivalent.

In the context of probabilistic analysis, the outputs are abstracted into non-
overlapping sets of equivalent output, and confluence modulo equivalence implies
a functional relation from input to these sets of outputs. In case the output prop-
erties of interest can be constructed by a union of these sets/events, there exists a
probability measure over these output properties.

Almost-sure convergence in nonterminating probabilistic programs. In Chapter 7,
we focus on a different set of programs, namely, nonterminating probabilistic pro-
grams, here in the form of Probabilistic Abstract Reduction Systems. A probabilistic
program can be seen as a nondeterministic program whereby the nondeterministic
behavior is always constrained by a probability. The semantics of a probabilistic pro-
gram is, in general, a relation, where for each input there exists a (sub-)probability
measure5 over its related output events ; we call such a measure the related output
measure. When an input yields a nonterminating computation, its related output mea-
sure is a sub-probability measure, and when it yields only terminating computations,
its related output measure is a probability measure. In short, the probability of an out-
put event depends on not only (i) the inputs that may lead to the output event and (ii)
the probability measure over input but also (iii) each inputs’ related output measure.
For instance, for the discrete case, the probability of an output event A is a sum over
all inputs in the pre-image of A, namely, pre |prg|(A), where the input probability of

5 A sub-probability measure is a measure with a positive total weight ≤ 1, e.g. a probability
measure is a sub-probability measure.
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each input µX({x}) is multiplied by its chance of reaching A as dictated by each
related output measure µx(A), i.e.

∑
x∈pre|prg|(A) µX({x}) · µx(A).

We look for program properties that ensure that the program semantics is total
and functional. Such a property is almost-surely convergence, that is, a program is
almost-surely convergent if for each input it reaches a unique output element with
probability 1. We prove that a program is almost-surely convergent if the program
is both confluent and almost-surely terminating, i.e. it terminates with probability
1. If a program is almost-surely convergent, then each input relates to one and only
one output with probability 1. Consequently, (i) the input-output relation must be
total since each input relates to an output, (ii) it must be functional since each input
relates to only one output, and (iii) all the related output measures are trivial prob-
ability measures where the output is reached with probability 1. Therefore, we may
ignore the related output measures and reduce the semantics of probabilistic almost-
surely convergent programs to total functions. Together, this ensures that Pprg yields
a probability measure over output events.

1.4 Contributions

The key contributions of this dissertation are as follows:

• We design an automatic discrete probabilistic output analysis for simple func-
tional programs with a fixed and perhaps parametrized input probability distri-
bution. The analysis results in a function from output elements to their upper
probability bound.

Published in
[118] M. Rosendahl, M. H. Kirkeby. Probabilistic Output Analysis by Pro-
gram Manipulation. Electronic Proceedings in Theoretical Computer Science,
194(318337):110–124, 2015

• Based on this probabilistic output analysis, we present a discrete probabilistic
resource analysis for C-like programs. Assuming a discrete resource model and
an input probability distribution, we first instrument the C-like program with
the resource model, slice the instrumented program with respect to the resource
usage and translate the sliced program into the functional language. Then, we
apply the discrete probability output analysis to the now resource-computing
functional program and the input probability distribution. The analysis returns a
function from the resource properties of the given program to their upper proba-
bility bounds.

Published in
[78] M. H. Kirkeby, M. Rosendahl. Probabilistic resource analysis by program
transformation. M. van Eekelen, U. Dal Lago, redaktorzy, Foundational and
Practical Aspects of Resource Analysis: 4th International Workshop, FOPARA
2015, London, UK, April 11, 2015. Revised Selected Papers, strony 60–80,
Cham, 2016. Springer International Publishing
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• We present two techniques, which given an existing input-output analysis and
a probabilistic input measure provide upper and lower probability bounds for
the output events. One technique covers backwards analysis, and one technique
covers forward analysis. We prove the correctness of both and demonstrate the
forward analysis via three case studies, one being interval analysis. When com-
paring our results with cutting-edge probabilistic analyses that can analyse both
probabilistic programs, e.g. programs with random generators, and determinis-
tic programs, we see that, for deterministic programs, this new technique yields
results that are as good or better.

• We present approaches to the analysis of non-deterministic and probabilistic pro-
grams. In particular, we identify the properties of confluence modulo equiva-
lence and almost-sure convergence, which if established allow such programs to
be treated as functional, deterministic programs, hence being amenable to the
analyses outlined above.

Published in the following articles.
[77] M. H. Kirkeby, H. Christiansen. Confluence and convergence in prob-
abilistically terminating reduction systems. Logic-Based Program Synthesis
and Transformation - 27th International Symposium, LOPSTR 2017, Namur,
Belgium, October 10-12, 2017, wolumen abs/1709.05123, 2017. (accepted for
publication)

[25] H. Christiansen, M. H. Kirkeby. Confluence Modulo Equivalence in Con-
straint Handling Rules. wolumen 8981, strony 41–58. Springer International
Publishing Switzerland, 2015





2

Probabilities and other prerequisites

In this chapter, we give a formal introduction to probability distributions and mea-
sures to describe the probability of input events. Then, we describe how to infer out-
put probability distributions and measures via program relations when these describe
a function. Both of these sections introduce standard probability theory, e.g. [59]. Fi-
nally, we introduce abstract interpretation [28, 29], i.e., a framework for constructing
program analyses.

For the definitions of relations and functions and their properties, we refer to
Appendix A. It is important to emphasize that functions are assumed total. We will
start with some notation:

℘(X) denotes the power set of the set X , i.e. the set of all subsets of X . The set X
is the base of the power set.

A1, A2, . . . Ak denotes a finite series of k elements.
A1, A2, . . . denotes a countable infinite series.
A{ denotes the complement of A with respect to some set, which will be clearly

indicated in the context.

2.1 Probabilistic Measures and Distributions

For programs over integers (or any other countable set), we can use a special func-
tion, namely, a probability distribution, to describe the probability that each integer
will be fed to the program.

Definition 2.1. A probability distribution is defined by a function P : X → [0, 1]
over a countable set X for which

∑
x∈X P (x) = 1.

In the following, we describe σ-algebras and measurable spaces, which are the event
spaces that measures and, thus, probability measures are defined over. Probability
distributions and probability measures are related in that a probability distribution
uniquely describes a family of probability measures with similar behavior but differ
in the set of events for which they are defined (see Proposition 2.20).
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Definition 2.2. A σ-algebra X is a non-empty subset of ℘(X) that is closed under
countable unions and complements, i.e. if A1, A2, . . . ∈ X , then

⋃∞
n=0An ∈ X , and

if A ∈ X , then A{ ∈ X .

Example 2.3. The sets {∅, {x, y}} and {∅, {x, y}, {x}, {y}} are σ-algebras, whereas
neither {∅, {x, y}, {x}} nor {{x}, {y}} are.

Let X be a non-empty set; then, {∅, X} is a σ-algebra. This type of σ-algebra is
often referred to as the trivial σ-algebra of X .

Proposition 2.4. If X is a σ-algebra over X , then X ∈ X and ∅ ∈ X
Proof. A σ-algebra is non-empty, thus, there is an A ⊆ X , such that A ∈ X . By
the definition of σ-algebras, A ∈ X ⇒ A{ ∈ X ⇒ A{ ∪ A ∈ X ⇒ X ∈ X , and
furthermore, X ∈ X ⇒ ∅ ∈ X .

Proposition 2.5. A σ-algebra X is closed under countable intersections, i.e. if
A1, A2, . . . ∈ X , then

⋂∞
n=0An ∈ X .

Proof. By the definition of the σ-algebra, An ∈ X ⇒ An
{ ∈ X ⇒ ⋃∞

n=0An
{ ∈

X ⇒
(⋃∞

n=0An
{
){
∈ X and by de Morgans law

(⋃∞
n=0An

{
){
∈ X ⇔

⋂∞
n=0

(
An

{
){
∈ X ⇔ ⋂∞

n=0An ∈ X .

Lemma 2.6. Let X be a set, and let C be a collection of σ-algebras over X; then,⋂
C is a σ-algebra over X .

Proof. The proof is nearly trivial using the definitions of the σ-algebra and intersec-
tion, i.e., A ∈ ⋂C ⇔ ∀X ∈ C : A ∈ X ; only the first axiom deviates. non-empty:
By Proposition 2.4, ∀X ∈ C : X ∈ X ; thus, ∀X ∈ C : X ∈ X ⇒ X ∈ ⋂C.
closed under complements: A ∈ ⋂C ⇒ ∀X ∈ C : A ∈ X ⇒ ∀X ∈ C : A{ ∈
X ⇒ A{ ∈ ∩C closed under countable union: A1, A2, . . . ∈

⋂
C ⇒ ∀X ∈

C : A1, A2, . . . ∈ X ⇒ ∀X ∈ C :
⋃∞
n=1An ∈ X ⇒

⋃∞
n=1An ∈

⋂
C

Definition 2.7. Given a collection of sets A ⊂ ℘(X), the σ-algebra generated by A,
written σ(A), is the intersection of all σ-algebras containing A.

When A is a collection of pairwise disjoint sets, constructing σ(A) amounts to clos-
ing A under countable unions; in case A is also finite σ(A) is the power set of A,
i.e. σ(A) = ℘(A).

Example 2.8. The σ-algebra generated by A = {[−2, 0), [0, 0], (0, 2]} is
σ(A) = {∅, [−2, 0), [−2, 0], [0, 0], (0, 2], [0, 2],

(
[−2, 0) ∪ (0, 2]

)
, [−2, 2]}.

Defining the probability of an event requires the event to be measurable, i.e. it occurs
in the σ-algebra.

Definition 2.9. A measurable space is a pair (X,X ) whereby the sample space X
is a set and X ⊆ ℘(X) is a σ-algebra. The elements of X are called events or
sometimes measurable subsets of X .
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Probability measures are a special type of the more general measures. Naturally,
every property of measures holds for probability measures.

Definition 2.10. A measure µ on a measurable space (X,X ) is a function µ : X →
R+ that is countably additive, i.e. for every countable set of pairwise disjoint sets
A1, A2, . . . ∈ X , µ(∪∞i=1Ai) =

∑∞
i=1 µ(Ai), and µ(∅) = 0.

Proposition 2.11. A measure µ : X → R+ is monotone, i.e., A ⊆ B ⇒ µ(A) ≤
µ(B), whenever A,B ∈ X .

Proof. Let A,B ∈ X and A ⊆ B; then, B = (B \ A) ] A, implying µ(B) =
µ((B \A) ]A) = µ(B \A) + µ(A) ≥ µ(A) by additivity and µ(B \A) ∈ R+.

Definition 2.12. A measure space (X,X , µ) is a measurable space (X,X ) with a
measure µ on it.

Definition 2.13. Given two measurable spaces (X,X , µX ) and (Y,Y, µY), their
product measure is (X × Y, σ(X × Y), µ) where µ(A × B) = µX (A) · µY(B)
for all A ∈ X and B ∈ Y .

Definition 2.14. A measure µ on a measurable space (X,X ) is discrete if its weight
is on at most countably many elements, i.e. there exists a countable set A ∈ X such
that µ(A) = µ(X), and continuous if the weights of all countable sets are 0, i.e.
µ(A) = 0 for all countable sets A ∈ X .

Every measure can be uniquely represented by the sum of a discrete measure and a
continuous measure.

Definition 2.15. A measure µ on (X,X ) is a probability measure if µ(X) = 1, and
it is a sub-probability measure if µ(X) ≤ 1.

Proposition 2.16. Let µ be a probability measure on (X,X ); then, µ(A) = 1 −
µ(A{).

Proof. Let A ∈ X ; then, A{ ∈ X by definition of σ-algebras and A ] A{ = X by
definition of complement. Since µ is countably additive, we obtain µ(A)+µ(A{) =
µ(A ] A{) = µ(X), and by Definition 2.15, we have µ(X) = 1. Thus, µ(A) +
µ(A{) = 1, which is equal to µ(A) = 1− µ(A{).

Example 2.17. Let us define a continuous sub-probability measure µc over all
open/closed/half-open intervals1 over the extended reals R,i.e. R = R ∪ {−∞,∞}
so that it has a total weight of 1/2, i.e. µc(R) = 1/2. We use a special σ-algebra,
namely, the Borel σ-algebra, written B(R), which contains all these real intervals
and may be generated by the open sets of reals; thus, (R,B(R), µc). We define

1 Let a, b ∈ R. An open set (a, b) of reals is defined by (a, b) = {x | x ∈ R∧ a < x < b}.
A closed set [a, b] of reals is defined by [a, b] = {x | x ∈ R ∧ a ≤ x ≤ b}. A half-
open set (a, b] or [a, b) of reals is defined as [a, b) = {x | x ∈ R ∧ a < x ≤ b} or
(a, b] = {x | x ∈ R ∧ a ≤ x < b}, respectively.
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(R,B(R), µc), where we may define µc using an integratable function f , as

depicted in Figure 2.1a, so that µc([a, b]) =
∫ b
a
f(x)dx. f(x) =

{
1
8 , if x ∈ [−2, 2]
0, otherwise

,

e.g., µc((−3, 0)) = µc([−3, 0]) =
∫ 0

−3 f(x)dx = 1/4 and µc([−1,∞)) = 3/4.

Probability measures may be represented by probability distributions if their contin-
uous parts are 0.

Definition 2.18. A probability space (X,X , µ) is a measure space wherein the mea-
sure µ is a probability measure.

Example 2.19. We define a probability space ([−2, 2],X , µ) whereby the measure
µ = µd + µc; µd is a discrete sub-probability measure, and µc is the continuous
sub-probability measure from Example 2.17. Let X be the σ-algebra generated by
A = {[−2, 0), [0, 0], (0, 2]}, as in Example 2.8, and let µd be defined by µd(A) =



1
2 if 0 ∈ A
0 , otherwise.

. For instance, µ([−2, 0)) = 0.25 and µ([−2, 0]) = 0.75; see

Figure 2.1b for other examples. The measure µ has a total weight of 1 and is 0
for the empty set. For the A-elements, it is µ([−2, 0)) = 1/4, µ([0, 0]) = 0, and
µ((0, 2]) = 1/4; see Figure 2.1.

−2 −1 1 2

0.25

0.5

x

f(x)

(a)

−2 −1 1 2

0.25

0.5

[−2, 0) (−2, 0]

[0, 0]

(b)

Fig. 2.1: (a) The function f . (b) The measure µ of [−2, 0),[0, 0], and (0, 2].

Proposition 2.20. Let (X,X ) be a measurable space; then, a probability distribution
P : X → [0, 1] defines a (discrete) probability space (X,X , µ), where µ(A) =∑
x∈A P (x) whenever A ∈ X .

Proof. Countable additive: Since X is countable (by Def. 2.1), any single set
A ∈ X is countable. Thus, µ(A) =

∑
x∈A P (x). For a countable series of pair-

wise disjoint sets A1, A2, . . . ∈ X , we have µ(∪∞i=1Ai) =
∑
x∈(∪∞i=1Ai)

P (x) =∑∞
i=1

∑
x∈Ai

P (x) =
∑∞
i=1 µ(Ai). Measure of emptyset is 0: µ(∅) =∑x∈∅ P (x) =
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0 Non-negative: µ is non-negative since P (x) ≥ 0, and a sum of non-negative num-
bers is non-negative. Normalization: µ(X) =

∑
x∈X P (x) = 1 holds by Def. 2.1.

Discrete: the set X is countable and is in X (by Prop. 2.4), and µ(X) = 1 (by
normalization).

A probability distribution may define many measure spaces with similar behavior,
that is, one for each σ-algebra.

2.2 Inducing probabilities

With the formal definition of probability measures and distributions in place, we are
now ready to induce probability measures via a special class of functions, namely,
measurable functions.

In the introduction, we saw that the probability of an output event was defined
as the probability of its pre-image, and in the previous section, we saw that only
measurable events may be assigned a probability. Thus, the pre-image of every mea-
surable output event must be a measurable input event. This holds for measurable
functions, which in our case are the program semantics.

Definition 2.21. Let (X,X ) and (Y,Y) be measurable spaces. A function f : X →
Y is measurable if pref (B) ∈ X wheneverB ∈ Y , where the pre-image of f pref is
defined by pref (B) , {x ∈ X | f(x) ∈ B} and the image imgf (A) , {f(x) ∈ Y |
x ∈ A}. We may write f : (X,X )→ (Y,Y) when defining a measurable function.

Proposition 2.22. Let f : X → Y be a function, A,B ⊆ Y and A ⊆ ℘(Y ); then,
the following holds.

pref (
⋃

A∈A
A) =

⋃

A∈A
pref (A)

pref (
⋂

A∈A
A) =

⋂

A∈A
pref (A)

Proof. By definition of the pre-image, union and intersection, we obtain following.
union: x ∈ pref (

⋃
A∈AA) ⇔ f(x) ∈ ⋃A∈AA ⇔ ∃A ∈ A : f(x) ∈ A ⇔

∃A ∈ A : x ∈ pref (A) ⇔
⋃
A∈A(pref (A)). Intersection: x ∈ pref (

⋂
A∈AA) ⇔

f(x) ∈ ⋂A∈AA ⇔ ∀A ∈ A : f(x) ∈ A ⇔ ∀A ∈ A : x ∈ pref (A) ⇔ x ∈⋂
A∈A pref (A).

The probability of each output eventA is defined as the probability ofA’s pre-image;
they define a probability measure, namely, the output probability measure.

Lemma 2.23. Given a probability space (X,X , µ) and a measurable function
f : (X,X ) → (Y,Y), we define µf (A) , µ(pref (A)) whenever A ∈ Y . Then,
(Y,Y, µf ) is a probability space.
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Proof. To show that µf is a probability measure, we must show that it is a function
µf : Y → R+, where µf (∅) = 0, which is countable additive and has a total weight
of 1, i.e. µf (Y ) = 1:

1. a function µf : Y → R+: Since µ : X → R+ and pref : Y → X , their function
composition µ ◦ pref : Y → R+.

2. µf (∅) = 0: µf (∅) = µ(pref (∅)) = µ(∅) = 0.
3. countably additive: Let B1, B2, . . . ∈ Y be a countable series of pairwise dis-

joint sets; then, µf (
⋃∞
i=1Bi) = µ(pref (

⋃∞
i=1Bi))

(∗)
= µ(

⋃∞
i=1 pref (Bi))

(∗∗)
=⋃∞

i=1 µ(pref (Bi)) =
⋃∞
i=1 µf (Bi) where (∗) is because the pre-images are

continuous and (∗∗) because the probability measure µ is countably additive.
4. has a total weight of 1: µf (Y ) = µ(pref (Y )) = µ(X) = 1 where pref (Y ) =
X since f is total.

Definition 2.24. Given two probability spaces (X,X , µ) and (Y,Y, µf ) and a mea-
surable function f : (X,X ) → (Y,Y), µf is the output probability measure of f
(with respect to µ) if µf (A) = µ(pref (A)) : ∀A ∈ Y .

For the special case whereby the input probabilities are described by a probability
distribution P : X → [0, 1] and f is a function from X to another countable set Y ,
the output probabilities define a probability distribution.

Lemma 2.25. Given a probability distribution P : X → [0, 1] and a function
f : X → Y where Y is countable, Pf is a probability distribution when defined
as Pf (y) ,

∑
x∈pref (y)

(P (x)) whenever y ∈ Y .

Proof. Countability: by assumption Sum to 1: In the following, (∗) is obtained be-
cause the elements of {pref (y)|y ∈ Y ∧ pref (y) 6= ∅} are pairwise disjoint since
f is a function, and their union equals X since f is total; (∗∗) is because P is a
probability distribution.

∑

y∈Y
Pf (y) =

∑

y∈Y

∑

x∈pref (y)

P (x)
(∗)
=
∑

x∈X
P (x)

(∗∗)
= 1.

Definition 2.26. Given a probability distribution P : X → [0, 1] and a function
f : X → Y where Y is countable then Pf is the output distribution of f with re-
spect to P when defined by Pf (y) ,

∑
x∈pref (y)

(P (x)) whenever y ∈ Y .

In the previous section, we saw that each probability distribution uniquely defines a
probability measure. The input probability distribution both defines an input proba-
bility measure and infers an output probability distribution via a function; when the
function is measurable, we can show that the output probability distribution defines
the output probability measure (with the appropriate measurable space).

Lemma 2.27. Let f : (X,X )→ (Y,Y) be a measurable function, and let the proba-
bility distribution P : X → [0, 1] define the discrete probability space (X,X , µ) and
infer the output distribution Pf of f w. r. t. P , which defines the discrete probability
space (Y,Y, µf ). Then, µf is the output probability measure of f with respect to µ.
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Proof. To show that µf is the output probability measure of f w. r. t. µ, we show that
µf (A) = µ(pref (A)) and simply note that pref (A) ∈ X since f is measurable by.
To show that µf (A) = µ(pref (A)), we use Lemmas 2.20 and 2.25:

µf (A)
2.20
=
∑
y∈A Pf (y)

2.25
=
∑
y∈A

∑
x∈pref (y)

P (x)

=
∑
x∈{pref (y)|y∈A} P (x) =

∑
x∈pref (A) P (x)

2.20
= µ(pref (A)).

2.3 Abstract Interpretation

Abstract interpretation [28, 29] is a framework for constructing program analyses
based on approximating the semantics of the language in which the program is writ-
ten. The construction of an analysis involves the specification of the concrete and
abstract semantics as follows.

A pair (L,vL) is a partially ordered set or a poset if L is a set and vL is a
partial order, i.e., reflexive, transitive and anti-symmetric. A complete lattice is a
poset (L,vL) with a meet operator u and a join operator t in which each subset
S ⊆ L has a least upper bound

⊔
S and greatest lower bound

d
S. Furthermore,

⊥ =
⊔ ∅ = d

L is the least element, and > =
d ∅ = ⊔L is the greatest element.

The concrete semantics of a program is defined over a concrete domain, i.e., a
complete lattice (L,vL), and the abstract semantics of a program is defined over
an abstract domain, i.e., a complete lattice (M,vM ). The program semantics is
described by a concrete transformer, i.e., a monotone function f : L → L, and by
an abstract transformer, i.e., a monotone function g : M → M . The two domains
are connected by a pair of functions: abstraction α : L → M and concretization
γ : M → L. The pair (α, γ) is a Galois connection if ∀l ∈ L and ∀m ∈ M we have
that α(l) vM M ⇔ l vL γ(M). An abstract transformer g is an abstraction of a
concrete transformer f if (f ◦ γ)(m) vL (γ ◦ g)(m) whenever m ∈M .

An archetypal example of an abstract interpretation is interval analysis. Here, the
concrete domain is ℘(R) with set inclusion as partial order, and the abstract domain
is the set of real intervals I = ⊥ ∪ {(x, y) | x, y ∈ R, x < y} with containment
as partial order, i.e., (x1, y1) v (x2, y2) if and only if x2 ≤ x1 ∧ y1 ≤ y2. The
abstraction α(∅) = ⊥; otherwise, α(S) = (min(S),max(S)) with min(R) = −∞
and max(R) =∞, and the concretization γ((x, y)) = {z | x ≤ z ≤ y}. This defines
a Galois connection. The domains are extended to tuples of elements of Rn and
In, respectively. The abstract transformer on intervals is constructed systematically
from the concrete operations. For example, we derive an abstract interval operation
+] : I ×I → I from its concrete counterpart + : ℘(R)×℘(R)→ ℘(R); that is, the
concrete addition A1+A2 = {a1+a2 | a1 ∈ A1, a2 ∈ A2} defines an abstract ditto
α(A1)+

]α(A2) = α(A1+A2) = (min(A1+A2),max(A1+A2)) = (min(A1)+
min(A2),max(A1) + max(A2)), i.e. (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).
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Discrete probabilistic output analysis

In this chapter, we focus on deterministic programs over countable input and repre-
sent the discrete input and output measures by probability distributions. These prob-
ability distributions may be parameterized, e.g. a uniform probability distribution
between 0 and a natural number n. For a given output event A, we express its proba-
bility (using Definition 2.26) as the sum of probabilities of all inputs that the program
relates to the output. Then, we infer an upper probability bound by manipulating and
transforming this sum-expression into a closed-form expression. A closed-form ex-
pression is computable (in a finite number of steps) and may not contain infinite
sums or products; we ensure this by defining closed-form expressions to be expres-
sions without summations, products or recursive expressions. The analysis draws
on recurrence equation methods known from resource analysis [109]. The analysis
yields upper probability bounds.

Notation and Terminology. An important difference in notation is the use of “over
approximation” and “under approximation”; in the following article, we use “an over
approximation” when referring to an upper bound of a function and “an under ap-
proximation” when referring to a lower bound of a function; see for instance Defini-
tion 3.4. Where we previously used f ] and f [ to refer to an upper and lower bound,
respectively, we will here use f and f , respectively.

Foreword. The remainder of this chapter – except for the afterword (Section 3.10)
– is published with minor corrections in article [118] M. Rosendahl, M. H. Kirkeby.
Probabilistic Output Analysis by Program Manipulation. Electronic Proceedings in
Theoretical Computer Science, 194(318337):110–124, 2015.

Abstract. The aim of a probabilistic output analysis is to derive a probability distribution of
possible output values for a program from a probability distribution of its input. We present a
method for performing the output analysis based on program transformation techniques. The
method generates a probability function as a possibly uncomputable expression and trans-
forms that into a closed-form expression. The probability functions are viewed as programs in
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a separate language in which they may be analysed, transformed, and approximated. We focus
on programs where the possible input follows a known probability distribution. Tests in pro-
grams are not assumed to satisfy the Markov property of having fixed branching probabilities
independently of previous history.

3.1 Introduction

The aim of a probabilistic output analysis (POA) is to derive a probability distribution
for output values from a probability distribution for input to a program. The inter-
nal properties of a program can also be analysed in this manner by instrumenting
programs with step counters for complexity analysis [116] or energy consumption
measures [86].

When analysing energy consumption, probability distributions may provide more
useful information than boundaries. Wierman et al. state that “global energy con-
sumption is affected by the average case, rather than the worst case“ [144]. In ad-
dition, in scheduling, “an accurate measurement of a tasks average-case execution
time (ACET) can assist in the calculation of more appropriate deadlines” [62]. For a
subset of programs, a precise average case execution time can be found using static
analysis [51, 57, 124]. In some cases, the POA delivers not only an accurate output
average but a more descriptive accurate output distribution. In other cases, the POA
must over-approximate the probability distribution, and the expected value (average
case result) will be approximated safely as a range. Another application area for
POA is in temperature management, where worst-case bounds are important [125].
Because POA return distributions, it can be used to calculate the probability of en-
ergy consumptions above a certain limit, thereby indicating the risk of over-heating.

The main contribution in this paper is to present a technique for probabilistic
analysis whereby the analysis is seen as a program-to-program translation. This
means that the transformation to closed form is a source code program transfor-
mation problem and not specific to the analysis. Any necessary approximation in
the analysis is also performed at the source code level. The technique also makes it
possible to balance the precision of the analysis against the brevity of the result.

The method in this paper is inspired by the techniques used in automatic com-
plexity analysis. Wegbreit’s Metric system [141] laid the ground work for many later
systems with an aim of deriving best-, worst- and average-case complexity measures.
Later works in this area have focused on worst-case complexity [8, 87, 116] with
advanced systems that can analyse realistic programs. The approach in this paper
uses an approach similar to [116] in that we derive the probability function without
approximations and introduce approximations only in the last phase. We transform
the original program into a program that computes the probability distribution. The
intermediate stage is then a potential subject of further analysis based on abstract
interpretation. This program can be analysed, transformed, and approximated. It is
thus an alternative to deriving cost relations directly from the program [8, 87] or
expressing costs as abstract values in a semantics for the language.
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As with automatic complexity analysis, the aim of probabilistic output analy-
sis is to express the result as a parameterized expression. The time complexity of a
program should be given as a closed-form expression in the input size, and for proba-
bilistic output analysis, the aim is to express the probability of the output values of the
program as a function in output values and input size or range. As a small example,
let us consider the addition add of two independent integer values x and y evenly
distributed from 1 to n. It is a tail-recursive program where the output distribution is
well-known to be a pyramid-shaped distribution. The input probability distributions
should also be expressed in the language, as they are part of the transformational
approach to obtain the output probability distribution.

add(x,y) = if(x=0) then y else add(x-1,y+1)
px(x,n) = if(x >= 1 and x <= n) then 1/n else 0
py(y,n) = if(y >= 1 and y <= n) then 1/n else 0

Our probabilistic output analysis returns a function describing the probability distri-
bution of the output:

padd(z,n) =
1/(n*n)*max(min(n,z-1) - max(1,z-n) + 1,0)

The analysis can also be used for more complex input distributions and programs, but
it will not always be able to reduce it to closed form. If this is not possible, we will
approximate the distribution and thus obtain an over-approximation of the extreme
cases and a range for the expected value. If the input values are not independent, we
can specify a joint distribution for the values. The values do not have to be restricted
to a finite range; however, for infinite ranges, the distribution would converge to zero
in the limit.

3.2 Probability distributions

The analysis presented here is based on using a discrete set of values for input and
output. The set will be finite or countable, and we will use discrete probability dis-
tributions. It is also possible to use an uncountable set of values or a combination
of discrete and continuous random variables if one uses cumulative probability mea-
sures in the analysis. This will be further discussed later in the paper.

We consider the input to a program as a discrete random variable; the input prob-
ability distribution is then a probability measure that assigns a value between 0 and
1 to an event of input having a given value. This is also often referred to as the prob-
ability mass function in the discrete case, and in the continuous case, one will use a
probability density function. We will use the phrase probability distribution to denote
mappings from single values (input or output) to a probability or number between 0
and 1, and we will use upper case P letters to denote such functions.

Definition 3.1 (probability distribution). For a countable set X , a probability dis-
tribution over X is a mapping PX : X → [0, 1], where
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∑

x∈X
PX(x) = 1

We define the output probability distribution for a program p in a forward manner.
It is the weight or sum of all probabilities of input values where the program returns
the desired value z as output.

Definition 3.2 (output probability). Given a program, p : X → Z, and a proba-
bility distribution over the input, PX , the probability distribution over the output,
Pp : Z → [0, 1], is defined as

Pp(z) =
∑

x∈X∧p(x)=z
PX(x)

Note that Kozen also uses a similar forward definition [83], whereas Monniaux con-
structs the inverse and expresses the relationship in a backward style [95].

Lemma 3.3. The output probability distribution, Pp : Z → [0, 1], satisfies

0 ≤
∑

z∈Z
Pp(z) ≤ 1

The program may not terminate for all input, and thus, the sum may be less than one.
If we expand the domain Z with an element to denote non-termination, Z⊥, the total
weight of the output distribution Pp would be 1.

Approximations of probability distributions. The output analysis cannot neces-
sarily derive the precise probability distribution. Various approaches to approxima-
tions of probability distributions have been proposed and can be interpreted as impre-
cise probabilities [4, 37, 46]. Dempster-Shafer structures [14, 61] and P-boxes [48]
can be used to capture and propagate uncertainties of probability distributions. There
are several results on extending arithmetic operations to probability distributions for
both known dependencies between random variables and when the dependency is
unknown or only partially known [16, 18, 113, 136, 145]. Algorithms for lifting ba-
sic operations on numbers to basic operations on probability distributions can be
used as abstractions in static analysis based on abstract interpretation. Our approach
defines an upper bound of the probability distribution. Later, we shall discuss this
representation with P-boxes, i.e. a pair of upper and lower cumulative probability
distributions.

Definition 3.4 (over- and under-approximation). Let Pp : Z → [0, 1] be a distri-
bution and P p, P p : Z → [0, 1] be functions; then,

• P p is an over-approximation of Pp if Pp(z) ≤ P p(z) ≤ 1, and
• P p is an under-approximation of Pp if 0 ≤ P p(z) ≤ Pp(z).

The aim of the probabilistic output analysis is to derive as tight approximations P
and P as possible.
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Lemma 3.5. Given an over- and under-approximation P p, P p : Z → [0, 1] of Pp,
their total weights will be bounded as

0 ≤
∑

z∈Z
P p(z) ≤ 1 and respectively 0 ≤

∑

z∈Z
P p(z) ≤ ∞

When P p = P p, the total weight for each function will be equal to the total weight
of Pp according to definition 3.4. For terminating programs, the total weight is 1.

Expected value. Provided that the output from the program is numerical, one may
be interested in the average output value of the program. In this context, this is the
expected value of the output distribution. If the program does not terminate for all
input, it is not clear how to define the expected value because non-termination may
indicate a possibly infinite output value. As part of the further analysis, we need a
guarantee that the program terminates. If the weight of P p is 1, then we know that
the program terminates for all possible input (i.e. input with probability greater than
zero).

Lemma 3.6. Let P p : Z → [0, 1] be an under-approximation of a probability distri-
bution Pp : Z → [0, 1]; then,

∑

z∈Z
P p(z) = 1⇒

∑

z∈Z
Pp(z) = 1

The expected value of the output distribution is defined as the weighted average of
the distribution.

Definition 3.7 (expected value). The expected value Ep of the output distribution
Pp : Z → [0, 1] is defined as

Ep =
∑

z∈Z
z · Pp(z)

If we cannot analyse the program precisely, we can use the over-approximation to
compute an interval for the expected value. We cannot use the approximation P p di-
rectly, as its weight is not necessarily 1. Using P p, we can create two new probability
distributions, each with a total weight of 1. One distribution favors the lower values,
and one distribution favors the higher values. These two distributions can then be
used to calculate a lower and upper bound for the expected values.

Definition 3.8 (expected value interval). For an over-approximation of a probabil-
ity distribution P p : Z → [0, 1], we first define over- and under-cumulative functions,
namely, F ↑p , F

↓
p : Z → [0, 1].

F ↑p (z) = min(
∑

v≤z
P p(v), 1)

F ↓p (z) = max(1−
∑

v≥z
P p(v), 0)
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Using these, we define over- and under-expected value (E↑p and E↓p ).

E↓p =
∑

z

z · (F ↑p (z)− F ↑p (dec(z)))

E↑p =
∑

z

z · (F ↓p (z)− F ↓p (dec(z)))

where dec(z) = max{v ∈ Z | v < z}.
Notice that an expected value based on an over-approximation of the cumulative
probability gives an under-approximation of the expected value. If the output space
Z is integers, then the dec function will simply subtract one from its argument.

Lemma 3.9 (expected value interval). For a terminating program, the expected
value can be approximated by an interval from the over-approximation of the prob-
ability distribution.

E↓p ≤ Ep ≤ E↑p

Externalise resource usage. The output analysis can be used to analyse internal
properties of the program provided these properties are externalised. As in automatic
worst-case complexity analysis [116], this may be done by instrumenting the pro-
gram with step counting information. Similarly, we might instrument programs with
energy consumption based on low-level energy models for operations [86] to be able
to analyse programs in terms of average energy consumption.

An operational or denotational semantics of a simple first-order functional pro-
gramming language would normally describe programs as mappings of input values
to output values. The time, space and energy required to perform the computation
would normally not be part of the semantics. The simplest form of a resource anal-
ysis is to count the number of basic operations that a computation would require.
An automatic complexity analysis [116] is then based on a semantics that has been
extended (or instrumented) with step-counting information so that the meaning of a
program is a mapping of input values to a tuple of the output and the number of steps.
If we write this semantics as an interpreter in the source language, we can convert
a program into a step-counting version of the program by partial evaluation. In this
way, the complexity analysis has been transformed into an output analysis of the pro-
gram. The aim of the complexity analysis is then to generate an under-approximation
of the (second component of the) possible output as a function of the size of the pos-
sible input. If we instrument the semantics with other types of resource information,
we can analyse programs with respect to these properties. Some automatic complex-
ity analysis systems are based on translating programs into cost relations [8] or cost
equations [87]. These approaches are then used as approximations of an instrumented
semantics that captures the cost of computations.

The challenge of approximation. The analysis of probabilistic behaviour intro-
duces some new challenges compared to worst-case analysis. It is well known that a
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function of expected values is not necessarily the same as the expected value of the
function. There are a number of other potential pitfalls when making approximations
in a probabilistic setting. One might assume that conditions in a program can be as-
signed a fixed probability of being true independently of previous execution paths
in the program. One might also assume that variables have independent probability
distributions. An unfortunate effect of using independence as an approximation is
that it tends to under approximate the extreme cases. In a throw of two dice, the sum
being 12 has probability 1/36 if we can assume independence. If (by some magic)
the dice always showed the same face, the probability increases to 1/6. The situation
is well-known in the insurance industry and for financial risk management (valua-
tion of derivatives), where one may want to over-approximate the risk of extreme
events when events are not guaranteed to be independent. One approach to handle
such situations is the use of copulas [17] and comonotonicity of probability measures
[38].

3.3 Transformation-Based Analysis

Our analysis is based on a small first-order functional language with a simple re-
cursive structure. The first step of the analysis is to translate programs into a new
language of probability distribution programs. We will then use analysis and transfor-
mation techniques to transform the probability distributions into closed form. Failing
that, we may approximate the distribution with an upper and lower approximation (P
and P ).

Programs have the form of a collection of functions

f1(x1, . . . , xn) = e1

...
fn(x1, . . . , xn) = en

The language uses a base set D of values for simple expressions, and functions in a
program denote mappings from tuples of values to values D∗ → D.

The base set of values will not be further restricted here nor do we specify the
exact set of basic operations in the language. The first function in the program is
called externally, and for that function, we have an input probability distribution Px
specified as a symbolic expression ex.

There are two forms of functions: non-recursive and recursive functions.

f(x1, . . . , xn) = if (b(x1, . . . , xn)) then g(x1, . . . , xn) else f(e1 . . . , en)

Non-recursive functions have right-hand sides that are built from simple opera-
tions, conditional expressions, and function calls to non-recursive and recursive func-
tions.
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3.3.1 Probability distribution program

When constructing the probability distribution program, in its raw form, we use two
new language constructs: Sums over the (possibly) infinite set of all input values
in D∗ and a constraint function C. The constraint function eases the handling of
boundaries and is defined as

C(condition) =

{
1 if condition = true

0 otherwise

This definition is related to the indicator function [101] or characteristic function for
memberships of sets. We also extend the language with a finite product construction
that will be used for unfolding the simple tail recursions.

The output distribution program is expressed in a language similar to the original
program but extended with two classes of functions: the original functions of type
D∗ → D and probability functions of type D∗ → [0, 1]. One of these functions will
be the output distribution function of type D → [0, 1].

The output probability distribution program is defined based on the program that
we want to analyse and a probability distribution over its input. The input distribution
is expressed as a program function

Px(x1, . . . , xn) = ex

from input to their probabilities. If the input-arguments are independent the function
can be written as a product of the probability distribution of each argument

Px(x1, . . . , xn) = Px1(x1) · · ·Pxn(xn)

The raw form of the probability distribution program is defined as follows. The
output distribution program Pf takes an output and returns the sum of all probabili-
ties of those inputs that the original program maps to the specified output. The output
probability distribution program Pf of the program function f1 is defined as follows.

Pf (z) =
∑

x1

· · ·
∑

xn

Px(x1, . . . , xn) · C(z = f1(x1, . . . , xn))

Px(x1, . . . , xn) = ex

f1(x1, . . . , xn) = e1

...
fn(x1, . . . , xn) = en

We interpret a probability distribution program as a program that can be transformed
and analysed. The second phase is to unfold function calls, and the following phase
is to attempt to remove the infinite summations. The aim of the subsequent trans-
formation stages is to remove the infinite summations from the program and, in the
process, the functions from the original program.
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3.4 Method

The analysis technique can be divided into two parts: the unfolding and the symbolic
summation. Unfolding replaces the recursive structures, function calls and condi-
tional expressions with semantically equivalent expressions that have a straightfor-
ward mathematical semantics.

3.4.1 Unfolding

In this phase, we unfold function calls in the program. We will introduce the central
transformation rules for unfolding calls into functions in the original program based
on the syntactical structure.

Function calls. Simple calls to functions can be unfolded directly. Calls to recursive
functions can be composed, but each call can be analysed separately by constructing
a joint input distribution function to the call. For such function calls, we rewrite the
program as follows:

∑

x1

· · ·
∑

xn

P (x1, . . . , xn) · C(z = f(e1, . . . , en))

=
∑

u1

· · ·
∑

un

Pc(u1, . . . , un) · C(z = f(u1, . . . , un))

The rewritten expression requires a new function Pc:

Pc(u1, . . . , un) =
∑

x1

· · ·
∑

xn

P (x1, . . . , xn) · C(u1 = e1) · · ·C(un = en)

Since we assume that the programs do not have unrestricted recursion, we will only
generate a bounded number of extra probability functions.

Conditional expressions. For conditional expressions, we use the following rule:
∑

x1

· · ·
∑

xn

P (x1, . . . , xn)·

C(z = if (b(x1, . . . , xn)) then f(x1, . . . , xn) else g(x1, . . . , xn))

=
∑

x1

· · ·
∑

xn

P (x1, . . . , xn)·

(C(b(x1, . . . , xn)) · c(z = f(x1, . . . , xn))+

C(¬b(x1, . . . , xn)) · c(z = g(x1, . . . , xn)) )

Unfolding recursion. For the simple tail recursion, we collect the probability of a
given result being returned after any number of recursive calls. The condition may
never evaluate to true for a certain input (non-termination), and in that situation, the
sum of output probabilities will be less than 1.
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The recursive functions have the form

f(x1, . . . , xn) = if (b(x1, . . . , xn)) then g(x1, . . . , xn) else f(e1 . . . , en)

and they should be analysed for all input probability distributions that we detect at
calls to these functions.

The transformation for the recursive form is
∑

x1

· · ·
∑

xn

P (x1, . . . , xn)·

C (z = if (b(x1, . . . , xn)) then g(x1, . . . , xn) else f(e1 . . . , en))

=
∑

x1

· · ·
∑

xn

P (x1, . . . , xn)·

∞∑

i=0

i−1∏

j=0

C(¬b(h(j, x1, . . . , xn))) · C(b(h(i, x1, . . . , xn)))

· C(z = g(h(i, x1, . . . , xn)))

where

h(i, x1, . . . , xn) = if (i = 0) then 〈x1, . . . , xn〉 else h(i− 1, e1, . . . , en)

In the transformed expression, we introduce two variables: i, which represents the
number of recursive calls, and j, which represents all previous recursions for the i
under investigation (when i is 0, the term

∏i−1
j=0 C(¬b(h(j, x1, . . . , xn))) evaluates

to 1). The new function h(i, x1, . . . , xn) describes the evaluation of the expressions
〈e1, . . . , en〉, i times. Only when the ith condition is true and all previous conditions
are false can the expression evaluate to a probability of greater than 0.

3.4.2 Symbolic summation

In the previous phase, we unfolded calls to functions in the original program. The
next phase uses algebraic transformation techniques to remove summations. The
transformations that we use are similar to those used in worst case execution-time
systems for solving recurrence equations [87, 117] or symbolic summation tech-
niques in loop-bound computations [80]. Some of the central transformation rules
that we use in this phase are listed below. In the following transformations, the ex-
pressions e1 and e2 are assumed not to contain the summation variable x.

∑

x

C(x = e1) · f(x) = f(e1)

∑

x

C(e1 ≤ x ≤ e2) = (e2 − e1 + 1) · C(e1 ≤ e2)

∑

x

x · C(e1 ≤ x ≤ e2) =
(
e2 · (e2 + 1)

2
− e1 · (e1 − 1)

2

)
·C(e1 ≤ e2)



3.5 Examples 29

One could also use computer algebra systems in the reduction process, but some of
the rules are quite specific to how we handle the boundaries of summations with the
special constraint function. There are a number of rules for combining products of
constraint functions and for splitting intervals into separate expressions.

C(e1 ≤ x ≤ e2) · C(e3 ≤ x ≤ e4) = C(max(e1, e3) ≤ x ≤ min(e2, e4))

C(max(e1, e2) ≤ e3) = C(e1 > e2)·C(e1 ≤ e3) + C(e1 ≤ e2)·C(e2 ≤ e3)

There are similar rules for removing the minimum function and for isolating vari-
ables in constraints.

There are also rules for the symbolic summation of certain infinite summations.
If a is an expression whereby 0 < a < 1, then we can simplify the expression as
follows:

∑

x

C(x ≥ 0) · ax =
1

(1− a)
∑

x

C(x ≥ 0) · x · ax =
1

(1− a)2 −
1

(1− a)

This rule is useful when some of the input to the program follows a geometric distri-
bution.

Px(x, n) = C(x ≥ 0) · 1
n
·
(
1− 1

n

)x

3.5 Examples

In the following, we calculate two examples using the rules from before; the exam-
ples contain a conditional branch and a recursion.

Max example. As a small example, let us look at the simple non-recursive program
max, which, given two values, returns the largest value This program is chosen be-
cause it only makes use of the symbolic summation rules and because the output fol-
lows a non-uniform distribution even if the input variables are uniformly distributed.
The program is defined as

max(x,y) = if (x>y) then x else y

The input probabilities are independent; each is a uniform distribution from 1 to n
and can be defined as

Px(x) =
1

n
· C(1 ≤ x ≤ n) and

Py(y) =
1

n
· C(1 ≤ y ≤ n)
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The following example uses the conditional transformation rule and the symbolic
summation rules.

Pmax(z) =
∑

x

∑

y

Px(x) · Py(y) · C(z = if (x > y) then x else y)

=
1

n2
·
( ∑

y

(
C(1 ≤ z ≤ n) · C(1 ≤ y ≤ n) · C(y ≤ (z − 1))

)

+
∑

x

(
C(1 ≤ x ≤ n) · C(1 ≤ z ≤ n) · C(x ≤ z)

))

=
1

n2
· (2z − 1) · C(1 ≤ z ≤ n)

Add example. The recursive addition function was used as an example in the in-
troduction. We shall see how the original program is inserted into the probability
formula, expanded and reduced to a closed-form function expressing the probability
distribution for the output. Recall the program

add(x,y) = if(x=0) then y else add(x-1,y+1)

and that we assume independence between the input variables; for the sake of sim-
plicity, we let both input variables x and y follow a uniform distribution from 1 to a
number n.

Padd(z) =
∑

x

∑

y

Px(x) · Py(y)·

∑

i=0

i−1∏

j=0

C(¬b(h(j, x, y))) · C(b(h(i, x, y))) · C(z = g(h(i, x, y))

where
b(x, y) = x = 0

g(x, y) = y

h(i, x, y) = if (i = 0) then 〈x, y〉 else h(i− 1, x− 1, y + 1)

= 〈x− i, y + i〉
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Padd(z) =
∑

x

∑

y

Px(x) · Py(y)·

∑

i=0

i−1∏

j=0

C(¬(x− j = 0)) · C(x− i = 0) · C(z = y + i)

=
∑

x

∑

y

Px(x) · Py(y) ·
∑

i=0

C(x = i) · C(z = y + i)

=
∑

x

∑

y

Px(x) · Py(y) · C(z = y + x)

=
∑

y

1

n
· C(z − n ≤ y ≤ z − 1) · 1

n
· C(1 ≤ y ≤ n)

)

=
1

n2
·max(min(n, z − 1)−max(1, z − n) + 1, 0)

=
1

n2
·
(
C(n < z ≤ 2n) · (2n− z + 1)

+ C(1 ≤ z ≤ n) · (z − 1)
)

3.5.1 Expected value

If we have derived a probability program, we may also derive an expression that
computes the expected value of the distribution.

Ep =
∑

x

x · Pp(x)

For the add program, this gives

Eadd =
n∑

z=1

z · 1

n2
· (z − 1) +

2n∑

z=n+1

z · 1

n2
· (2n− z + 1)

which, of course, can be reduced further.

3.6 Non-primitive Types

In the approach, we have stated that the base domain is a countable set and not
necessarily simply numbers; more complicated types, such as lists, can be used. Our
only requirement was that we must be able to define a probability distribution for
values in the domain. In the following, we will show how a list behaves for a simple
member program and indicate how conditions may affect the probability distribution
for the list.

In the following, we assume that the lists are non-empty and of length k. Fur-
thermore, we assume that the elements are independent of each other and that each
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element is uniformly distributed over the interval 1 to n. The following probability
function describes this.

PL(L) =
1

nk
· C(length(L) = k ∧ ∀j : 0 ≤ j ≤ k − 1 ∧ 1 ≤ hd(tlj(L)) ≤ n)

It assigns the probability 1/nk to any list of length k where all elements are uniformly
distributed in the interval from 1 to n.

If we consider the member function for non-empty lists, it can be written as

member(X,L) =
if(tl(L)=[] || hd(L)=X) then hd(L)=X
else member(X,tl(L))

The function will follow the pattern of recursion as described earlier, and the output
probability function for the member function is then

Pmember(z) =
∑

X

∑

L

PX(X) · PL(L) · C(z = member(X,L))

We can apply the transformation rules to simplify the expression into closed form.
The lists were here assumed to possibly contain repeating elements. We could also
use a different probability distribution to restrict lists to non-repeating lists of values.
This restriction is made by Wegbreit [141] in his examples, where the probability is
derived as 1− (1− (1/n)k), which is the correct result for repeating lists of values.

Conditional expressions and lists. Sometimes, the conditional expressions influence
the possible lists and thereby the probability distribution. Wegbreit’s technique is
valid for programs where one can safely assume the Markov property (that the prob-
abilities of conditions are fixed). Wegbreit observes that this is not always true even
in other cases, even simple cases, e.g., in nested conditionals where the outcome of
the first condition influences the probability of the outcome for the subsequent con-
dition. This phenomena is sometimes referred to as gain of knowledge. For instance,
consider the following union function for two repeating lists L1 and L2.

fun union L1 L2 =
if L1 = [] then y else
if member (hd L1) L2 (* Gain of knowledge *)

then union (tl L1) L2 else
(hd L1)::(union (tl L1) L2)

In union, the gain of knowledge occurs in the test ‘member (hd L1) L2’,
which checks whether the head of L1 is a member of L2; the outcome of this test
affects the probability of its next outcome, that is, if the head of L1 is not in L2, the
likelihood of the next element of L1 not being in L2 increases slightly.

Both of the following formulas1 express the probability of the next element of
L1 not being in L2; however, formula (3.2) expresses the probability when we know
that the first element is not a part of the list.
1 The formulas assume that the lists have a length of greater than 1.
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P (hd(tl(L1)) /∈ L2) =
(n− 1)k

nk
(3.1)

P (hd(tl(L1)) /∈ L2 | hd(L1) /∈ L2) =
1

n
· (n− 1)k

(n− 1)k
+
n− 1

n
· (n− 2)k

(n− 1)k
(3.2)

The maximum difference is 50% and occurs when there are only two different ele-
ments n = 2 and the length k is going towards ∞. In that specific case, the check
provides us knowledge on whether L2 contains one or two types of element.

3.7 Approximation Techniques

The probability distribution program expresses the probability distribution for out-
put values. Our aim is to transform it into a closed form, but this may not always
be possible. Failing that, we can instead use approximation techniques to obtain an
upper bound for the probability distribution. We have referred to this as the over-
approximation of the probability distribution: P . The techniques that we may apply
here are similar to automatic worst-case complexity analysis [116], where the aim is
to obtain a closed-form expression for the complexity of programs but, failing that,
where we may obtain an over-approximation.

Cumulative distribution functions. Cumulative probabilities will in some cases be
more useful and expressive than probability distributions. Cumulative probabilities
can be used in both the discrete and continuous case, and in some cases, approx-
imations can be described more precisely using cumulative probabilities than with
ordinary distributions. It tends, however, to be more complex to reduce to closed
forms and thus may require coarser approximations. The bounding of a cumulative
distribution was introduced by Ferson [48] as a P-box and can be used to describe
imprecise probability distributions.

Definition 3.10 (cumulative distribution). Given a program output probability dis-
tribution, Pp(z), the cumulative program output probability distribution, Fp(z), is
defined as

Fp(z) =
∑

w≤z
Pp(w)

Definition 3.11 (over- and under-approximation). Given a cumulative output prob-
ability of a program P,Fp, the over-approximation,F p, and the under-approximation,
F p, are defined as

F p : ∀z.Fp(z) ≤ F p(z) F p : ∀z.F p(z) ≤ Fp(z)

where, for each approximation, the following must always hold:

∀z.0 ≤ F p(z) ≤ 1 ∀z.0 ≤ F p(z) ≤ 1
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When we can deduce that a program may return one of two values but not which
value, the cumulative probability can be used for a more precise description. Con-
sider the following program, test, which contains an unanalysable test, indicated
by ‘(* unanalysable *)’.

test(x) =
if x = 1 then 1
else (if x = 4 then 4

else (if (* unanalysable *) then 2
else 3))

Let the input probability distribution be P (x) = 1/4 · C(1 ≤ x ≤ 4). Then,
the tightest possible over-approximating output probability distribution for test
is P test, as depicted in Figure 3.1(a). The functions F ↑test and F ↓test are defined
solely by P test (see Definition 3.8) and are themselves over-approximations and
under-approximations of Fp, respectively. The F ↑test and F ↓test are depicted in Fig-
ure 3.1(b), where the yellow area can be interpreted as their imprecision. However,

(a) (b) (c)

Fig. 3.1: (a) depicts the output probability distribution of test. (b) depicts the functions F ↑p
(yellow), the over-approximation of Fp, and F ↓p (blue), the under-approximation of
Fp. (c) depicts the tightest possible over- and under-approximation of the cumulative
distribution test with the available analysable information.

F ↑test and F ↓test are not as tight as when the cumulative distributions can be derived
directly. In Figure 3.1(c), we have depicted the tightest possible cumulative output
distributions for test. These boundaries exploit the fact that the input 1 may only
relate to output 1 and that input 4 may only relate to output 4; thus, the probability
of output 1 is 25%, and the probability of 4 is 25%.

Approximations for cumulative probability functions.
When approximating cumulative probability functions, the techniques are dif-

ferent from probability mass functions. Instead, one may use copulas [17] to over-
and under-approximate dependencies between subexpressions. Copulas are based on
the theory of comonotonicity [38] for distributions that may depend on a common
(possibly unknown) random variable.
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3.8 Related Work

Probabilistic analysis is related to the analysis of probabilistic programs. Probabilis-
tic analysis is the analysis of programs with a normal semantics where the input
variables are interpreted over probability distributions. The analysis of probabilistic
programs analyses programs with probabilistic semantics where the values of the
input variables are unknown (e.g., flow analysis [108]).

In probabilistic analysis, it is important to determine how variables depend on
each other; however, already in 1976, Denning proposed a flow analysis for revealing
whether variables depend on each other [36]. This was presented in the field of secure
flow analysis. Denning introduced a lattice-based analysis where she, given the name
of a variable, which should be kept secret, deducted which other variables should be
kept secret to avoid leaking information. In 1996, Denning’s method was refined by
Volpano et al. into a type system, and for the first time, it was proven sound [139].

Reasoning about probabilistic semantics is a closely related area to probabilis-
tic analysis, as they both work with nested probabilistic influence. The probabilistic
analysis works on standard semantics and analyses it using input probability distri-
butions, where a probabilistic semantics allows for random assignments and proba-
bilistic choices [83] and is normally analysed using an expanded classical analysis
or verification method [33].

Probabilistic model checking is an automated technique for formally verifying
quantitative properties for systems with probabilistic behaviours. It is mainly fo-
cused on Markov decision processes, which can model both stochastic and non-
deterministic behaviours [52, 84] This differs from probabilistic analysis, as it as-
sumes the Markov property.

In 2000, Monniaux applied abstract interpretation to programs with probabilis-
tic semantics and obtained safe bounds for worst-case analysis [95]. Pierro et al.
introduced a linear mapping structure, a Moore-Penrose pseudo-inverse, instead of
a Galois connection. They used the linear structures to compare the ’closeness’ of
approximations as an expression using the average approximation error. Pierro et al.
further explored using probabilistic abstract interpretation to conduct the average-
case analysis [40]. In 2012, Cousot and Monerau gave a general probabilistic ab-
straction framework [33] and stated, in section 5.3, that Pierro et al.’s method and
many other abstraction methods can be expressed in this new framework.

When analysing probabilities, the main challenge is to maintain the dependen-
cies throughout the program. Schellekens defines this as Randomness preservation
[124] (or random bag preservation), which in his (and Gao’s [57]) case enables the
tracking of certain data structures and their distributions. They use special data struc-
tures since they find these suitable to derive the average number of basic operations.
In another approach [109, 141], tests in programs have been assumed to be indepen-
dent of previous history, also known as the Markov property (the probability of being
true is fixed). As Wegbreit remarked, this is true only for certain programs (e.g., lin-
ear search for repeating lists), and for other programs, this is not the case (linear
search for non-repeating lists). The Markov property is the foundation of Markov
decision processes, which are used in probabilistic model checking [52]. Cousot et
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al. presented a probabilistic abstraction framework wherein they divided the program
semantics into probabilistic and (non-)deterministic behaviours. They proposed the
handling of tests when it is possible to assume the Markov property, and they han-
dle loops by using a probability function describing the probability of entering the
loop in the ith iteration. Monniaux proposed another approach for abstracting prob-
abilistic semantics [95]; he first lifts a normal semantics to a probabilistic semantics
whereby random generators are allowed and then uses an abstraction to achieve a
closed form. Monniaux’s semantic approach uses a backward probabilistic semantics
operating on measurable functions. This is closely related to the forward probabilistic
semantics proposed earlier by Kozen [83].

An alternative approach to probabilistic analysis is based on the symbolic exe-
cution of programs with symbolic values [58]. Such techniques can also be used on
programs with infinitely many execution paths by limiting the analysis to a finite sets
of paths at the expense of tightness of probability intervals [120].

3.9 Conclusion

The probabilistic analysis of programs has seen renewed interest for analysing pro-
grams with respect to energy consumption. Numerous embedded systems and mobile
applications are limited by restricted battery life. In this paper, we present a technique
for extracting a probability distribution for programs from symbolic distributions of
the input. This technique is a transformation-based method, whereby we analyse a
first-order language with a simple tail recursion. From the original program, we gen-
erate an equivalent probability distribution program and transform this program into
a closed form. We present the essential transformation rules for unfolding calls to the
original program and removing infinite sums. The transformed program may then be
analysed and approximated using program analysis and transformation techniques
known from automatic complexity analysis. The core elements of the analysis have
been implemented in a prototype system with the aim of using the analysis to im-
prove the energy efficiencies of systems. The central challenges of approximating
in a probabilistic setting are discussed, and we describe some advantages of using
cumulative distributions along with copulas to achieve a tighter approximation.

Acknowledgements. This work has benefited from numerous discussions with Pe-
dro López-García, Alejandro Serrano Mena and other colleagues in Madrid, Bristol
and Roskilde.

3.10 Afterword

In the article, we suggest several interesting concepts and challenges for future work:
analysing the expected output, which is the weighted average of the output; external-
ize resource usage and analysing resource-instrumented programs; the handling of
input with a probability that yields a non-terminating computation; approximating
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the relations between variables using copulas, which are functions that describe a
joint distribution based on two independent cumulative distributions, non-primitive
types, such as lists and P-boxes, that are upper and lower bounds for cumulative dis-
tributions. There are two issues that we have not followed up on: expected outputs
and copulas. The first challenge that we addressed was externalizing resource usage
and analysing resource-instrumented programs; in Chapter 4, we develop a discrete
probabilistic resource analysis. The lists are not addressed in the discrete case, but
they are captured in the general theory of Chapter 5. P-boxes will not be used directly,
but they raised the question of how relations and probabilities were connected, which
ultimately lead to the findings presented in Chapter 5. In that chapter, we also dis-
cuss and demonstrate the techniques on a non-terminating program (Section 5.5.3).
In Chapter 8, we return to discuss the concept of copulas peripherally.
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Discrete probabilistic resource analysis

In this chapter, we apply discrete output probability analysis (Chapter 3) to resource-
instrumented programs and obtain a discrete probabilistic resource analysis. This
analysis can be applied to terminating and deterministic programs, and it yields the
upper probability bounds for their resource usages. Given a program, the analysis in-
struments it with a discrete resource model, here a step counter, and slices the instru-
mented version to output only the resource usage. Then, it applies the probabilistic
output analysis to obtain upper probability bounds on the resource usage.

Notation and Terminology. The notation and terminology are like those of the pre-
vious chapter, that is, in the following article, we use “an over-approximation” when
referring to an upper bound of a function and “an under-approximation” when re-
ferring to a lower bound of a function; see for instance Definition 4.4. Note that
Section 4.2 contains selected definitions from Section 3.2.

Foreword. The remainder of this chapter – except for the afterword (Section 4.9) –
has been published with minor corrections in article [78] M. H. Kirkeby, M. Rosendahl.
Probabilistic resource analysis by program transformation. M. van Eekelen, U. Dal Lago,
redaktorzy, Foundational and Practical Aspects of Resource Analysis: 4th Interna-
tional Workshop, FOPARA 2015, London, UK, April 11, 2015. Revised Selected Pa-
pers, strony 60–80, Cham, 2016. Springer International Publishing.

Abstract. The aim of a probabilistic resource analysis is to derive a probability distribution of
possible resource usage for a program from a probability distribution of its input. We present
an automated multi-phase rewriting-based method to analyse programs written in a subset
of C. The method generates a probability distribution of the resource usage as a possibly
uncomputable expression and then transforms it into a closed-form expression using over-
approximations. We present the technique, outline the implementation and show results from
experiments with the system.
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4.1 Introduction

The main contribution of this paper is to present a technique for probabilistic re-
source analysis whereby the analysis is seen as a program-to-program translation.
This means that the transformation to closed form is a source code program trans-
formation problem and not specific to the analysis. Any necessary approximations
in the analysis are performed at the source-code level. The technique also makes it
possible to balance the precision of the analysis against the brevity of the result.

Many optimizations for increased energy efficiency require probabilistic and av-
erage case analysis as part of the transformations. Wierman et al. state that “global
energy consumption is affected by the average case, rather than the worst case“
[144]. In addition, in scheduling, “an accurate measurement of a task’s average-
case execution time can assist in the calculation of more appropriate deadlines”
[62]. For a subset of programs, a precise average-case execution time can be found
using static analysis [51, 57, 124]. Applications of such analysis may be in improv-
ing the scheduling of operations or in temperature management. Because the analysis
returns a distribution, it can be used to calculate the probability of energy consump-
tions above a certain limit, thereby indicating the risk of over-heating.

The central idea in this paper is to use probabilistic output analysis in combina-
tion with a preprocessing phase that instruments programs with resource usage. We
translate programs into an intermediate language program that computes the prob-
ability distribution of resource usage. This program is then analysed, transformed,
and approximated with the objective of obtaining a closed-form expression. This is
an alternative to deriving cost relations directly from the program [35] or expressing
costs as abstract values in a semantics for the language.

As with automatic complexity analysis, the aim of probabilistic resource anal-
ysis is to express the result as a parameterized expression. The time complexity of
a program should be expressed as a closed-form expression in the input size, and
for probabilistic resource analysis, the aim is to express the probability of resource
usage of the program parameterized by input size or range. If input values are not
independent, we can specify a joint distribution for the values. Values do not have
to be restricted to a finite range; however, for infinite ranges, the distribution would
converge to zero in the limit.

The current work extends our previous work on probabilistic analysis [118] in
three ways. We show how to use a preprocessing phase to instrument programs with
resource usage such that the resource analysis can be expressed as an analysis of
possible outputs of a program. The resource analysis can handle an extended class
of programs with structured data as long as the program flow does not depend on the
probabilistic data in composite data structures. Finally, we present an implementation
of the analysis in the Ciao language [21], which uses algebraic reductions available
in the Mathematica system [146].

The focus in this paper is on using fairly simple local resource measures where
we count core operations on data. Since the instrumentation is done at the source-
code level, we can use flow information so that the local costs can depend on actual
data on operations and which operations are executed before and after. This is not
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normally relevant for time complexity but does play an important role in energy
consumption analysis [76, 135].

4.2 Probability distributions in static analysis

In our approach to probabilistic analysis, the result of an analysis is an approximation
of a probability distribution. We will here present the concepts and notation that we
will use in the remainder of the paper. A probability distribution is also often referred
to as the probability mass function in the discrete case; in the continuous case, it is
a probability density function. We will use an upper case P to denote a probability
distribution.

Definition 4.1 (probability distribution). For a countable set X , a probability dis-
tribution over X is a mapping PX : X → [0, 1], where

∑

x∈X
PX(x) = 1

We define the output probability distribution for a program p in a forward manner.
This is the weight or sum of all probabilities of input values, where the program
returns the desired value z as output.

Definition 4.2 (output probability). Given a program, p : X → Z, and a prob-
ability distribution over the input, PX , the probability distribution over output,
Pp : Z → [0, 1], is defined as

Pp(z) =
∑

x∈X∧p(x)=z
PX(x)

Note that Kozen also uses a similar forward definition [83], whereas Monniaux con-
structs the inverse mapping from output to input for each program statement and
expresses the relationship in a backwards style [95].

Lemma 4.3. The output probability distribution, Pp : Z → [0, 1], satisfies

0 ≤
∑

z∈Z
Pp(z) ≤ 1

The program may not terminate for all input, and this means that the sum may be less
than one. If we expand the domainZ with an element to denote non-termination,Z⊥,
the total sum of the output distribution Pp(z) would be 1.

In our static analysis, we will use approximations to obtain safe and simplified
results.

Definition 4.4 (over- and under-approximation). Let Pp : Z → [0, 1] be a distri-
bution, and let P p : Z → [0, 1] be a function; then, P p is an over-approximation of
Pp if Pp(z) ≤ P p(z) ≤ 1.
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The aim of the probabilistic resource analysis is to derive as tight an approximation
P p as possible.

The over-approximation of the probability distribution can be used to derive
lower and upper bounds of the expected value and will thus approximate the ex-
pected value as an interval [118].

4.3 Architecture of the transformation system

The system contains five main phases. The input to the system is a program in a
small subset of C with annotations of which part we want to analyze. It could be the
whole program, but it could also be a specific subroutine that is called repeatedly
with varying arguments according to some input distribution.

The first phase will instrument the program with resource-measuring operations.
The instrumented program will perform the same operations as the original program
in addition to recording and printing resource usage information. This program can
still be compiled and run, and it will also produce the same results as the original
program.

The second phase translates the program into an intermediate language for fur-
ther analysis. We use a small first-order functional language for the analysis process.
The translation has two core elements. We slice [142] the program with respect to
the resource-measuring operations and transform loops into a simple form of tail re-
cursion in the intermediate language. The transformed program can still be executed
and will produce the same resource usage information as the instrumented program.
Since the instrumentation is performed before the translation into the intermediate
language, any interpretation overhead or speed-up due to slicing does not influence
the result [116].

In the third phase, we construct a probability output program that computes the
probability output function. In this case, it is a probability distribution of possible
resource usages of the original program. This program can also run but will often
be extremely inefficient since it will merge information for all possible inputs to the
original program.

The fourth phase transforms the probability program into a large expression with-
out further function calls. Recursive calls are removed using summations, and the
transformed program computes the same result as the program did before this phase.

In the final phase, the probability function is transformed into closed form using
symbolic summation and over-approximation. In this phase, we use the Mathematica
system [146]. The final probability program computes the same result or an over-
approximation of the function produced in the fourth phase.

4.4 Instrumenting programs for resource analysis

The input to the analysis is a program in a subset of C. In the next section, we
define the intermediate language for further analysis, and it is the restrictions on the
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intermediate language that limit the source programs that we can analyze with our
system. The source program may contain integer variable and arrays, typical loop
constructs and non-recursive function calls. The program should be annotated with
specifications on which part of the program to analyse. The following is an example
of such a program.

// ToAnalyse: multa(_,_,_,N)
void multa(int a1[MX],int a2[MX],int a3[MX],int n){

int i1,i2,i3,d;
for(i1 = 0; i1 < n; i1++) {

for(i2 = 0; i2 < n; i2++) {
d = 0;
for(i3 = 0; i3 < n; i3++) {

d = d + a1[i1*n+i3]*a2[i3*n+i2];
}
a3[i1*n+i2] = d;

}
}

}

This example program describes a matrix multiplication for which we would like to
analyse the probability distribution of the number of steps when parameterized with
the size (N) of the matrices.

4.4.1 Instrumentation

The program is then instrumented with resource usage information and translated
into an intermediate language for further analysis. The instrumented program is also
a valid program in the source language and can be executed to obtain the same results
as the original program. It will, however, also collect resource usage information.

In our example, we instrument the program with step counting information
whereby we count the number of assignment statements being executed. This is done
by inserting a variable into the program and incrementing it once for each assignment
statement.

int multa(int a1[MX],int a2[MX],int a3[MX],int n){
int i1,i2,i3,d;
int step; step=0;
for(i1 = 0; i1 < n; i1++) {

for(i2 = 0; i2 < n; i2++) {
d = 0; step++;
for(i3 = 0; i3 < n; i3++) {

d = d + a1[i1*n+i3]*a2[i3*n+i2]; step++;
}
a3[i1*n+i2] = d; step++;

}
}
return step;

}
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The outer loop does not update the step counter, whereas the first inner loop updates
it twice per iteration, and the innermost loop updates it once per loop iteration.

4.4.2 Slicing

The second phase will slice, e.g. [142], the program with respect to resource usage
and translate the program into the intermediate language of first-order functions that
we will use in the subsequent stages. Loops in the program are translated into a
simple recursive pattern.

for3(i3, step, n) =
if(i3 = n) then step else for3(i3 + 1,step+1,n)

for2(i2, step, n) =
if(i2 = n) then step else for2(i2 + 1,for3(0,step+2,n),n)

for1(i1, step, n) =
if(i1 = n) then step else for1(i1 + 1,for2(0,step,n),n)

tmulta(n)= for1(0,step,n)

Each function in the recursive program corresponds to a for loop with their re-
lated step updates. The step counter is given as an input argument to the next function
in a continuation-passing style.

4.4.3 Intermediate language

An intermediate program, prgf , consists of a series of integer functions, fi : Int∗ →
Int , as described by the abstract syntax in Figure 4.1. In the examples, we relax the
restrictions on function and parameter names.

a ::= x | n | a1 + a2 | a1 - a2 | a1 * a2 | a1 div a2
b ::= a1=a2 | a1<a2 | a1=<a2 | true | false | not(b)
e ::= a | f(e1, . . . , en) | if b then e1 else e2

f ::= f(x1, . . . , xn)= e

prgf ::= f | ff

Fig. 4.1: The abstract syntax for describing functions of the intermediate programs, where a
is an arithmetic integer expression, b is a boolean expression, and e is an statement
expression. n is a numeral, an integer, and xi are variable names.

Definition 4.5. A program is well-formed if it follows the abstract syntax and con-
tains a finite number of function definitions, where each is of one of the following
forms and can internally be enumerated with a natural number such that
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fi(x1, . . . , xn) = if b then e0 else fi(e1, . . . , en)

where fi is simple, e0 only contains calls to functions fj where j < i.

fi(x1, . . . , xn) = e

where e only contain calls to functions fj where j < i.

The enumeration prevents mutual recursion and ensures that non-recursive calls can-
not create an infinite call chain.

4.5 Probabilistic output analysis

The analysis is applied to the intermediate program and an input probability program
in the intermediate language. The output is a new program that can be described by
a subset of the intermediate language; this will be clarified later in the definition of
pure and closed-form programs. The analysis consists of three phases:

Create, where the probability program describing the output distribution is created
as a possibly uncomputable expression.

Separate, where we remove all calls from the probability program.
Simplify, where we transform the program into closed form using safe over-

approximations when necessary.

The analysis is constructed as three sets of transformation rules, one for each of the
three phases. All transformations are syntax directed, and one strategy is to apply
them in a depth-first manner. The program output analysis is implemented in Ciao
and uses Mathematica [146] as an external solver in the third phase to reduce expres-
sions.

In the following, we use Var(e) to represent the set of variables occurring in
expression e, and we use f(x1, ..., xn)

def
= e to represent the function f defined in

the input program. Some side conditions are explained in an informal manner, as in
“f(x1, ..., xn)

def
= e, where e is non-recursive”.

name
precondition1 ... preconditionn

original term→ rewritten term

The preconditions are evaluated from left to right, and if all succeed, we can use the
transformation.When substituting a variable x in an expression e, we denote it [x/e].

In the following, we will begin by extending the intermediate language presented
in Figure 4.1 such that it can express probabilities, and then, we describe the trans-
formation rules for each phase.

4.5.1 The intermediate language

The intermediate language is, as previously mentioned, a first-order functional lan-
guage. A probability program can be evaluated at any stage through the transforma-
tion process.
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We extend the abstract syntax given in Figure 4.1 such that it can easily describe
probability distributions. We introduce probability functions, P : Int∗ → Real ,
which follows the expanded syntax given in Figure 4.2. The dots indicate the syn-
tax described in Figure 4.1. Again, 〈aexp〉 and 〈exp〉 are of the integer type, 〈bexp〉
is boolean, and the new 〈qexp〉 is a real. In 〈qexp〉, the method i2r type casts an
integer expression to a real. We reuse the arithmetic operator symbols for the reals
and let the types of their arguments distinguish the integer operators and the real
operators. We introduce c, sum, prod and argDev functions. c evaluates to ei-
ther 1, if its boolean expression evaluates to true, or 0 when it evaluates to false.
Evaluating sum instantiates the variable with all possible values and sums all the
results of the evaluation with 〈qexp〉. prod instantiates its variable with all values
for which the first 〈qexp〉 evaluates to 1, and then, it multiplies all the results from
evaluating the second 〈qexp〉. The last expression introduced is argDev, which de-
scribes the development of the variable xi as a function of the number of updates,
xj . The expression 〈exp〉 computes the development of xi for one increment of xj
(e.g., the argument xi in a function f(xi) with a recursive call f(xi - 2) has an argu-
ment development argDev(xi,xi−2, xj)). A program that computes a probability

a ::= . . . | min(a1, a2) | max(a1, a2)
b ::= . . . | a= e
e ::= . . . | argDev(x1, e, x2)
q ::= i2r(q) | c(b) | q1 + q2 | q1 - q2 | q1 * q2 | q1 / q2

sum(x, q) | prod(x, q1, q2) | P(a1, . . . , an)
p ::= P(x1, . . . , xn)= q

prgf ::= f | ff
prgp ::= p | pp
prg ::= prgp prgf

Fig. 4.2: The expanded abstract syntax describing probability programs. We reuse the arith-
metic operator symbols; letting the type of arguments distinguish the operators.

distribution is referred to as a probability program.

Definition 4.6. A probability program that has no if-expressions and no function
calls is pure, and a pure probability program without any sum or prod is in closed
form.

A program is pure after it is transformed in the separation phase and is pure and in
closed form after the simplification phase.

4.5.2 The create phase

This phase has only one rule, which creates a program that computes a probability
distribution from the intermediate program and input distributions.



4.5 Probabilistic output analysis 47

create
f(u1, ..., un) = ef P(v1, ..., vn) = ep

Pf(z) = sum(x1 ; ...sum(xn ; c(z= f(x1, ..., xn) )* P(x1, ..., xn)))

We use the create rule to make a new probability function describing the probability
distribution for the integer function in which we are interested.

4.5.3 The separate phase

In this phase, function calls are removed by repeatedly exposing calls and replac-
ing them. Non-recursive function calls are unfolded using their definitions. Function
calls can occur inside if-expressions or as nested calls; these are extracted and han-
dled one at a time.

f-simple
f(y1, ..., yn) = e , where e is non-recursive x1, ..., xn ∈ Var

c(z= f(x1, ..., xn))→ c(z= e[y1/x1, ..., yn/xn])

rem-P
P(x1, ..., xn) = e

P(e1, ..., en)→ e[x1/e1, ..., xn/en]

rem-if
c(z= if b then e0 else e1)→ (c(b)* c(z=e0)+ c(not(b))* c(z=e1))

no-nest(f)
e1, ..., en /∈ Var

c(z= f(e1, ..., en) )→
sum(u1 ; ...sum(un ; c(z= f(u1, ..., un) )* c(u1= e1)* ...* c(un= en) ))

We replace calls to recursive functions by a summation over the number of recur-
sions using argument development constructors to describe the value of each argu-
ment as a function of the index of the summation. This way of defining argument
development has similarities with size change functions derived using recurrence
equations. Argument development functions do not depend on the base case, in con-
trast to size-change functions [149]. The summation also contains a product that
ensures that the condition evaluates to false for argument values less than the current
value of the index of summation. When the expression in a product contains only
c-constructors, then the product is evaluated to 1 if either the range is empty or the
expression is evaluated to true for the full range. The following rewrite rules are all
that is needed for transforming probability programs into pure probability programs.

f-rec

f(y1, ..., yn) = if b then e0 else f(e1, ..., en) x1, ...xn ∈ Var
σy/i = [y1/i1, ..., yn/in]σy/x = [y1/x1, ..., yn/xn]σy/j = [y1/j1, ..., yn/jn]

c(z= f(x1, ..., xn))→
sum(i ; c(0=<i)*

sum(i1 ; ...sum(in ; c(σy/i(b))* c(i1= argDev(x1, σy/x(e1), i))*

c(z=σy/i(e0))* ...* c(in= argDev(xn, σy/x(en), i)) )...)*

prod(j ; c(0=<j)* c(j=<i- 1) ;

sum(j1 ; ...sum(jn ; c(not(σy/j(b)))*

c(j1= argDev(x1, σy/x(e1), j))* ...* c(jn= argDev(xn, σy/x(en), j))

)...) ))
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The argument development expression may contain function calls as well, and these
are extracted equivalently to nested functions.

no-nest(argDev)
c(z= argDev(x, f(e1, ..., en) , i))→
sum(u ; c(z= argDev(x, f(e1, ..., en) , i))* c(u= f(e1, ..., en)) )

Once these rules can no longer be applied, the probability program has been trans-
formed to pure form.

4.5.4 The simplification phase

We have presented the rules for obtaining a pure probability program, and in this
section, we outline the rules used to reach closed form. A pure probability function
consists of a series of nested summations multiplied with an expression (e.g., input
probability). The rules are applied in no particular order, and the phase ends when
no more rules can be applied. In this phase, we employ Mathematica [146]. A call
to Mathematica is denoted mm:Function(Arg) = Answer, where Function de-
notes the actual function called in Mathematica (e.g., mm:Expand calls Mathematica’s
Expand function). The translation between the intermediate language and Mathe-
matica’s representation will not be discussed further here. implicitly in the call.

The rules can be grouped by their functionality: preparing expressions, removal
of summations and removal of products. The rules for removal of products are cur-
rently the only rules containing over-approximations.

Preparation. Preparing expressions for the removal of either summations or prod-
ucts involves moving expressions that do not depend on the index of summation out-
side the summation, dividing summations of additions into simpler ones, reducing
expressions, dividing summations in ranges, and removing argument development
constructors. Note that div-sum(x≤) has an equivalent rule for upper bounds.
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move-c
x /∈ Var(e1)

sum(x ; e1 * e2)→ e1 * sum(x ; e2)

div-sum(+)
x ∈ Var(e1) x ∈ Var(e2)

sum(x ; e1 + e2)→ sum(x ; e1)+ sum(x ; e2)

div-sum(x≤)
x /∈ Var(e1, e2) x ∈ Var(e2)

sum(x ; c(x=<e1)* c(x=<e2)* e3)→
c(e1=<e2)* sum(x ; c(x=<e1)* e3)+

c(e2=<e1 - 1)* sum(x ; c(x=<e2)* e3)

rem(argDev)
c(y = e)→ c(y= x+ a)

c(z= argDev(x, e, i))→ c(z= x+ a* i)
Var(a) = ∅

reduceAexp
mm:Reduce(e1) ≡ e2

c(e1)→ c(e2)

reduce(=)
c(true)→ i2r(1)

Summations. Removal of summations can be done in two ways. Either the index of
the summation can only be one value or it can be a limited range of values; depend-
ing on the case, different transformations are used. In the first case, there exists an
equation containing the variable index of the innermost summation. The equation is
solved for the variable, and the remaining variable occurrences are replaced by the
new value.

rem-sum(=)
mm:Solve(e1=e2, x) ≡ e3

sum(x ; c(e1= e2)* e)→ e[x/e3]

Removing a summation by its range involves using standard mathematical for-
mulas for rewriting series. The last part of the following rule uses

∑n
k=1 k

2 =
n(n + 1)(2n + 1)/6. We only present transformations up to quadratic series, and
our pragmatic implementation contains rules for transforming series of power of de-
gree up to 10. A more general rewrite rule for series of power of degree up p could
be implemented, but is more complicated, as it includes Bernoulli numbers and bi-
nomial coefficients. The precondition uses Mathematica’s Expand function [146]
to transform the expression into the correct pattern.
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rem-sum(≤)
x /∈Var(e1, ..., e6) mm:Expand(e3) ≡ e4 + e5 * x+ e6 * x* x

sum(x ; c(e1=<x)* c(x=<e2)* i2r(e3))→
c(e1=<e2)*

(
i2r(e4)* i2r(e2 - e1 + 1)+

i2r(e5)* i2r(e2 * (e2+1))/ i2r(2)-

i2r(e5)* i2r(e2 *(e2 -1))/ i2r(2)+

i2r(e6)* i2r(e2 * (e2+1)* (2* e2 + 1))/ i2r(6)-

i2r(e6)* i2r(e2 * (e2-1)* (2* e2 - 1))/ i2r(6)
)

Product. The removal of Product involves a safe approximation. The implemen-
tation of POA contains two different over-approximations, and in many cases, the
probability program can be transformed into closed form in a precise manner. In the
following paragraph, we describe when the transformation preserves the accuracy of
the transformed term.

The probability function can always be over-approximated to 1. The rule f-rec is
an exact rule and introduces a product-expression that may not be possible to rewrite
into closed form. We only introduce the product-expression with c-expressions in its
body, and therefore, it may at most produce 1 and at least produce 0. The following
rule over-approximates a product-expression to 1.

rem-prod-one
x /∈ Var(e1, e2) x ∈ Var(q)

prod(x ; c(e1=<x)* c(x=<e2) ; q)→ 1

For the summation describing recursive calls, this transformation is exact when the
condition b evaluates to true for exactly one value (e.g., it is an equation).

A broader class of recursive programs (than those having an equation in the con-
dition) is that where the c-expression is monotone in x, meaning that there exists a
k for which c(e3) = 1 for x ≤ k and c(e3) = 0 for x > k. This case covers many
for-loops. In this case, we can accurately replace the prod-expression with two c-
expressions, one checking the lower range limit and one checking the upper range
limit. The empty product (the lower limit is larger than the upper) is 1.

rem-prod-mon
x /∈ Var(e1, e2) x ∈ Var(e3) q is monotone in x

prod(x ; c(e1=<x)* c(x=<e2) ; q)→(
q[x/e1]* q[x/e2]* c(e1=<e2)+ c(e2=<e1 - 1)

)

We say that a q-expression is monotone in x if n ≤ m; then, q[x/n] is less than or
equal to q[x/m]. This rule does not preserve accuracy when the the c-expression is
not monotone in x (e.g., c(2=<x||4=<x)).

4.6 Results

In the following, we present three examples that show results of programs with nested
loops parameterized by an input distribution of multiple variables. The probability
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distribution computed by the output program varies in complexity; the first program
calculates a single parameterized output, the second program computes a triangular-
shaped output distribution, and the third computes a distribution converging towards
a standard normal distribution. The results are presented in a reduced and readable
form extracted from our implementation.

4.6.1 Matrix multiplication

The original matrix multiplication program uses composite types and contains nested
loops. The intermediate program, defined in Figure 4.3, contains nested recursive
calls but has no dependency on data of composite types.

for3(i3,step,n)=
if(i3>=n) then step else for3(i3+1,step+1,n)
for2(i2,step,n)=
if(i2>=n) then step else for2(i2+1,for3(0,step+2,n),n)
for1(i1,step,n)=
if(i1>=n) then step else for1(i1+1,for2(0,step,n),n)
tmulta(step,n)= for1(0,step,n)
P(step,n1)= c(step=0)*c(n1=n)

Fig. 4.3: The intermediate program also containing the parameterized probability distribution.
The parameter n is a fixed value.

The nested calls create argument development functions that depend on function
calls. These are transformed into a simple form and then removed. The introduced
products are over-approximated, but due to the form of the condition, the result is
precise. The output program computes a single value distribution (when specialized
with the size of the matrix). This is given in Figure 4.4 along with an array describing
a subset of specializations of the output program with respect to a value of n.

Ptmulta(out) =
c(3=<out/(n*n))*
c(1=<n)*
c(out/n*n=2+n)*1

n program

1 Ptmulta(out) = c(out=3)

2 Ptmulta(out) = c(out=16)

3 Ptmulta(out) = c(out=45)

4 Ptmulta(out) = c(out=96)

. . . . . .

Fig. 4.4: The general output probability program (left) and the program specialized with the
value of n (right).
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4.6.2 Adding parameterized distributions

This example is a recursive program computing the addition of two numbers; the
input program and the input probability distribution can be seen in Figure 4.5. The
output depends on both increasing and decreasing values. In this example, we use
a parameter n as the upper limit of a range of input values. The input distribution
describes two independent variables, each having a uniform distribution from 1 to n.

add(x,y) = if x=<0 then y else add(x-1,y+1)
P(x) = c(1=<x)*c(x=<n)*1/n
Pxy(x,y) = P(x)*P(y)

Fig. 4.5: The intermediate program containing both the add function and the input probability
distribution. Here, the parameter n is used to describe a range.

The analysis gives a precise probability distribution and computes a triangular
distribution (or pyramid-shaped distribution). The output probability program is de-
scribed in Figure 4.6 along with a graph depicting the pyramid-shaped output prob-
ability distributions for different initializations of n. The lower bound on out arises
from the input probability distribution and not from the condition. The upper bound
2*n of the analysis result shows that the output depends on both input variables,
despite the fact that one is increasing and the other is decreasing.

Padd(out) =
c(2<=out)*c(out<=n)*

(1/n*1/n*(out-1)) +
c(1+n<=out)*c(out<=2*n)*

(1/n*1/n*(1+2*n-out))

Fig. 4.6: The general output program and the graphs for the output probability distribution
with n set to 3, 4, 5, and 6.

4.6.3 Adding 4 independent variables

The sum4 program adds four variables and was presented by Monniaux [95]. Certain
over-approximations were applied to obtain a safe and simplified result.
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add(x,y) = if x=0 then y else add(x-1,y+1)
sum4(x,y,z,w) = add(x,add(y,add(z,w)))
tsum4(x,y,z,w) = sum4(x,y,z,w)
P(x) = c(1=<x)*c(x=<6)*1/6
Pxyzw(x,y,z,w) = P(x)*P(y)*P(z)*P(w)

Fig. 4.7: Intermediate program.

Psum4(out) =
c(4=<out)*c(out=<7)* (-6+11*out-6*out^2 + out^3)/7776 +
c(8=<out)*c(out=<12)* (-1014+169*out+6*out^2-out^3)/7776+
c(9=<out)*c(out=<12)* (1512-461*out+42*out^2-out^3)/3888+
c(out=13)*(265/648-5*out/216)+
c(14=<out)*c(out=<18)* (-4790+923*out-54*out^2+out^3)/2592+
c(19=<out)*c(out=<24)* (17550-2027*out+78*out^2-out^3)/7776

Fig. 4.8: The output program and graph for its computed probability distribution for out from
3 to 25.

The program is recursive, and in this example, we use independent input variables
each uniformly distributed from 1 to 6, as described in Figure 4.7.

Despite the fact that the ranges and their associated value are not symmetric, the
resulting program computes a precise and perfectly symmetric probability distribu-
tion, as shown in Figure 4.8. The differences in the choice of ranges comes (among
other things) from the range dividing rules, as they do not divide the range symmetri-
cally. As expected from the central limit theorem of probability theory, the resulting
probability program describes a distribution that has similarities with a normal dis-
tribution.
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4.6.4 Monty Hall

The Monty Hall problem is often used to exemplify how gained knowledge influ-
ences probabilities (conditional probability). In this problem, there are three closed
doors, one hiding a prize and two that are empty. The doors have an equal chance of
hiding the prize. There is a contestant who chooses one of the doors; then, the game
host will open an empty door, and the contestant can either stick with the first choice
or change to the other unopened door. The problem lies in determining whether the
best winning-strategy is to stick with the first choice or to switch to the other.

If the strategy is to stick with the first choice and that door has a prize, then
the contestant has won. If the contestant changes doors, he/she only loses if the first
choice was the door hiding the prize; if the first choice was an empty door, then the
game host would open the other empty door, leaving only the prize door as a second
choice.

The monty program models the two strategies: If the strategy variable is 1, then
the strategy is to change the door; otherwise, the strategy is to stick with the first
choice. The program takes as input the contestant’s first guess, the door hiding the
prize, the empty door, which is not opened by the game host, and the strategy that
the contestant uses.

Let us assume that the contestant has an equal chance of choosing each of the
doors. The input variables guess, price, and empty model the first choice, the
prize door and the empty door, which is left after the game host has opened an empty
door. All three doors have a value between 1 and 3, and the empty door cannot be the
same as the prize door. We have parametrized the strategy with a weight p between
the two such that when p = 1, the strategy is to always change doors, and when p=0,
the strategy is to always keep the first choice (e.g., letting p = 0.75, we change doors
in 3/4 of cases and keep the first door in the remaining cases). Such a parametrization
allows us to execute the analysis once and use the lighter closed-form result for that
calculation instead. In a problem whereby the winning probability of a strategy is
dependent on the other input, such input could be used for optimizing the choice
of strategy. The monty program and the parametrized input probability distribution
can be seen in Figure 4.9.

The analysis was capable of handling the program correctly, and the result can be
seen in Figure 4.10. The probabilities 1/3 and 2/3 do not occur directly in the output
probability program but rather are found in the constants 6, 12 and 1/18.

4.6.5 Adding dependent non-uniform variables

A function call may have interdependent and non-uniform arguments, and in this
example, we demonstrate that the analysis can handle such function calls. We focus
on the dependencies, analyze a simple add program and discuss the limits of the
interdependencies. The program also shows that interdependencies quickly lead to
the occurrence of integer division in the output

The input arguments are interdependent; the second argument is always less than
or equal to the value of the first argument. The joint distribution depends only on
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monty(guess,price,empty,strategy)=
if strategy = 0 then finalGuess(guess,price)

else change(guess,price,empty)

finalGuess(guess,price)=
if price=guess then 1 else 0

change(guess,price,empty)=
if price=guess then finalGuess(empty,price)

else finalGuess(price,price)

Pin(guess,price,empty,strategy) =
1/18*c(1=<guess)*c(guess=<3)*

c(1=<price)*c(price=<3)*
c(1=<empty)*c(empty=<3)*
c(not(price = empty))*
Pstrat(strategy)

Pstrat(strategy) =
p*c(1=strategy) + (1-p)*c(0=strategy)

Fig. 4.9: The monty program models the event flow depending on the chosen strategy; if the
strategy is 0, then the contestant keeps the first door, and if it is 1, then the contes-
tant changes his mind. There are three doors, and the input of monty describes the
contestant’s first guess, the door hiding the prize, the empty door that is not opened
by the game host (and is different from the prize door), and the strategy of the con-
testant. If the final choice hides the prize, then the program returns 1; otherwise, it
returns 0. The probability of the strategy is an expression parametrized with a weight
p between the two strategies instead of executing the analysis twice with different
strategies.

pmonty(out) =
1/18 *
(c(out=0)*

(12*(1-p)+6*p)+
c(out=1)*
(6*(1-p)+12*p))

Fig. 4.10: The probability of winning the Monty Hall as a function of the weight given to
the change strategy. The probabilistic output analysis reveals that the best weight
between the keep strategy and the change strategy is to always use the change strat-
egy.
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the value of the first argument, resulting in a skewed probability distribution. The
probability program is defined in Figure 4.11.

Pxy(x,y) = c(1=<y)*c(y=<3) * c(1=<x)*c(x=<y) * x/10

add(x,y) = x+z

Padd(out) =
c(2=<out)*c(out=<3)* 1/20 *out%2*(1 + out%2) +
c(4=<out)*c(out=<6)*-(1/20)*(-4+out-out%2)*(-3+out+out%2)

Fig. 4.11: An input program, add; its skewed joint distribution, Pxy; and the closed-form
probability program, Padd; produced by the analysis. The integer division is noted
by a “%”.

The create rule generates nested summations, and removing such inner summa-
tions implies that their values must be expressed using the variables of the outer
summations or the input variable (i.e., out). Comparing the result from this experi-
ment with the output probability distribution for the addition of two random variables
in Figure 4.6 indicates that integer division is a special case arising from a dependent
input. The following interesting expressions are extracted during analysis execution,
and they show how the integer division arises from the dependency of the input. The
first expressions are the result of the create rule, and the last expression is the result
after the removal of the inner y-summation.

Padd(out) =

sum(x ; sum(y ; c(out= x+ y)*

c(1=<x)* c(x=<y)* c(1=<y)* c(y=<3)* (i2r(x) /i2r(10)))) =

sum(x ; c(2=<out)* c(out=<3)* c(1=<x)*

c(2* x=<out)* (i2r(x) /i2r(10)))+

sum(x ; c(4=<out)* c(out=<3+ x)* c(2* x=<out)* (i2r(x) /i2r(10)))

In the last expression, there are two summations, each leading to their own part in
the resulting program. Looking closely at each summation, we see that they share the
upper limit for x, c(2* x=<out), which currently contains an integer multiplication
and when solved with respect to x contains the integer division. In the final result,
the second part of the expression has an upper limit on out, c(out=<6), which is a
constraint that the summation-removal rule introduces to ensure that the lower limit
of the summation (i.e., out- 3) is less than or equal to the upper limit (i.e., out% 2).

The original probability (i2r(x) /i2r(10)) occurs directly in the summa-
tions, and this indicates a limit of this implementation and approach. To be able to
handle a probability, the rewrite rules for summations must transform summations
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over the probability expression. There are limits to which series that can be trans-
formed currently; for instance, the sum of reciprocals (e.g.,

∑n
k=1

1
k ), known as a

harmonic series and variations hereof, such as generalized harmonic series, cannot
be handled by the current implementation. The current analysis is limited to finite
summations of at least order of 1, but a more extensive use of Mathematica [146]
that exploits more of Mathematica’s rewriting mechanisms may be able to handle
such series.

4.7 Related works

Probabilistic analysis is related to the analysis of probabilistic programs. Probabilis-
tic analysis is the analysis of programs with a normal semantics wherein the input
variables are interpreted over probability distributions. The analysis of probabilistic
programs analyses programs with probabilistic semantics wherein the values of the
input variables are unknown (e.g., flow analysis [108]).

In probabilistic analysis, it is important to determine how variables depend on
each other; however, already in 1976, Denning had proposed a flow analysis for re-
vealing whether variables depend on each other [36]. This was presented in the field
of secure flow analysis. Denning introduced a lattice-based analysis wherein she,
given the name of a variable, which should be kept secret, deduced which other vari-
ables should be kept secret to avoid the leaking of information. In 1996, Denning’s
method was refined by Volpano et al. into a type system, and for the first time, it was
proven sound [139].

Reasoning about probabilistic semantics is an area closely related to probabilistic
analysis, as they both work with nested probabilistic influences. Probabilistic anal-
ysis works on standard semantics and analyses them using input probability distri-
butions, where a probabilistic semantics allow for random assignments and proba-
bilistic choices [83] and is normally analysed using an expanded classical analysis
or verification method [33].

Probabilistic model checking is an automated technique for formally verifying
quantitative properties for systems with probabilistic behaviors. It is mainly fo-
cused on Markov decision processes, which can model both stochastic and non-
deterministic behaviours [52, 84]. This differs from probabilistic analysis in that it
assumes the Markov property.

In 2000, Monniaux applied abstract interpretation to programs with probabilis-
tic semantics and determined safe bounds for worst-case analysis [95]. Pierro et al.
introduced a linear mapping structure, a Moore-Penrose pseudo-inverse, instead of
a Galois connection. They used the linear structures to compare the ’closeness’ of
approximations as an expression using the average approximation error. Pierro et al.
further explored using probabilistic abstract interpretation to calculate the average
case analysis [40]. In 2012, Cousot and Monerau gave a general probabilistic ab-
straction framework [33] and stated, in section 5.3, that Pierro et al.’s method and
many other abstraction methods can be expressed in this new framework.
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When analysing probabilities, the main challenge is to maintain the dependencies
throughout the program. Schellekens defines this as Randomness preservation [124]
(or random bag preservation), which in his (and Gao’s [57]) case enables the tracking
of certain data structures and their distributions. They use special data structures, as
they found these suitable to derive the average number of basic operations. In another
approach [109, 141], tests in programs have been assumed to be independent of pre-
vious history, also known as the Markov property (the probability of true is fixed). As
Wegbreit remarked, this is true only for certain programs (e.g., linear search for re-
peating lists); for other programs, this is not the case (linear search for non-repeating
lists). The Markov property is the foundation of Markov decision processes, which
are used in probabilistic model checking [52]. Cousot et al. presented a probabilistic
abstraction framework wherein they divide the program semantics into probabilis-
tic behaviours and (non-)deterministic behaviours. They proposed the handling of
tests when it is possible to assume the Markov property and the handling of loops
using a probability distribution describing the probability of entering the loop in the
ith iteration. Monniaux proposed another approach for abstracting probabilistic se-
mantics [95]; he first lifts a normal semantics to a probabilistic semantics whereby
random generators are allowed and then uses an abstraction to reach a closed form.
Monniaux’s semantic approach uses a backward probabilistic semantics operating on
measurable functions. This is closely related to the forward probabilistic semantics
proposed earlier by Kozen [83].

An alternative approach to probabilistic analysis is based on the symbolic exe-
cution of programs with symbolic values [58]. Such techniques can also be used on
programs with infinitely many execution paths by limiting the analysis to a finite set
of paths at the expense of the tightness of probability intervals [120].

4.8 Conclusion

The probabilistic analysis of program has seen renewed interest for analysing pro-
grams with respect to energy consumptions. Numerous embedded systems and mo-
bile applications are limited by restricted battery life. In this paper, we describe a
rewrite system that derives a resource probability distribution for programs given
distributions of inputs. The system can analyse programs in a subset of C where we
have known distributions of input variables. From the original program, we create
a probability distribution program, where we remove calls to original functions and
transform them into closed form. We have presented the transformation rules for each
step and outlined the implementation of the system. We discuss over-approximating
rules and their influence on the accuracy of the output probability, and we show that
our analysis improves on related analysis in the literature.

4.9 Afterword

In this chapter, we have presented a novel technique for probabilistic resource anal-
ysis whereby the analysis is seen as a program-to-program transformation. The anal-
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ysis was evaluated on a series of small programs, for which it was able to find accu-
rate probability distributions. The implementation of the analysis was naively con-
structed which is reflected in its execution times. For instance, the implementation
spent an hour analysing the sum4-program; the majority of that hour was spent open-
ing and closing the connection to Mathematica. A re-implementation using Mathe-
matica would benefit from being implemented in C; for which there exists a library
providing direct access to Mathematica operations on C objects.

A missing related work is an article by Burstall and Darlington [22], who presents
a transformation-based system that transforms recursive programs in the form of re-
currence equations into equivalent and perhaps more efficient recursive programs. By
equivalent, we mean a program that has the same input-output relation. Our system is
not intended to preserve the input-output relation, and whereas they may produce re-
cursive programs, we are interested in a closed-form expression. However, the above
rules could perhaps be reformulated using the easy-to-comprehend notation that they
use.

The set of C programs the analysis handles well is limited by (i) the discrete
resource model, e.g., the utilized resource model has no dependencies between the
resource usages; (ii) the program transformation from C to the functional represen-
tation; and (iii) the capabilities of the probabilistic analysis. Since the underlying
probabilistic analysis cannot handle lists or arrays, the resource analysis can only
handle programs with arrays or lists if the resource model and slicing remove them.
Furthermore, the transformation must be able to translate the sliced program into
the functional representation, and the probabilistic analysis must be capable of trans-
forming that program into a closed form. The three aspects together cloud the picture
of which C programs can be handled.

Since the underlying probabilistic analysis is not able to handle lists or other non-
primitive types, the overall analysis can only handle programs with e.g. lists if these
are removed by the resource model and slicing. This is a challenge that we will solve
implicitly in the approaches presented in the following chapter; when employing
an existing analysis that handles such types, both approaches may infer probability
bounds for programs with such types.

The above presented rules where sufficient to analyse the test programs, however,
more rules would be needed for more complex programs: in the following cases, the
technique returns trivial bounds (i) when the body of a loop is reduced to a recur-
rence in-equations instead of recurrence equations, e.g., see Figure 4.12a, since there
is only a rewrite rule, i.e., “rem(ArgDev)”, for removing argDev, and (ii) when
the function arguments are interdependent since neither can be reduced to a form
whereby the “rem(ArgDev)”-rule can be applied, e.g., see Figure 4.12b. These prob-
lems may be encountered using the techniques of cost analysis [7, 127].
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f(i,y) = if i>=2 then y else f(i+1, g(y))
g(y) = if (*) then y+1 else y

(a)
dep(x,y) = if y<=1 then x else dep(y-1,x-1)

(b)

Fig. 4.12: (a): A program where * indicates that the we do not know whether the test evaluates
to true or false. Thus, we cannot derive an accurate solution for the loop body. (b):
A program where the argument values are dependent.
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Probabilistic Output Measures based on existing
analyses

In the previous chapters, we showed how a discrete probability distribution and a
program can be used for deriving probability bounds for output events and discrete
resource usages. In this chapter, we take a step back and return to the general case
whereby the input is described by a probability measure.

Recall that a program semantics |prg| is considered to be a relation between input
X and output Y , that is, |prg| ⊆ X×Y . In this chapter, we prove that we may derive
probability bounds for output events from an over-approximation pre]|prg| : ℘(Y )→
℘(X) of the pre-image pre |prg| : ℘(Y ) → ℘(X), i.e., pre |prg|(A) ⊆ pre]|prg|(A),
and a probability measure over input events.

This chapter is based on the idea of “reusing existing analyses”, either forward
or backwards, to obtain the over-approximation of the pre-image. We consider an
analysis to be given as a function pre]|prg| : ℘(Y )→ ℘(X) (backwards) or a function

img]|prg| : ℘(X) → ℘(Y ) (forwards) that over-approximates the concrete pre |prg|
and img |prg|, respectively. An analysis |prg|] is typically given in some abstract
domain using an abstraction from the concrete domain to the abstract domain, but
we assume a concretization function to avoid complications of the abstract domain.
For instance, a forward interval analysis is actually a function |prg|] : Interval →
Interval rather than img]|prg| : ℘(R)→ ℘(R); however, we assume that we compose
with the concretization function γ : Interval → ℘(R) and the abstraction function
α : ℘(R)→ Interval, that is, img]|prg| = γ ◦ |prg|] ◦ α.

Foreword. The content of this chapter is unpublished.

5.1 Preliminaries

We refer to Appendix A for the basic definitions of relations and functions and their
properties and to Chapter 2.2 for the preliminary results of inducing probabilities via
functions.
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5.2 Backwards analysis

Let a program prg from input X to output Y have a semantics |prg| : X → Y that
is a measurable function, i.e., |prg| : (X,X ) → (Y,Y). Given an input probability
measure µ : X → [0, 1], the probability of an output event A ∈ Y is defined as the
input probability of its pre-image pre |prg|(A), namely, µ(pre |prg|(A)). If the |prg|
is clear from the context, it will be omitted.

In this section, we do not have pre(A); instead, we have a pre-image over-
approximating backwards analysis, e.g. [31], that is a function pre] : ℘(Y )→ ℘(X)
such that pre(A) ⊆ pre](A). We want to use pre] to provide upper and lower prob-
ability bounds for all output events. This presents us with some challenges.

A summary of the approach is as follows. First, we must ensure that pre](A) is a
measurable input event when A is (a measurable) output event. We construct a new
function pre ′], where pre ′](A) is a (measurable) input event, i.e., pre ′](A) ∈ X . To
do this, we define a new function ↑ : ℘(X) → X , which is increasing, i.e. B ⊆ ↑B.
Then, we define pre ′](A) , ↑pre](A), which produces measurable input events for
all subsets of the output and specifically for the measurable output events. Second,
we need to define a dual function pre ′[ : ℘(Y ) → ℘(X) that under-approximates
the pre-image, i.e. pre(A) ⊇ pre ′[(A). We use pre ′] to define pre ′[ and show that
if pre ′](A) is a measurable input event, then pre ′[(A) is as well (and vice versa).
Now, we are able to define upper and lower probability bounds (Theorem 5.10).
Afterwards, we discuss how to choose ↑ to achieve the tightest possible bounds and
when such a best ↑ exists.

We start by defining an order between the pre-image functions based on the rela-
tionship of their outputs.

Definition 5.1. Let pre, pre], pre[ : ℘(Y ) → ℘(X) be functions. The function pre]

over-approximates pre, i.e. pre � pre], if pre(A) ⊆ pre](A). The function pre[

under-approximates pre, i.e. pre[ � pre, if pre[(A) ⊆ pre(A).

Now, we introduce the concept of a dual function, which we can use to define such
under-approximating pre-images based on over-approximating pre-images. The du-
ality also provides a useful relationship between the upper and lower probability
bounds; see e.g. Theorem 5.10.

Definition 5.2. Let f : ℘(Y ) → ℘(X) be a function. A function f̃ : ℘(Y ) → ℘(X)

is dual of f if f̃(A) = f(A{)
{
.

Because |prg| is total, we can use the dual of pre] to define a function pre[ that
under-approximates pre, as shown by the following lemma.

Lemma 5.3. Let pref , pre
]
f : ℘(Y ) → ℘(X) be functions such that pref is the pre-

image of a measurable function f : X → Y and pref � pre]f . Then, the dual pre[f ,

pre]f (A
{)

{
under-approximates the pre-image pref , that is,

pre[f � pref .



5.2 Backwards analysis 63

Proof. Since f is total, pref (A) ∪ pref (A
{) = X . Thus,

pre[f (A) = pre]f (A
{)

{
= X\pre]f (A{) =

(
pref (A) ∪ pref (A

{)
)
\pre]f (A{)

= pref (A) \ pre]f (A{)

⊆ pref (A).

In the literature, another definition of dual functions is sometimes used, namely,
f̃(A) = f(A) \ f(A{); in our case, they are equivalent.

Proposition 5.4.
pre[f (A) = pre]f (A) \ pre

]
f (A

{)

Proof. We first prove that pre]f (B
{)

{ ⊆ pre]f (B): we obtain pre]f (Y ) = X by
the assumption pref (Y ) ⊆ pre]f (Y ) and pref (Y ) = X because f is total. Thus,

pre]f (B
{)

{
= X \ pre]f (B{) = pre]f (Y ) \ pre]f (B{) =

(
pre]f (B) ∪ pre]f (B

{)
)
\

pre]f (B
{) = pre]f (B) \ pre]f (B{) ⊆ pre]f (B). Based on that, we obtain pre[(B) =

pre]f (B) \ pre]f (B{) = pre]f (B) ∩ pre]f (B
{)

{
= pre]f (B

{)
{
= p̃re]f .

Monotonicity1 becomes interesting later when we create upper and lower probability
bounds because this ensures that the bounds also become monotonic, as with the
probability measures.

Lemma 5.5. If pre]f is monotone then pre[f is monotone.

Proof. AssumeA,B ⊆ X , whereA ⊆ B and defineC = (B\A); then, pre[f (B) =

pre[f (A]C) = pre]f (A]C)\pre
]
f ((A ] C)

{
) = pre]f (A]C)\pre

]
f (A

{∩C{)) ⊇
pre]f (A ] C) \ pre

]
f (A

{) ⊇ pre]f (A) \ pre
]
f (A

{) = pre[f (A)

The intention is to measure the over-approximated and under-approximated pre-
images of each output event A using the input probability measure µ : X → [0, 1].
However, we can only do this if pre](A) and pre[(A) both exist in X . However, this
is not always the case, as shown in the following example.

Example 5.6. Let f : ({a, b}, {∅, {a, b}}) → ({c, d}, ℘({b, c}) be a measurable
function whereby f(a) = f(b) = c (so that pref ({d}) = ∅), and let the pre-
image over-approximating function pre] be defined such that pre]f ({d}) = {b}.
Here, pre]f ({d}) /∈ {∅, {a, b}}.
For these cases, we construct a new function that further over-approximates the pre-
images using an abstraction function ↑.
Definition 5.7. Let (X,X ) be a measurable space. A function ↑ : ℘(X) → X is an
abstraction if A ⊆ ↑A.
1 A function f : ℘(X)→ ℘(Y ) is monotone if ∀A,B ∈ ℘(X), A ⊆ B ⇒ f(A) ⊆ f(B).
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Such an abstraction ↑ : ℘(X)→ X can always be defined given a mapping f : X →
X , where x ∈ f(x), i.e. ↑B ,

⋃
b∈B f(b).

The composition pre ′] of a pre-image over-approximation pre] and an abstrac-
tion ↑ both over-approximates the pre-image and produces measurable input events.

Lemma 5.8. Let pre : ℘(Y ) → ℘(X) be a pre-image, let pre] be its
over-approximation, i.e. pre � pre], and let ↑ : ℘(X)→ X be an abstraction; then,

pre � ↑ ◦ pre] and ↑pre](A) ∈ X

Proof. The proof is trivial using the definitions of ↑ and �.

When the over-approximated pre-images of the output events are measurable in
the input measure space, their dual under-approximated pre-images are also measur-
able in the input space, as the following lemma states.

Lemma 5.9. Let f : (X,X )→ (Y,Y) be a measurable function, let pre]f : ℘(X)→
℘(Y ) be a function whereby pref � pre]f , and let pre[f be the dual of pre]f . Then,
for all A ∈ Y ,

pre]f (A) ∈ X if and only if pre[f (A) ∈ X

Proof. LetA ∈ Y . The following are consequences of σ-algebras being closed under
complements, of the duality of pre[f and pre], and of the assumed measurability of
A.
“⇒”: A ∈ Y ⇒ A{ ∈ Y ⇒ pre]f (A

{) ∈ X ⇒ pre]f (A
{)

{ ∈ X ⇒ pre[f (A) ∈ X

“⇐”: A ∈ Y ⇒ A{ ∈ Y ⇒ pre[f (A
{) ∈ X ⇒ pre]f (A

{{)
{
∈ X ⇒ pre]f (A)

{ ∈
X ⇒ pre]f (A) ∈ X

This concludes the series of lemmas, and we can now present the first theorem pro-
viding upper and lower probability bounds for all output events.

Theorem 5.10. Let f : (X,X )→ (Y,Y) be a measurable function, let (X,X , µ) be
an input probability space, and let µf : Y → [0, 1] be the output probability measure,
i.e. µf = µ ◦ pref . Furthermore, let pre]f : ℘(Y ) → ℘(X) over-approximate pref ,

i.e. pref � pre]f , and let ↑ : ℘(X)→ X be an abstraction. We let pre ′]f , ↑pre]f and

pre ′[f (A) , pre ′]f (A
{)

{
, and we define upper µ] and lower µ[ probability bounds of

µf as µ[f , µ ◦ pre ′[f and µ]f , µ ◦ pre ′]f . Then,

µ[f (A) ≤ µf (A) ≤ µ]f (A)

and
µ[f (A) = 1− µ]f (A{)

Furthermore, if pre]f and ↑ are monotonic, then µ]f and µ[f are monotonic.
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Proof. By Lemmas 5.8 and 5.9, pre ′]f (A), pre
′[
f (A) ∈ X and pre ′[f � pref �

pre ′]f . Furthermore, by the monotonicity of µ, we obtain µ(pre ′[f (A)) ≤
µ(pref (A)) ≤ µ(pre ′]f (A). Thus, µ[f (A) ≤ µf (A) ≤ µ]f (A). We obtain the second
part by Proposition 2.16, i.e., µ(A) = 1−µ(A{) and the definitions of µ[f and µ]f , that

is, µ[f (A) = µ(pre ′[f (A)) = 1−µ(pre ′[f (A)
{
) = 1−µ(pre ′]f (A{)) = 1−µ]f (A{).

Finally, since µ, pre]f and α are monotonic, then by composition and Lemma 5.5,

µ ◦ pre ′]f and µ ◦ pre ′[f are monotonic.

5.2.1 Precision of probability bounds

We are clearly interested in the tightest possible probability bounds. In some cases,
we can find the best possible bound, but this does not hold in general. To achieve the
tightest probability bounds, the abstraction ↑A should return not only some increased
element that is in the σ-algebra X but also the least element of those. However, such
a least element does not necessarily exist.

Lemma 5.11. Let (X,X ) be a measurable set, and let A ∈ ℘(X); there does not
always exist a least B ∈ X such that A ⊆ B.

Proof. Proof by counterexample. A set A ⊆ X is co-countable if A{ is countable.
We define a σ-algebra X to be that generated by the collection of all countable and
co-countable subsets of X . Note that since each singleton set is countable, they all
exist in X .

Now, let A ∈ ℘(X) be uncountable with an uncountable complement A{. We
will show (by contradiction) that there is no least B ∈ X such that A ⊆ B. As-
sume that there is a least set B ∈ X that contains A. Then, B would need to be
uncountable, and according to the definition of X , B{ would be countable. Since
B{ is countable and A{ is uncountable, B{ ⊂ A{. This is equivalent to A ⊂ B,
which causes B \ A to contain at least one element; let that element be x. Because
{x} is a singleton set, {x} ∈ X , and because X is closed under countable intersec-
tion, B \ {x} ∈ X . This implies that there is another set, namely, B \ {x}, such
that A ⊆ B \ {x} ⊂ B, and thus B is not the least set in X that contains A - this
contradicts our assumption.

In some cases where the σ-algebra is a complete lattice, such a least element does ex-
ist. In the following, we will provide two cases wherein the σ-algebras are complete
lattices; we will start with the easy case, namely, power sets.

Lemma 5.12. A power set ℘(X) of a set X is a σ-algebra.

Lemma 5.13. A power set ℘(X) of a set X is a complete lattice.

If the σ-algebra is a complete lattice, then the abstraction is the identity function,
i.e. ↑= id. In the second case, we will use a special σ-algebra constructed from a
countable partition over the inputs.
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Definition 5.14. A partition T of a set X is a set of disjoint subsets of X , where
∅ /∈ T and

⋃
T = X . If T is a finite/countable/infinite set, we say that T is a

finite/countable/infinite partition.

In contrast to case one, the following is more general in that the σ-algebra need not
be a power set and is more limited in that the partition it uses must be countable.

Theorem 5.15. Let X be a set, and let T be a countable partition of X . Let
(X,σ(T )) be a measurable space, and let A ⊆ X; then, there exists a least ele-
ment B in X such that A ⊆ B.

Proof. Let I ⊆ N be a set with as many elements as T , i.e. |T | = |I|. Then, σ(T ) is
isomorphic to ℘(I) 2. Since such a power set is a complete lattice (By Lemma 5.13),
X is as well. Given A, we define B =

⋂{C ∈ X |A ⊆ C}, where A is clearly a
subset of B, and (a) B is in X , and (b) it is the least because X is a complete lattice.

The important point in the above theorem is that the partition is countable; in general,
a σ-algebra is not a complete lattice, as indicated in Lemma 5.11. For instance, in
the B(R) algebra, every singleton set of R exists in B(R). If a B(R) was a complete
lattice, this would imply that all subsets of R are in B(R). However, the cardinalities
are different, that is, |B(R)| = 2ℵ0 and |℘(R)| = 22

ℵ0 [134], which indicates that
not all subsets of R are in B(R). Thus, B(R) is not a complete lattice.

5.3 Forward analysis

Again, let |prg| : X → Y be a function, and recall that imgf (A) , {f(x) | x ∈ A}.
In this section, we present a method for computing upper and lower probability
bounds for output events provided a probability measure µ : X → [0, 1] over the
input X and a reusable forward analysis, that is, a computable over-approximation
img]|prg| : ℘(X) → ℘(Y ) of the image-function img |prg| : ℘(X) → ℘(Y ), i.e.,

img |prg| � img]|prg|. To compute the probability of the events, we only need to

define a computable pre-image over-approximating function pre]f , and then, we can
apply Theorem 5.10 and obtain Theorem 5.15.

We may define the pre-image function based on the image function since the
image function on the singletons defines the program semantics by definition.

Lemma 5.16. Let f be a function with image-function imgf : ℘(X)→ ℘(Y ); then,

pref (A) = {x ∈ X | imgf ({x}) ∩A 6= ∅}.

Proof. When f is a function, imgf ({x}) = {f(x)}. Thus, the above is a direct
consequence of the definition of pref , i.e. pref (A) , {x ∈ X | f(x) ∈ A}.

2 Two partially ordered sets X and Y are isomorphic if there exist an order-preserving bijec-
tion f : X → Y with an existing inverse f−1 that is also order preserving.
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In our case, we do not have an image function; rather, we have an over-approximation
of the image-function img]f , i.e., imgf � img]f . We may instead use that to define
an over-approximation of the pre-image function pre]f .

Lemma 5.17. Let f be a function with the image function imgf : ℘(X) → ℘(Y )

and pre-image function pref , and let img]f be a function whereby imgf � img]f . If

we let pre]f (A) , {x ∈ X | img]f ({x}) ∩A 6= ∅}, then pre]f (A) ⊇ pref (A).

Proof. pref (A) = {x ∈ X | imgf ({x}) ∩ A 6= ∅} ⊆ {x ∈ X | img]f ({x}) ∩ A 6=
∅} = pre]f (A).

For the subclass whereby X is finite, any event A ∈ ℘(Y ) is computable. However,
whenX is infinite, the pre-images are uncomputable, i.e. they require infinitely many
tests/computations. An exception is the trivial σ-algebra Y = {∅, Y } since the pre-
images of these elements are always ∅ and X . In the following, we will propose a
computable and monotone pre]f that is based on img]f and a finite partition of input
X .

Lemma 5.18. Let f : (X,X ) → (Y,Y) be a measurable function, let the function
img]f : ℘(X)→ ℘(Y ) over-approximate imgf , and let T denote the set of all parti-

tions over X . We define a function pre]f : T→ (℘(Y )→ ℘(X)) as

pre]f [T ](B) ,
⋃
{t ∈ T | img]f (t) ∩B 6= ∅}

Then,
pref � pre]f [T ]

Proof.

pref (B) = {x ∈ X | imgf ({x}) ∩B 6= ∅}
⊆ {x ∈ X | t ∈ T ∧ x ∈ t ∧ imgf ({t}) ∩B 6= ∅}
⊆ {x ∈ X | t ∈ T ∧ x ∈ t ∧ img]f ({t}) ∩B 6= ∅}
⊆
⋃
{t ∈ T | img]f ({t}) ∩B 6= ∅}

= pre]f [T ](B)

Proposition 5.19. pre]f [T ] is closed under union, i.e. pre]f [T ](
⋃
A∈AA) =⋃

A∈A pre]f [T ](A).

Proof.

a ∈ pre]f [T ](A ∪B)

⇔ ∃t ∈ T : a ∈ t ∧ img]f (t) ∩ (A ∪B) 6= ∅
⇔ ∃t ∈ T : a ∈ t ∧ (img]f (t) ∩A 6= ∅) ∨ (img]f (t) ∩B 6= ∅)
⇔ ∃t ∈ T : (a ∈ t ∧ img]f (t) ∩A 6= ∅) ∨ (a ∈ t ∧ img]f (t) ∩B 6= ∅)
⇔ a ∈ pre]f [T ](A) ∪ pre

]
f [T ](B)
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Corollary 5.20. For any partition T over X , pre]f [T ] is monotone.

We can now apply Theorem 5.10 to this computable pre][T ] and obtain com-
putable upper and lower probability bounds for the output events.

Theorem 5.21. Let (X,X , µ) be a probability space, and let f : (X,X ) → (Y,Y)
be a measurable function that induces the output probability measure µf : Y →
[0, 1], i.e. µf = µ ◦ pref .

Given a function img]f : ℘(X) → ℘(Y ) such that imgf � img]f , a finite parti-
tion T over X , and a monotone abstraction ↑ : ℘(X)→ X , we let
pre ′]f [T ](A) , ↑

(⋃{t | ∃t ∈ T : img]f (t) ∩A 6= ∅}
)

and

pre ′[[T ]f (A) , pre ′]f [T ](A
{)

{

and we define µ]f , µ ◦ pre ′]f [T ] and µ[f , µ ◦ pre ′[f [T ]. Then,

(i) µ[f (A) ≤ µf (A) ≤ µ]f (A)
(ii) µ[f (A) = 1− µ]f (A{), and

(iii) µ[f and µ]f are monotone.

Proof. The function pre]f [T ] over-approximates pref (by Lemma 5.18), and it is
monotone (by Proposition 5.20). Thus, the above is a direct consequence of Theo-
rem 5.10.

5.3.1 Choice of partition

Recall that we assumed that we knew the input probability measure, and thus we
know the input space (X,X ). This provides us a better basis for choosing a good
partition. When we choose the partition T such that the elements t ∈ T are measur-
able in the input space X , i.e. t ∈ X , we can simplify the expressions for the upper
and lower probability bounds. When the elements are measurable, pre]f [T ](A) ∈ X
for every output event A. This reduces the abstraction ↑ to the identity function, and
we can unfold the µ]f and µ[f into a simpler form; see Theorem 5.23.

Lemma 5.22. If T is a partition whereby T ⊆ X , then pre]f [T ](A) ∈ X .

Proof. Let B ∈ ℘(Y ), and let T ⊆ X by any finite partition over X . By the defini-
tion of T , t ∈ T ⇒ t ∈ X . Since T is finite and X is closed under countable union,
A ∈ ℘(T )→ A ∈ X . The set

⋃{t ∈ T | img]f ({t})∩B 6= ∅} ∈ ℘(T ), and thereby,
it also exists in X .

Theorem 5.23. Let f : (X,X ) → (Y,Y) be a measurable function with the image
function imgf and the pre-image function pref , let (X,X , µ) be a probability space,
let img]f : ℘(X) → Y be a function that over-approximates imgf , and let T be a
finite partition over X such that T ⊆ X . Then,
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µ]f (A) =
∑

t∈T,img](t)∩A6=∅
µ(t)

µ[f (A) =
∑

t∈T,img](t)⊆A
µ(t)

Proof. Let TA = {t ∈ T | img]f (t)∩A 6= ∅}, whose elements are pair-wise disjoint
since Ta ⊆ T and T is a partition. In addition, let ↑ be the identity function id.

µ]f (A) = µ(id(pre]f [T ](A))) = µ(
⋃
{t ∈ T | img]f (t) ∩A 6= ∅}) = µ(

⋃

t∈TA

t)

=
∑

t∈TA

µ(t) =
∑

t∈T,img]
f (t)∩A6=∅

µ(t)

For the under-approximating part, we first show that pre[f [T ](A) = {t ∈ T |
img]f (t) ⊆ A}.

pre[f [T ](A) = id(pre]f [T ](A)) \ id(pre]f [T ](A
{))

=
⋃
{t ∈ T | img]f (t) ∩A 6= ∅} \

⋃
{t ∈ T | img]f (t) ∩A{ 6= ∅}

=
⋃
{t ∈ T | img]f (t) ∩A 6= ∅ ∧ ¬

(
img]f (t) ∩A{ 6= ∅

)
}

=
⋃
{t ∈ T | img]f (t) ∩A 6= ∅ ∧

(
img]f (t) ∩A{ = ∅

)
}

=
⋃
{t ∈ T | img]f (t) ∩A 6= ∅ ∧

(
img]f (t) ⊆ A

)
}

=
⋃
{t ∈ T | img]f (t) ⊆ A}

Now, we may use a similar argument as in the over-approximating case, where TA =
{t ∈ T | img]f (t) ⊆ A} (the elements are pair-wise disjoint, and TA is a subset of
the partition T , whose elements are pair-wise disjoint).

µ(pre]f [T ](A)) = µ(
⋃
{t ∈ T | img]f (t) ⊆ A}) = µ(

⋃

t∈TA

t)

=
∑

t∈TA

µ(t) =
∑

t∈T,img]
f (t)⊆A

µ(t)

This concludes the proof.

5.3.2 Tightest probability bounds

When img] is monotone, the choice of T influences the tightness of the probability
bounds. Therefore, we provide some observations on that choice.

Definition 5.24. A partition T over X is finer than T ′ if every element of T is a
subset of an element in T ′. The singleton partition T overX consists of the singletons
T = {{x} | x ∈ X}.
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Corollary 5.25. The finest partition T over X is the singleton partition.

Lemma 5.26. Let T and T ′ be two partitions over X , where T is finer than T ′. If
img]f is monotone, then pre]f [T ] � pre]f [T

′].

Proof. We show that a ∈ pre]f [T ](A) ⇒ a ∈ pre]f [T
′](A): The assumption a ∈

pre]f [T ](A) implies that there is t ∈ T such that a ∈ t∧ img]f (t)∩A 6= ∅. Since T is
finer than T ′, for any t ∈ T , there exist a t′ ∈ T ′ such that t ⊆ t′, that is, a ∈ t⇒ a ∈
t′. Furthermore, due to monotonicity of img]f , t ⊂ t′ ⇒ img]f (t) ⊆ img]f (t

′). We
now recall that ifB ⊆ B′, thenB∩A 6= ∅ ⇒ B′∩A 6= ∅, which applies to the over-
approximated images img]f (t) ⊆ img]f (t

′) img]f (t) ∩ A 6= ∅ ⇒ img]f (t
′) ∩ A 6= ∅.

Hence, we find that ∃t ∈ T : a ∈ t ∧ img]f (t) ∩ A 6= ∅ ⇒ ∃t′ ∈ T ′ : a ∈ t′ ∧
img]f (

′) ∩A 6= ∅. Thus, a ∈ pre]f [T
′](A).

Corollary 5.27. Let img]f be monotone. If T is the singleton partition over X , then

pre]f [T ] is the minimal over-approximation of pref , that is, ∀T ′ ∈ T : pre]f [T ] �
pre]f [T

′].

Proof. A consequence of Corollary 5.25 and Lemma 5.26.

Lemma 5.28. For a countable infinite X , there is no finest finite partition T .

Proof. By contradiction: Assume that we have a finest finite partition T . SinceX has
ℵ0 elements and T has n ∈ N elements, there must exist a t ∈ T such that |t| ≥ 2;
thus, x ∈ t such that t \ {x} 6= ∅. Thus, the partition T ′ , (T \ t) ] (t \ {x}) ] {x}
is also a partition, and it is a finer partition than T . Thus, T is not the finest partition.

In some cases, when the probability space (X,X , µ) consists of a finite σ-algebra, it
is not important to have a finest partition T ; ifX is a finite σ-algebra, then there exists
a finite partition T overX such that σ(T ) = X [69]. In these cases, the partition T is
measurable. Thus, if we choose a partition T ′ finer than T , then the best abstraction ↑
abstracts pre[T ′](A) to pre[T ](A); if we choose an incomparable partition T ′′, then
↑ pre[T ′′](A) ⊇ pre[T ](A) since the pre[T ′′](A) will be abstracted to the set of
T -partition elements with which it overlaps.

5.4 Combining analyses

In this section we assume that we have two forwards or backwards analyses and want
to combine them into a stronger result. For the case where we have two pre-image
over-approximating functions pre]f , pre

′]
f : ℘(Y )→ ℘(X) we show how to combine

them to a tighter pre-image over-approximating function pre ′′]f : ℘(Y )→ ℘(X). For
the cases where we have one pre-image over-approximating function and one image
over-approximating function, or two image over-approximating functions, we can
apply the same method after creating the pre-image over-approximating function(s).
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However, in case of two image over-approximating functions it may be more con-
venient to combine them directly -we shall see an example of this in Section 5.5.3
page 78.

First, we combine two backwards analysis to a sometimes stronger result.

Lemma 5.29. Let pref , pre
]
f , pre

′]
f : ℘(Y ) → ℘(X) be three functions such that

pref � pre]f and pref � pre ′]f . Then

pref (A) ⊆ pre]f (A) ∩ pre ′
]
f (A).

Proof. Let x ∈ pref (A) then x ∈ pre]f (A) and x ∈ pre ′]f (A) by assumption. Thus,

x ∈ pre]f (A) ∩ pre ′]f (A).

Proposition 5.30. If pre]f (A) ∈ X and pre ′]f (A) ∈ X whenever A ∈ Y , then

(pre]f (A) ∩ pre ′]f (A)) ∈ X whenever A ∈ Y .

Proof. By Proposition 2.5,X is closed under countable intersections and specifically
the intersection of any two elements in X .

Equivalently, if we have two image-over-approximating functions, the follow-
ing lemma allows us to combine them into a perhaps stronger result. The lemma is
related to Lemma 5.29.

Lemma 5.31. Let imgf , img]f , img
′]
f : ℘(X) → ℘(Y ) be three functions such that

imgf � img]f and imgf � img
′]
f . Then,

imgf (A) ⊆ img]f (A) ∩ img
′]
f (A).

Proof. Let x ∈ imgf (A); then, x ∈ img]f (A) and x ∈ img ′
]
f (A) by assumption.

Thus, x ∈ img]f (A) ∩ img ′
]
f (A).

5.5 Case studies

In this section, we describe three experimental results for forward analysis; the anal-
ysis used will be sign, interval and termination analysis. In the first two cases, we
assume that the analysed programs are terminating, but in the last case, we have cho-
sen a non-terminating program. When a program output may yield a non-terminating
computation, it influences the lower bounds, and we show how to combine a sign
analysis and a termination analysis to achieve tight lower bounds (and probability
bounds for non-termination).
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5.5.1 A sign analysis

In this first case, we analyse a terminating program sqr in Figure 5.1a that computes
the square of x and returns the result via the variable y. The program sqr has the
input-output function |sqr| : Z→ Z

|sqr|(n) = n · n.

In the following, we use Z+ and Z− as abbreviations for all the positive and nega-
tive numbers, respectively, in Z. We assume the input probability space (Z,Z, µ) as
defined in Figure 5.1b.

int sqr(int x){
int y;
y := x;
y := y*x;
return y;

}

(a)

t ∈ T µ(t)

Z− 1/3

{0} 1/4

Z+ 5/12

(b)

t ∈ T img]|sqr|,SIGN

Z− Z+

{0} {0}
Z+ Z+

Z− ∪ {0} Z+ ∪ {0}
Z− ∪ Z+ Z− ∪ Z+

Z+ ∪ {0} Z+ ∪ {0}
Z Z

(c)

Fig. 5.1: The analysed program (a), the input distribution (b) and the sign-analysis output (c).

We will demonstrate the consequences of the partition choice, and thus, we anal-
yse sqr using three different partitions T1 = {Z−, {0},Z+} T2 = {{0},Z+∪Z−},
and T3 = {Z− ∪ {0},Z+}.

We will use a black-box sign analysis that provides a monotone over-approxi-
mation of the program’s image function img]|sqr|,SIGN

: ℘(Z) → ℘(Z); see Fig-
ure 5.1c. More specifically, we will use a sign analysis that is an extension of
that described in chapter 7 in [114]. We let the measurable space of the output be
℘({Z−, {0},Z+}). This analysis assumes the independence of the variables and
provides a monotone function from the power set over inputs to the power set over
outputs.

In this sign analysis, a program is seen as a transition system over program points
whereby a state, i.e. a mapping from the program variables Var to the values Z, is
transformed between program points. The program’s input and output are the states at
the program’s initial and final program points, respectively. The sign analysis trans-
forms abstract states, i.e. a mapping from the program variable Var to a set of possi-
ble signs Sign = ℘({NEG, ZERO, POS}), that is, Var → Sign. The analysis relies
on an abstraction function from values to signs αSign : ℘(Z) → ℘(Sign) and a
concretization function from signs to values γSign : ℘(Sign)→ ℘(Z).
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αSign(A) = {α′Sign(a) | a ∈ A} where α′Sign(n) =





POS n > 0

ZERO n = 0

NEG n < 0

γSign(S) =
⋃{γ′Sign(s) | s ∈ S} where γ′Sign(s) =





Z+ s = POS

{0} s = ZERO

Z− s = NEG

Instead of using the entire states as output, we extract the mapping for the specified
output variable y at the final program point. The pre-image functions can be indicated
by their result on each of Z−, {0}, and Z+.

pre |sqr|[T1](Z−) = Z+,

pre |sqr|[T1]({0}) = {0},
pre |sqr|[T1](Z+) = Z+,

pre|sqr|[T2](Z−) = Z− ∪ Z+,

pre|sqr|[T2]({0}) = {0},
pre|sqr|[T2](Z+) = Z− ∪ Z+,

pre|sqr|[T3](Z−) = ∅,
pre|sqr|[T3]({0}) = Z− ∪ {0},
pre|sqr|[T3](Z+) = Z+.

If we calculate the results of the output events Z− ∪ {0} and (Z− ∪ {0}){ = Z+),
they differ.

pre |sqr|[T1](Z+) = Z+

pre |sqr|[T2](Z+) = Z− ∪ Z+

pre |sqr|[T3](Z+) = Z+

pre |sqr|[T1](Z− ∪ {0}) = Z+ ∪ {0}
pre |sqr|[T2](Z− ∪ {0}) = Z
pre |sqr|[T3](Z− ∪ {0}) = Z− ∪ {0}

These results imply that the upper and lower probability bounds that they define dif-
fer on these two events; this affects both the upper and lower bounds since the lower
probability bound was defined using the dual of the over-approximating pre-images,
i.e., those of the complement set. More precisely, they define the upper and lower
probability bounds of the output events shown in Figure 5.2. The bounds created us-
ing the partition T1 is not surprisingly the most accurate; however, the fact that it is
as precise as the correct output probability measure is due to two facts: (i) the input
space Z = σ(T1) and (ii) the analysis that we used were precise for all partition
elements in T1.
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Fig. 5.2: The upper and lower probability bounds for pre]f [T1] (blue), pre]f [T2] (green solid),
pre]f [T3] (black dashed), together with the correct output probability (orange “+”)
for the measurable output event.

5.5.2 Interval Analysis

For these programs, we will not present the pre-image functions; rather, we only
provide the resulting upper and lower bounds, e.g. the image function of the program
f1 involves 10000 input combinations for the first result alone.

We analyse three terminating programs using the interval analysis, f2, g2, and
h, presented in Figure 5.3. The bodies of the programs f1 in Figure 5.3 [95] and g1
in Figure 5.33 were analysed by Monniaux’s experimental analysis. The last program
h in Figure 5.3 has been analysed with our reproduction of Monniaux’s experimen-
tal analysis. Monniaux’s analysis handles both probabilistic programs, i.e. programs
with random generators, and deterministic programs, whereas our presented tech-
nique only handles deterministic programs. His analysis unfolds the loops; therefore,
we will also unfold the loops and transform the test programs f1 and g1 into de-
terministic programs f2 and g2, where the results of the random generator calls are
given as input.

For the program f1, Monniaux produced three probability measures over out-
puts, where he experimented with what corresponds to finer and coarser partitions
and output σ-algebras. Since the input variables, i.e. the random generators, are inde-
pendent and since the measurable input space is the product of their spaces, the mea-
surable space can be uniquely defined by the measurable spaces for each variable.
We let our input partition correspond to the Monniaux’s parametrized abstraction for
the results to be comparable. All probability measures for the input variables are uni-
form distributions over [0, 1], and they are partitioned by a parameter N into equally

3 personal communication with D. Monniaux.
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double f1() {
double x=0.0;
int i;

for (i=0; i<4; i++)
x += drand48()*2.0-1.0;

return x; }

double f2 (double x1,
double x2, double x3,
double x4) {
double x;
x = 0.0;
x = x+ x1*2.0-1.0;
x = x+ x2*2.0-1.0;
x = x+ x3*2.0-1.0;
x = x+ x4*2.0-1.0;
return x;}

double g1() {
double x=0.0;
int i;
if(drand48()>0.5)

x += drand48()*2.0-1.0;
for (i=0; i<3; i++)

x += drand48()*2.0-1.0;
return x;}

double g2(double x1,
double x2, double x3,
double x4, double x5) {
double x;
x = 0.0;
if (x5 >= 0.5)

x = x+ x1*2.0-1.0;
x = x+ x2*2.0-1.0;
x = x+ x3*2.0-1.0;
x = x+ x4*2.0-1.0;
return x;}

int h(double x, int a) {
if(a<3){x=x+2;} else{x=x+3;}
if(a>=3){x=x+2;} else{x=x+3;}
if(a<2){x=x-10;} else{x=x;}
if(a>6||a<2){x=x+5;}else{x=x-5;}
return x;

}

Fig. 5.3: The test programs f1, f2, g1, g2, and h; the programs f1 and f2 are equivalent
and g1 and g2 are equivalent.

sized parts, e.g.,N = 2; then, the partition T = {[0, 0.5], [0.5, 1.0]}. The input space
is then created by the Cartesian product of the variables, e.g., T × T × T × T .

Results. In the following, Monniaux’s result will be presented in blue (to the left),
our results are presented in green (to the right), and the correct probability for the
interval is indicated by a solid black line. Each result will be titled with the program
name, the parameter N and the length of the input intervals; the output intervals are
shown using vertical white lines. The output intervals are indicated by white vertical
lines in the figures.

Program f. Figure 5.4 shows Monniaux’s upper bound and our upper bound results
for the program f are equivalent. One advantage is that our approach also provides
useful lower bounds; note that we used the interval analysis to provide an image-
function from reals to reals (since the program was terminating). Had we not used
the knowledge that the program terminated the lower bounds would all have been 0.

Program g. The results for program g (Figure 5.5) reveal some differences in the up-
per bounds between Monniaux’s experimental analysis and the presented technique;
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Fig. 5.4: The test results for program f1 and the similar f2 with equivalent input abstractions
and partitions, those of length 1/10; above, the output events are intervals of length
2, and below the output events are intervals of length 1.

the lower bounds provided by our approach are all 0. In the first example, we have
used the partition {[0, 0.33], [0.33, 0.67], [0.67, 1.0]} for all inputs (they are indepen-
dent). Here, we obtain the upper probability bound 83% for the output [0, 1] (com-
pared to Monniaux’s 108% or, 100% when reducing to the obvious maximum upper
bound.). One question concerns where the imprecision stems from; to answer this,
we changed the partition of the variable x5 so that the condition in the if-expression
could be determined to be only true or only false. This reduced the upper bounds
1-2% e.g., from 83% to 81% for interval [0, 1]. However, this is still imprecise when
comparing to the correct result shown as the solid black lines, e.g., 32% for interval
[0, 1]. From this observation, we may conclude that the abstract domain/intput parti-
tion is too imprecise and a refinement is needed. As expected after the discussion on
choosing the “best” partition (and as Monniaux noted when evaluating his results)
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Fig. 5.5: The test results for program g1 and the similar g2 with equivalent input abstractions
and partitions, those of length 1/3. The output events are intervals of length 1.

when we choose a finer input partition/abstract domain, we obtain more precise re-
sults. We saw this in the results for f.

A natural question is when can we use coarse analyses? One answer is that it
provides guarantees such that “at least 95% of the output lies in [−3, 3] regardless of
the probability distribution of x5”.

Program h. The difference between the results for g arise from the treatment of the
if-expression if b then e1 else e2. Monniaux’s experimental analysis [95]
is a forward analysis, and for each input t (corresponding to the partition ele-
ments), he computes the possible output and the associated probabilities. For an if-
expression, Monniaux’s correct analysis computes whether b may be true or may be
false and finds two sets of outputs: the possible output Oe1 of e1 and the possible
output Oe2 of e2. If b may be true, the analysis assigns the input probability of t,
namely, µ(t), to Oe1, and if b may be false, the analysis also assigns µ(t) to Oe2.
The upper probability bound of an output eventA is the sum of “probabilities” of the
outputs that overlap with A. Thus, when A overlaps with both Oe1 and Oe2, Monni-
aux’s analysis calculates µ(t) + µ(t) as the upper bound, whereas µ(t) suffices (and
is the upper bound calculated by the technique presented in this paper). In summary,
the probability that an output A is the probability of each input p with the feasible
path with output in A multiplied by the number n of these feasible paths, i.e., p · n.

To show how this affects the results, we have analysed program h for the proba-
bilities of the output events [0, 1] and [10, 11]. We assume an input measure such that
x ∈ [0, 1] with probability 1, and there is a 33.33% chance of a ∈ {0, 1, . . . , 6} and
an 66.67% chance of a ∈ {7, 8, 9, 10}. Thus, the correct probability of the output
[0, 1] is 33.33% and that of [10, 11] is 66.67%. In program h there are several feasible
execution paths from each partition element to an output; each path adds either 0 to
the input variable x or 10 to it. The following table indicates the feasible paths and
their output, e.g., when a is 1, the first condition (a<3) is true, the second (a>=3) is
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false, the third (a<2) is true, and the fourth ((a>6||a<2)) is true.

value of a a<3 a>=3 a<2 (a>6||a<2) output

1 T F T T [0, 1]

2 T F F F [0, 1]

3,4,5,6 F T F F [0, 1]

7,8,9,10 F T F T [10, 11]

Assuming that the underlying analysis is able to exclude infeasible paths, Monni-
aux’s analysis will find 3 feasible paths for a ∈ {0, 1, . . . , 6} that all lead to [0, 1]
and one feasible path for a ∈ {7 . . . , 10} that leads to [10, 11]. We see, in Figure 5.6,
that Monniaux’s approach to if-expressions results in a large over-approximation of
the output [0, 1], namely, 100%, and the our new results are similar to the correct
probabilities.
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Fig. 5.6: The results for program h.

5.5.3 Nontermination and intersection of two analyses

In the other cases, the analysed programs were all terminating, and that ensured that
the input-output relation was a total function from input to output. However, not all
programs are terminating, that is, each program input yields either a non-terminating
computation or an output result. Therefore, we extend the outputs Y with a special
character ⊥, which indicates non-termination, i.e. Y⊥ = Y ] ⊥,

Analyses such as sign and interval analyses are intended to obtain partial cor-
rectness; they yield that if the program terminates, the analysis’ output contains
the concrete program result, see e.g. [114]. Such analyses do (obviously) not con-
clude anything about termination/non-termination, and we simply assume that the
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concretization of the analysis output also yields a non-terminating computation. For
instance, for the sign analysis, we use the following abstraction and concretization
functions for the input/output variable values.

α : ℘(Z⊥) → ℘(Sign) α(A) , αSign(A ∩ Z)
γ : ℘(Sign)→ ℘(Z⊥) γ(S) , γSign(S) ∪ {⊥}

For example, if y is the output variable and the sign analysis yields{y→ {ZERO}},
we concretize the sign to γ({ZERO}) = {0,⊥}. Using this more precise concretiza-
tion decreases the lower probability bounds for the input yielding terminating com-
putations. For instance, the lower probability bound of {0} of any program becomes
0 because there is no guarantee that A (or any other input) will result in {0}; all
abstract states concretize to {⊥} and something more that is not a subset of {0}.

int (sum)(int x){
int y = 0;
while (x!= 0){

y = y + x;
x = x - 1;

}
return y;

}

(a)

t ∈ T µ(t)

Z− 1/3

{0} 1/4

Z+ 5/12

(b)

t ∈ T img]|sum|,SIGN

Z− {⊥} ∪ Z−

{0} {⊥} ∪ {0}
Z+ {⊥} ∪ {0} ∪ Z+

(c)

Fig. 5.7: The analysed program (a), the input distribution (b) and the sign-analysis output (c).

5.5.3.1 Sign analysis

In this case, we analyse a non-terminating program sum in Figure 5.7a that sums the
values from x to zero and yields a non-terminating computation when fed a negative
value. The program sum has the input-output function |prg| : Z→ Z⊥.

|sum|(n) =




⊥ n < 0
∑n
i=0 i n ≤ 0

We analyse sum with respect to an input probability space (Z,Z, µ), as defined in
Figure 5.7b, using the partition T = {Z−, {0},Z+}; we apply the sign analysis and
obtain img]|sum| : ℘(Z) → ℘(Z), as provided in Figure 5.7c. We let the measurable
space of the output be (Z⊥, ℘({⊥, 0,Z−,Z+})).

From Theorem 5.23, the probability of each partition element t together with the
analysis output img]|sum|(t) defines the upper and lower probability bounds for every
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output (including non-termination). We have provided these results in Figure 5.7. The
upper and lower probability bounds for non-termination are 1 and 0, respectively,
which is correct but not informative.

The upper and lower probability bounds for {0} are as follows.

µ(pre]f [T ]({0})) =
∑

t∈T,img](t)∩A6=∅
µ(t) =

∑

t∈{{0},Z+}
µ(t) =

1

4
+

5

12
=

2

3

µ(pre[f [T ]({0})) =
∑

t∈T,img](t)⊆A
µ(t) =

∑

t∈∅
µ(t) = 0

If we had avoided the possible non-termination, then img]({0}) ⊆ {0}, and the
lower probability bound would have been tighter.
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5.5.3.2 Termination analysis

We suggest applying a termination analysis to variations of the program obtaining
img]|sum|,TERM

: ℘(Z) → ℘(Z⊥) and combine this with the sign-analysis image-

over-approximating function obtaining a tighter img]|sum|. A termination analysis
describes whether the program output belongs in Z or {⊥}. To be more precise,
we apply the analysis to a set of transformed variations of programs such that we
determine whether the output may belong to {⊥}, Z or both for each input partition
element in T .

The termination analysis we used for this example is AProVE [60]. Because
AProVE was not intended to be used to only check a part of the input at a time, we
have mechanically altered the verb-program slightly so that AProVE only checks
for the input of interest (one element of the partition T at a time). Specifically, we in-
serted a terminating if-expression (at the beginning of the program) that trivially ex-
cludes the other input from affecting the analysis; see Figure 5.8a. For instance, when
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int (sum)(int x){
if(!/* x in t */)

{return 0;}
int y = 0;
while (x!= 0){

y = y + x;
x = x - 1;

}
return y;

}

(a)

int (sum)(int x){
if(!(x=0))

{return 0;}
int y = 0;
while (x!= 0){

y = y + x;
x = x - 1;

}
return y;

}

(b)

t ∈ T img]|sum|,TERM

Z− {⊥} ∪ Z
{0} Z
Z+ Z

(c)

Fig. 5.8: (a): An outline of an alteration of the sum program where x is in some input-partition
element t; AProVE [60] can then decide on termination for each input-partition el-
ement t. (b): the alteration wherein t = {0}, i.e. the input x is zero; AProVE [60]
proved that this alteration was terminating. (c): The image over-approximating func-
tion based on the termination analysis [60] (c).

checking x ∈ Z− for the sum-program, we inserted if(!(x<0)){ return 0;},
as depicted in Figure 5.8b. AProVE can either prove termination, i.e. the output may
only lie in Z; prove nontermination, i.e. at least one output lies in {⊥}, such that the
output may lie in Z ] {⊥}; be unable to prove anything, i.e. the output may lie in
Z ] {⊥}. For the each partition element, AProVE was able to decide whether the
program sum would yield non-terminating computations or terminating conditions,
as depicted in Figure 5.8c. The resulting upper and lower probability bounds are
depicted in Figure 5.9.
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Fig. 5.9: The upper and lower probability bounds obtained by AProVE [60].

5.5.3.3 Combining analyses

In this section, we give our experimental results for combining the results of the ter-
mination analysis with the (above) experimental results from the partial correctness
analysis sign and achieve a new function img]|sum|. By Lemma 5.31, we may use

img |sum|(A) ⊆ img]|sum|,sign(A) and img |sum|(A) ⊆ img]|sum|,TERM
(A) to define a

new over-approximating image function img]|sum| by

img]|sum| ,
(
img]|sum|,sign(A) ∩ img]|sum|,TERM

(A)
)
.

The result of the new image function is provided in Figure 5.10. The combination

t ∈ T img]|sum|,SIGN
img]|sum|,TERM

img]|sum|

Z− {⊥} ∪ Z− {⊥} ∪ Z {⊥} ∪ Z−

{0} {⊥} ∪ {0} Z {0}
Z+ {⊥} ∪ {0} ∪ Z+ Z {0} ∪ Z+

Fig. 5.10: The function img]|sum| is the composition of two image over-approximating func-

tions img]|sum|,SIGN
and img]|sum|,TERM

.

improves the results, as depicted in Figure 5.11; the blue dashed lines are the bounds
obtained purely by the sign analysis, and the solid black lines are the bounds obtained
by the combination. We may obtain tighter bounds if we could determine that every
negative input yielded an infinite computation, and, thus, obtaining {⊥} as possible
outputs for the input partition Z−.



5.6 Related work 83

∅ ⊥ Z
−

{0
}

Z
+

{⊥
} ∪

Z
−

{⊥
} ∪
{0
}

{⊥
} ∪

Z
+

Z
− ∪
{0
}

Z
− ∪

Z
+

{0
} ∪

Z
+

{⊥
} ∪

Z
− ∪
{0
}

{⊥
} ∪

Z
− ∪

Z
+

{⊥
} ∪
{0
} ∪

Z
+ Z

{⊥
} ∪

Z

0%

33%

67%

100%

Output events

Pr
ob

ab
ili

ty
Results sum

Fig. 5.11: The upper and lower bounds obtained by the sign analysis alone (blue dashed) and
those bounds obtained by the combination (black solid).

5.6 Related work

The approaches presented in this chapter relate to the probabilistic abstract inter-
pretation frameworks by Monniaux [95] and by Cousot and Monerau [33]. Both
of these frameworks describe how to extent non-probabilistic abstract interpretation
analyses for deterministic programs to probabilistic analyses for probabilistic pro-
grams. Cousot and Monerau define the extended concrete probabilistic semantics
as a measurable function from the possible outputs of the random generators to the
feasible concrete semantics; later, Cousot and Monerau discuss different approaches
to abstracting their semantics. Monniaux takes another approach and extends, for
instance, the non-probabilistic concrete semantics over environments to a new con-
crete semantics over probability measures (over environments). Then, he defines an
abstract semantics over collections of (non-probabilistic) abstracted environments
and their associated masses. Monniaux provides an example analysis, namely, the
probabilistic interval analysis that we have used for comparison in the case studies.
Here, we saw that the abstract transformer for the if-statement accidentally intro-
duced an imprecision that was not caused by the original interval analysis. The ap-
proaches in this chapter transform a probability measure for a whole program and
not for each program statement, unless, of course, the program consists of a single
statement. When extending an analysis, it might be worth comparing the probabilis-
tic semantics with the measure transformations for single-statement programs using
the presented techniques.

In probabilistic programs, the probability of an event in general depends on (i)
the inputs that may lead to the event, (ii) the probability of those inputs, and (iii)
the probability that those inputs reach the event, e.g. random generators. Because
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of (iii), i.e., the random generators, both frameworks require a manual development
of a new abstract semantics, i.e., transformers for all types of statements; this effort
allows the extended analysis to handle random generators and, thus, probabilistic
programs. Our approaches handle only deterministic programs (disallowing random
generators); the output event depends on (i) and (ii), and we do not need manual
development; instead, we use established analysis tools to find the inputs that may
lead to the event.

5.7 Conclusion

We have presented two techniques for reusing existing analysis to derive upper and
lower probability bounds of output events. The technique for forward analysis was
demonstrated by a sign analysis, an interval analysis and a termination analysis. We
showed how to combine analysis results to obtain more accurate upper and lower
probability bounds. The techniques are simple and pragmatic, yet the examples
demonstrate their power.

5.8 Afterword

The probabilistic analysis approach presented in Chapter 3 could not analyse pro-
grams with non-trivial types, e.g., arrays or lists. The presented techniques can anal-
yse the same programs that the underlying analysis can analyse, e.g., if the underly-
ing analysis can analyse programs with arrays, then we can analyse those programs
probabilistically as well.

We demonstrated that the forward technique handles if-expressions more pre-
cisely than Monniaux’s output analysis. This is because it divides the outputs of the
branches into three parts: the output that may be produced by both branches (the in-
tersection), the output that may only be produced by the first branch, and the output
that may only be produced by the second branch. This simple idea may be used in
future developments of other probabilistic analyses.

The presented techniques assumed over-approximating analyses, that is, they
yield functions that over-approximated the pre-images or images. By Lemma 5.3,
which states the dual relation between under- and over-approximations of pre-
images, the presented backward technique implicitly covers under-approximating
analyses, that is, analyses that yield functions that under-approximate the pre-images.
If we instead were to consider under-approximating forward analysis, we would need

to introduce the concept of dual images img[f , that is, img[f (A) , img]f (A
{)

{
, and

investigate its relation to the pre-images pre]f .
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Confluence Modulo Equivalence in Constraint
Handling Rules

In this chapter, we change the focus from developing probabilistic analysis for de-
terministic programs to a program property for nondeterministic programs, called
confluence modulo equivalence. This property is relevant since it ensures that the
program’s input-output relation is functional (modulo the equivalence relation) and
thus that there exists a probability measure over output events. The output events
must be defined as unions of sets of equivalent outputs. This property is useful for
programs with redundant data representation if we are interested in upper probability
bounds for a data set and not for the data representation. We study confluence mod-
ulo equivalence for nondeterministic programs written as Constraint Handling Rules
programs. A program execution can be seen as a rewrite system, and we draw upon
a technique from abstract reduction systems [70] that assumes program termination.

Foreword. The remainder of this chapter – except for the afterword (Section 6.10)
– has been published with minor corrections in article [25] H. Christiansen, M. H.
Kirkeby. Confluence Modulo Equivalence in Constraint Handling Rules. wolumen
8981, strony 41–58. Springer International Publishing Switzerland, 2015.

Abstract. Previous results on confluence for Constraint Handling Rules, CHR, are general-
ized to consider user-defined state equivalence relations. This allows for a much larger class
of programs to enjoy the advantages of confluence, including various optimization techniques
and simplified correctness proofs. A new operational semantics for CHR is introduced that
significantly reduces notational overhead and allows one to consider confluence for programs
with extra-logical and incomplete built-in predicates. Proofs of confluence are demonstrated
for programs with redundant data representation, e.g., sets-as-lists, for dynamic programming
algorithms with pruning as well as a Union-Find program, which are not covered by previous
confluence concepts for CHR.

6.1 Introduction

A rewrite system is confluent if all derivations from a common initial state end in the
same final state. Confluence, similar to termination, is often a desirable property, and



86 6 Confluence Modulo Equivalence in Constraint Handling Rules

proof of confluence is a typical ingredient of a correctness proof. A programming
language based on rewriting, such as Constraint Handling Rules, CHR [54, 55], en-
sures correctness of parallel implementations and application order optimizations.

Previous studies of confluence for CHR programs are based on Newman’s
lemma. This lemma concerns confluence defined in terms of alternative derivations
ending in the exact same state, which excludes a large class of interesting CHR pro-
grams. However, the literature on confluence in general rewriting systems has, since
the early 1970s, offered a more general concept of confluence modulo an equiva-
lence relations. This means that alternative derivations only need to end in states that
are equivalent with respect to some equivalence relation (and not necessarily identi-
cal). In this paper, we show how confluence modulo equivalence can be applied in
a CHR context, and we demonstrate interesting programs covered by this concept
that are not confluent by any previous definition of confluence for CHR. The use of
redundant data representations is one example of what becomes within reach, and
programs that search for a single best among multitudes of alternative solutions is
another example.

Example 6.1. The following CHR program, consisting of a single rule, collects a
number of separate items into a (multi-) set represented as a list of items.

set(L), item(A) <=> set([A|L]).

This rule will be applied repeatedly, replacing constraints matched by the left-hand
side by those indicated to the right. The query

?- item(a), item(b), set([]).

may lead to two different final states, {set([a,b])} and {set([b,a])}, both
representing the same set. This can be formalized by a state equivalence relation ≈
that implies {set(L)} ≈ {set(L′)} whenever L is a permutation of L′. The
program is not confluent in the classical sense, as the end states are not identical, but
it will be shown to be confluent modulo ≈.

Our generalization is based upon a new operational semantics that permits extra-
logical and incomplete predicates (e.g., Prolog’s var/2 and is/2), which is be-
yond the scope of previous approaches. This also leads to a noticeable reduction of
notational overhead due to a simpler structure of states.

It is shown that previous results for CHR confluence, based upon critical pairs, to
a large extent can be generalized for confluence modulo equivalence. We introduce
additional mechanisms to handle the extra complexity caused by the equivalence
relation. We do not present any (semi-) automatic approaches to confluence proofs,
as this would need a formal language for specifying equivalences, which has yet to
be considered.

Section 6.2 reviews previous work on confluence, in general and for CHR. Sec-
tions 6.3 and 6.4 give preliminaries and our operational semantics. Section 6.5 con-
siders how to prove confluence modulo equivalence for CHR. Section 6.6 shows
confluence modulo equivalence for a CHR version of the Viterbi algorithm; it repre-
sents a wider class of dynamic programming algorithms with pruning, also beyond
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the scope of earlier proposals. Section 6.7 shows confluence modulo equivalence for
the Union-Find algorithm, which has become a standard test case for confluence in
CHR; it is not confluent in any previously proposed manner (except with contrived
side conditions). Section 6.8 comments on related work in more detail, and the final
section provides a summary and a conclusion.

6.2 Background

A binary relation→ on a set A is a subset of A×A, where x→ y denotes member-
ship of→. A rewrite system is a pair 〈A,→〉; it is terminating if there is no infinite
chain a0 → a1 → · · · . The reflexive transitive closure of → is denoted ∗→. The
inverse relation← is defined by {(y, x) | x → y}. An equivalence (relation) ≈ is a
binary relation on A that is reflexive, transitive and symmetric.

A rewrite system 〈A,→〉 is confluent if and only if y ∗← x
∗→ y′ ⇒ ∃z. y ∗→ z

∗←
y′, and is locally confluent if and only if y ← x → y′ ⇒ ∃z. y ∗→ z

∗← z′. In 1942,
Newman presented his fundamental lemma [105]: A terminating rewrite system is
confluent if and only if it is locally confluent. An elegant proof of Newman’s lemma
was provided by Huet [70] in 1980.

The more general concept of confluence modulo equivalence was introduced in
1972 by Aho et al. [5] in the context of the Church-Rosser property.

Definition 6.2 (Confluence modulo equivalence). A relation→ is confluent modulo
an equivalence ≈ if and only if

∀x, y, x′, y′. y
∗← x ≈ x′ ∗→ y′ ⇒ ∃ z, z′. y

∗→ z ≈ z′ ∗← y′.

This is shown as a diagram in Fig. 6.1a. In 1974, Sethi [128] showed that conflu-
ence modulo equivalence for a bounded rewrite system is equivalent to the following
properties, α and β, also shown in Fig. 6.1b.

Definition 6.3 (α & β). A relation→ possesses the α property and the β property if
and only if it satisfies the α condition and the β condition, respectively:

α : ∀x, y, y′. y ← x→ y′ =⇒ ∃z, z′. y
∗→ z ≈ z′ ∗← y′

β : ∀x, x′, y. x ≈ x′ → y =⇒ ∃z, z′. x′
∗→ z′ ≈ z ∗← y

In 1980, Huet [70] generalized this result to any terminating system.

Definition 6.4 (Local confl. mod. equivalence). A rewrite system is locally conflu-
ent modulo an equivalence ≈ if and only if it possesses the α and β properties.

Theorem 6.5. Let→ be a terminating relation. For any equivalence ≈,→ is conflu-
ent modulo ≈ if and only if→ is locally confluent modulo ≈.
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x
∗ // y ∗ // z

x′
∗ // y′ ∗ // z′

(a) Confluence modulo ≈.

x //

��

y
∗ // z

y′
∗ // z′

(α)

x // y ∗ // z

x′
∗ // z′

(β)

(b) Local Confluence modulo ≈.

Fig. 6.1: Diagrams for the fundamental concepts. A dotted arrow (single wave line) indicates
an inferred step (inferred equivalence).

The known results on confluence for CHR are based on Newman’s lemma. Abden-
nadher et al [3] in 1996 seem to be the first to consider this, and they showed that
confluence (without equivalence) for CHR is decidable and can be checked by exam-
ining a finite set of states formed by a combination of heads of rules. A refinement,
called observational confluence, was introduced in 2007 by Duck et al [44], in which
only states that satisfy a given invariant are considered.

6.3 Preliminaries

We assume standard concepts of first-order logic such as predicates, atoms and terms.
For any expression E, vars(E) refers to the set of variables that occurs in E. A
substitution is a mapping from a finite set of variables to terms, which also may be
viewed as a set of first-order equations. For the substitution σ and expression E, Eσ
(or E · σ) denotes the expression that arises when σ is applied to E; the composition
of two substitutions σ, τ is denoted σ ◦ τ . The special substitutions failure and error
are assumed, the first representing falsity and the second representing runtime errors.

Two disjoint sets of (user) constraints and built-in predicates are assumed. For
the built-in predicates, we use a semantics that is more in line with implemented
CHR systems than previous approaches and that also allows for extra-logical devices
such as Prolog’s var/1 and incomplete devices such as is/2. Whereas [3, 43, 44]
collect built-in predicates in a separate store and determine their satisfiability by
a magic solver that mirrors a first-order semantics, we execute a built-in predicate
right away. This serves as a test, possibly producing a substitution that is immediately
applied to the state.

An evaluation procedure Exe for the built-in predicates b is assumed such that
Exe(b) is either a (possibly identity) substitution to a subset of vars(b) or one of
failure and error . This extends to sequences of built-in predicates as follows.
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Exe((b1, b2))=





Exe(b1) when Exe(b1) ∈ {failure, error},
Exe(b2 · Exe(b1)) when otherwise Exe(b2 · Exe(b1))

∈ {failure, error},
Exe(b1)◦Exe(b2 · Exe(b1)) otherwise

One subset of built-in predicates is the logical predicates, whose meaning is given
by a first-order theory B. For a logical atom b with Exe(b) 6= error , the following
conditions must hold.

• Partial correctness: B |= ∀vars(b)(b↔ ∃vars(Exe(b))\vars(b)Exe(b)).
• Instantiation monotonicity: Exe(b · σ) 6= error for all substitutions σ.

A logical predicate p is complete whenever, for any atom b with predicate symbol
p, we have Exe(b) 6= error ; later, we will define completeness with respect to a
state invariant. Any built-in predicate that is not logical is called extra-logical. The
following predicates are examples of built-in predicates; ε is the empty substitution.

1. Exe(t = t′) = σ, where σ is a most-general unifier of t and t′; if no such unifier
exists, the result is failure.

2. Exe(true) is ε.
3. Exe(fail) is failure.
4. Exe(t is t′) = Exe(t = v) whenever t′ is a ground term that can be inter-

preted as an arithmetic expression e with the value v; if no such e exists, the
result is error .

5. Exe(var(t)) is ε if t is a variable and failure otherwise.
6. Exe(ground(t)) is ε when t is ground and failure otherwise.
7. Exe(t == t′) is ε when t and t′ are identical and failure otherwise.
8. Exe(t \= t′) is ε when t and t′ are non-unifiable and failure otherwise.

The first three predicates are logical and complete; “is” is logical but not complete
without an invariant that grounds its second arguments (considered later). The re-
mainder are extra-logical.

The practice in previous semantics [3, 43, 44] of conjoining built-ins and testing
them by satisfiability leads to ignorance of runtime errors and incompleteness.

To represent the propagation history, we introduce indices: An indexed set S is
a set of items of the form x:i, where i belongs to some index set and each such i
is unique in S. When clear from context, we may identify an indexed set S with its
cleaned version {x | x:i ∈ S}. Similarly, the item xmay identify the indexed version
x:i. We extend this to any structure built from indexed items.

6.4 Constraint Handling Rules

We define an abstract syntax of CHR together with an operational semantics suitable
for considering confluence. We use the generalized simpagation form as a common
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representation for the rules of CHR. Guards may unify variables that occur in rule
bodies but not variables that occur in the matched constraints. In accordance with
the standard behaviour of implemented CHR systems, failure and runtime errors are
treated in the same way in the evaluation of a guard but are distinguished when
occurring in a query or rule body; cf. definitions 6.6 and 6.10 below.

Definition 6.6. A rule r is of the form

H1 \H2 <=> g | C,

whereH1 andH2 are sequences of constraints, forming the head of r; g is the guard,
being a sequence of built-ins; and C is a sequence of constraints and built-in predi-
cates called the body of r. EitherH1 andH2, but not both, may be empty. A program
is a finite set of rules.

For any fresh variant of rule r with notation as above, an application instance r′′

is given as follows.

1. Let r′ be a structure of the form
H1τ \H2τ <=> Cτσ

where τ is a substitution for the variables of H1, H2, Exe(gτ) = σ,
σ 6∈ {failure, error}, and it holds that (H1 \H2)τ = (H1 \H2)τσ,

2. r′′ is a copy of r′ in which each atom in its head and body is given a unique
index, where the indices used for the body are new and unused.

The substitution gτ is referred to as the guard of r′′. The application record for r′′ is
a structure of the form

r@ i1, . . . , in

, where i1, . . . , in is the sequence of indices of H1, H2 in the order in which they
occur.

A rule is a simplification when H1 is empty and a propagation when H2 is empty;
in both cases, the backslash is left out, and for a propagation, the arrow symbol is
written ==> instead. Any other rule is a simpagation. When the guard is the built-
in true , it and the vertical bar may be omitted. A guard (or single built-in atom) is
logical if it contains only logical predicates. Guards are removed from application
instances as they are a priori satisfied. The following definition will become useful
later on when we consider confluence.

Definition 6.7. Consider two application instances ri = (Ai \ Bi <=> Ci), i =
1, 2. We say that r1 is blocking r2 whenever B1 ∩ (A2 ∪B2) 6= ∅.

For this to be the case, r1 must be a simplification or simpagation. Intuitively, this
means that if r1 has been applied to a state, it is not subsequently possible to apply
r2. In the following definition of execution states for CHR, irrelevant details of the
state representation are abstracted away using the principles of [111]. To keep the
notation consistent with Section 6.2, we use letters such as x and y to denote states.

Definition 6.8. A state representation is a pair 〈S, T 〉, where
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• S is a finite, indexed set of atoms called the constraint store and
• T is a set of application records called the propagation history.

Two state representations S1 and S2 are isomorphic, denoted S1 ≡ S2, whenever
one can be derived from the other by a renaming of variables and a consistent re-
placement of indices (i.e., by a 1-to-1 mapping). When Σ is the set of all state rep-
resentations, a state is an element of Σ/≡ ∪ {failure, error}, i.e., an equivalence
class in Σ induced by ≡ or one of two special states; applying the failure (error )
substitution to a state yields the failure (error ) state. To indicate a given state, we
may for simplicity mention one of its representations.

A query q is a conjunction of constraints, which is also identified with an initial
state 〈q′, ∅〉, where q′ is an indexed version of q.

To make statements about, say, two states x, y and an instance of a rule r, we may do
so mentioning state representatives x′, y′ and application instance r′ having recurring
indices. The following notions becomes useful in section 6.5, when we go into more
detail on how to prove confluence modulo equivalence,

Definition 6.9. An extension of a state 〈S,R〉 is a state of the form 〈Sσ∪S+, R∪R+〉
for suitable σ, S+ and R+; an I-extension is one that satisfies I; and a state is said
to be I-extendible if it has one or more extensions that are I-states.

In contrast to [3, 43, 44], we have excluded global variables, which refer to those
of the original query, as they are easy to simulate: A query q(X) is extended to
global(′X ′, X), q(X), where global/2 is a new constraint predicate; ′X ′ is a constant
that serves as a name of the variable. The value val forX is found in the final state in
the unique constraint global(′X ′, val). References [3, 43, 44] use a state component
for constraints waiting to be processed in addition to a separate derivation step to
introduce them into the constraint store. We avoid this, as the derivations made under
either premises are basically the same. Our derivation relation is defined as follows;
here and in the remainder of this paper, ] denotes the union of disjoint sets.

Definition 6.10. A derivation step → from one state to another can be of two types:

by rule
r→ or by built-in

b→, defined as follows.

Apply: 〈S ]H1 ]H2, T 〉
r→ 〈S ]H1 ] C, T ′〉

whenever there is an application instance r of the form
H1 \ H2 <=> C with applied(r) 6∈ T , and T ′ is derived from T by 1) re-
moving any application record having an index in H2 and 2) adding applied(r)
in case r is a propagation.

Built-in: 〈{b} ] S, T 〉 b→ 〈S, T 〉 · Exe(b).

A state z is final for query q whenever q
∗→ z and no step is possible from z.

The removal of certain application records in Apply steps means to keep only those
records that are essential for preventing repeated applications of the same rule to the
same constraints (identified by their indices).
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As noticed by [44], introducing an invariant makes more programs confluent, as
one can ignore unusual states that never appear in practice. An invariant may also
make it easier to characterize an equivalence relation for states.

Definition 6.11. An invariant is a property I(·) that may or may not hold for a state
such that for all states x, y, I(x) ∧ (x → y)⇒ I(y). A state x for which I(x) holds
is called an I-state, and an I-derivation is one starting from an I-state. A program is
I-terminating whenever all I-derivations are terminating. A set of allowed queries
Q may be specified, producing an invariant reachableQ(x)⇔ ∃q ∈ Q : q

∗→ x.
A (state) equivalence is an equivalence relation ≈ on the set of I-states.

The central Theorem 6.5 applies specifically for CHR programs equipped with in-
variant I and equivalence relation≈. When≈ is identity, it coincides with a theorem
of [44] for observable confluence. If, furthermore, I ⇔ true , we obtain the classical
confluence results for CHR [1].

The following definition is useful when considering confluence for programs that
use Prolog built-ins such as “is/2”.

Definition 6.12. A logical predicate p is complete with respect to the invariant I (or,
for short, is I-complete) whenever, for any atom b with predicate symbol p in some
I-state, Exe(b) 6= error .

A logical guard (or a built-in atom) is also called I-complete whenever all its predi-
cates are I-complete. We use the term I-incomplete for any such concept that is not
I-complete.

As promised earlier, “is/2” is complete with respect to an invariant that guar-
antees groundness of the second argument of any call to “is/2”.

Example 6.13. Our semantics permits CHR programs that define constraints such as
Prolog’s dif/2 constraint and a safer version of is/2.

dif(X,Y) <=> X==Y | fail.
dif(X,Y) <=> X\=Y | true.
X safer_is Y <=> ground(Y) | X is Y.

6.5 Proving Confluence Modulo Equivalence for CHR

We consider here ways to prove the local confluence properties α and β from which
confluence modulo equivalence may follow; cf. Theorem 6.5. The corners in the fol-
lowing definition generalize the critical pairs of [3]. For ease of usage, we combine
the common ancestor states with the pairs, thus the concept of corners correspond-
ing to the “given parts” of diagrams for the α and β properties; cf. Fig. 6.1a. The
definitions below assume a given I-terminating program with invariant I and state
equivalence≈. Two states x and x′ are joinable modulo≈whenever there exist states
z and z′ such that x

∗→ z ≈ z′ ∗← x′.
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Definition 6.14. An α-corner consists of I-states x, y and y′ with y 6= y′ and two

derivation steps such that y
γ← x

δ→ y′. An α-corner is joinable modulo≈ whenever
y and y′ are joinable modulo ≈.

A β-corner consists of I-states x, x′ and y with x 6= x′ and a derivation step such
that x′ ≈ x

γ→ y. A β-corner is joinable modulo ≈ whenever x′ and y are joinable
modulo ≈.

The joinability of α1-corners holds trivially in a number of cases:

• when γ and δ are application instances, none blocking the other;
• when γ and δ are built-ins, both logical and I-complete or having no common

variables; or
• when, say, γ is an application instance whose guard is logical and I-complete

and δ is any built-in that has no common variable with the guard of γ.

These cases are easily identified syntactically. All remaining corners are recognized
as “critical”, which is defined as follows.

Definition 6.15. An α-corner y
γ← x

δ→ y′ is critical whenever one of the following
properties holds.

α1: γ and δ are application instances where γ blocks δ (Def. 6.7).
α2: γ is an application instance whose guard is extra-logical or I-incomplete, and δ

is a built-in with vars(g) ∩ vars(δ) 6= ∅.
α3: γ and δ are built-ins with γ extra-logical or I-incomplete, and vars(γ) ∩

vars(δ) 6= ∅.

A β-corner x′ ≈ x γ→ y is critical whenever the following property holds.

• x 6= x′ and there exists no state y′ and single derivation step δ such that x′
δ→

y′ ≈ y.

Our definition of critical β-corners is motivated by the experience that often the δ
step can be formed trivially by applying the same rule or built-in of γ in an analogous
way to the state x′. By inspection and Theorem 6.5, we obtain the following.

Lemma 6.16. Any non-critical corner is joinable modulo ≈.

Theorem 6.17. A terminating program is confluent modulo ≈ if and only if all its
critical corners are joinable modulo ≈.

6.5.1 Joinability of α1-critical corners

Without an invariant, an equivalence and extra-logicals, the only critical corners are
of type α1; here, [3] has shown that the joinability of a finite set of minimal critical
pairs is sufficient to ensure local confluence. In the general case, it is not sufficient to
check such minimal states, but the construction is still useful as a way to group the
cases that need to be considered. We adapt the definition of [3] as follows.
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Definition 6.18. An α1-critical pattern (with evaluated guards) is of the form

〈S1σ1, ∅〉
r1← 〈S, ∅〉 r2→ 〈S2σ2, R〉

whenever there exist, for k = 1, 2, indexed rules rk = (Ak \Bk <=> gk | Ck), and

R =




{a} whenever r2 is a propagation with application record a,

∅ otherwise.

The remaining entities are given as follows.

• Let Hk = Ak ∪ Bk, k = 1, 2, and split B1 and H2 into disjoint subsets by
B1 = B′1 ] B′′1 and H2 = H ′2 ] H ′′2 , where B′1 and H ′2 must have the same
number of elements ≥ 1.
• The set of indices used inB′1 andH ′2 are assumed to be identical, any other index

in r1, r2 is unique, and σ is a most general unifier of B′1 and a permutation of
H ′2.
• S = A1σ ∪B1σ ∪A2σ ∪B2σ, with S being I-extendible,
• Sk = S \Bkσ ∪ Ckσ, k = 1, 2,
• gk is logical with σk = Exe(gkσ) 6∈ {error , failure} for k = 1, 2.

An α1-critical pattern (with delayed guards) is of the form

〈S1, ∅〉
r1← 〈S, ∅〉 r2→ 〈S2, R〉,

where all parts are defined as above, except in the last step, where one of gk is extra-
logical or its evaluation by Exe results in error ; the guards gkσ are recognized as
the unevaluated guards.

Definition 6.19. An α1-critical corner y
r1← x

r2→ y′ is covered by an α1-critical
pattern

〈S1, ∅〉
r1← 〈S, ∅〉 r2→ 〈S2, R〉,

whenever x is an I-extension of 〈S, ∅〉.

Analogously to previous results on confluence of CHR [3], we can state the follow-
ing.

Lemma 6.20. For a given I-terminating program with invariant I and equivalence
≈, the set of critical α1-patterns is finite, and any critical α1-corner is covered by
some critical α1-pattern.

The requirement of definition 6.18, that a critical α1-corner needs to be I-extendible,
means that there may be fewer patterns to check than if classical confluence were to
be investigated. Examples of this are used when showing confluence of the Union-
Find program; see section 6.7 below. We can reuse the developments of [3] and
the joinability results derived by their methods, e.g., using automatic checkers for
classical confluence [85].
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Lemma 6.21. If a critical α1-pattern π (viewed as an α1-corner) is joinable modulo
the identity equivalence, then any α1-corner covered by π is joinable under any I
and ≈.

This means that we may succeed in showing confluence modulo ≈ under I in the
following way for a program without critical α2, α3 and β corners.

• Run a classical confluence checker (e.g., [85]) to identify which classical, critical
pairs are not joinable. Those that do not correspond to I-extendible α1 patterns
can be disregarded.

• The critical α1-patterns that remain need separate proofs, which may succeed
due to the stronger antecedent given by I and the weakening of the joinability
consequent by an equivalence relation.

Example 6.22 (example 6.1, continued). We consider again the one-line program of
example 6.1 that collects items into a set, represented as a list. Suitable invariant and
equivalence are given as follows; the propagation history can be ignored, as there are
no propagations.

I: I(x) holds if and only if x = {set(L)} ∪ Items , where Items is a set of
item/1 constraints whose argument is a constant and L a list of constants.

≈: x ≈ x′ if and only if x = {set(L)} ∪ Items and x′ = {set(L′)} ∪ Items ,
where Items is a set of item/1 constraints and L is a permutation of L′.

There are no built-ins and thus no critical α2- or α3-patterns. There is only one
critical α1-pattern, namely,

{set([B|L]), item(A)} ← {set(L), item(A), item(B)} → {set([A|L]), item(B)}.

The participating states are not I-states, as A, B and L are variables; the set of all
critical α1-corners can be generated by different instantiations of the variables, dis-
carding those that lead to non-I-states. We cannot use Lemma 6.21 to prove join-
ability, as the equivalence is ≈ essential. Instead, we can apply a general argument
that holds for any I-extension of this pattern. The common ancestor state in such an
I-extension is of the form {set(L),item(A)} ∪ Items , and joinability is shown
by applying the rule to the two “wing” states (not shown) to form the two states
{set([B,A, |L])}∪ Items ≈ {set([A,B, |L])}∪ Items . To show confluence modulo
≈, we still need to consider the β-corners, which we return to in example 6.24 below.

6.5.2 About critical α2-, α3- and β-corners

It is not possible to characterize the sets of all critical α2-, α3- and β-corners by finite
sets of patterns of mini-states in the same way as for α1.

The problem for α2 and α3 stems from the presence of extra-logical or incom-
plete built-ins. Here, the existence of one derivation step from a given state S does not
imply the existence of another, analogous derivation step from an extension Sσ∪S+.
This is demonstrated by the following example.
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Example 6.23. Consider the following program that has extra-logical guards.

r1: p(X) <=> var(X) | q(X).
r2: p(X) <=> nonvar(X) | r(X).
r3: q(X) <=> r(X).

There are no propagation rules; thus, we can identify states with multisets of con-
straints. The invariant I is given as follows, and the state equivalence is trivial iden-
tity; thus, there are no critical β-corners to consider.

I(S): S is a multiset of p, q and r constraints and built-ins formed by the “=” pred-
icate. Any argument is either a constant or a variable.

The meaning of equality built-ins is as defined in section 6.3 above.
It can be argued informally that this program is I-confluent, as all user-defined

constraints will eventually become r constraints unless a failure occurs due to the
execution of equality built-ins. The latter can only be introduced in the initial query,
and thus, if one derivation leads to failure, all terminated derivations do. Termination
follows from the inherent stratification of the constraints.

To prove this formally, we consider all critical corners and demonstrate that they
are joinable. One group of critical α2-corners is of the following form: (1)

S1 =
(
{q(x), x = a}]S

) r1←
(
{p(x), x = a}]S

) =→
(
{p(a)}]S

)
= S2;

x is a variable, a is a constant, and S is an arbitrary set of constraints such that I is
maintained. Any such corner is joinable, which can be shown as follows: (2)

S1
=→ S′1

r2→ {r(a)} ] S r2← S2;

The remaining critical α2-corners form a similar group.

{q(x), x = y} ] S r1← {p(x), x = y} ] S =→ {p(x)} ] S;

x and y variables, r1 and S and S an arbitrary set of constraints such that I is main-
tained. Joinability is shown by a similar argument that goes for this entire group.
The only critical corners are those α2 cases that have been considered, and thus, the
program is confluent.

We notice, however, that the derivation steps in (1) and (2) are possible only due
to the assumptions about the permitted instances of x, a and S. The symbol a, for
example, is not a variable in a formal sense, neither is it a constant; rather, it is a meta-
variable or placeholder of the sort that mathematicians use all the time. This means
that we cannot reduce formulas (1) and (2) to refer to derivations over mini-states,
with proper variables as placeholders, as then r2 can never apply.

To see critical α3-corners, we change I into I ′ by also allowing var constraints
in a state. One group of such corners will have the following shape.

{var(a)} ] S =← {var(x), x = a} ] S var→ {x = a} ] S
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x is a variable, a is a constant, and S is an arbitrary set of constraints such that I ′

is maintained. For, e.g., S = ∅, this corner is obviously not joinable, and thus, the
program is not confluent (module equivalence) under I ′. As above, we observe that
the set of critical α3 corners cannot be characterized by a finite set of mini-states.

The β property needs to be considered when the state equivalence is non-trivial, as
in the following example

Example 6.24 (examples 6.1 and 6.22, continued). To check the β property, we notice
that any β-corner is of the form

{set(L′), item(A)} ] Items ≈ {set(L), item(A)} ] Items → {set([A|L])} ] Items

where L and L′ are lists, one being a permutation of the other. Applying the rule to
the “left wing” state leads to {set([A|L′])}∪Items , which is equivalent (wrt.≈)
to the “right wing” state; there are thus no critical β-corners. Together with the results
for the critical α-corners above, we have now shown local confluence modulo ≈ for
the sets-as-lists program, and as the program is clearly I-terminating, it follows that
it is confluent modulo ≈.

6.6 Confluence of Viterbi Modulo Equivalence

Dynamic programming algorithms produce solutions to a problem by generating so-
lutions to a subproblem and iteratively extending the subproblem and its solutions
(until the original problem is solved). The Viterbi algorithm [138] finds a most prob-
able path of state transitions in a Hidden Markov Model (HMM) that produces a
given emission sequence Ls, also called the decoding of Ls; see [45] for some back-
ground on HMMs. There may be exponentially many paths, but an early pruning
strategy ensures linear time. The algorithm has been studied in CHR by [24], start-
ing from the following program; the “@” operator is part of the implemented CHR
syntax used for labelling rules.

:- chr_constraint path/4, trans/3, emit/3.

expand @ trans(Q,Q1,PT),
emit(Q,L,PE),
path([L|Ls],Q,P,PathRev) ==>
P1 is P*PT*PE | path(Ls,Q1,P1,[Q1|PathRev]).

prune @ path(Ls,Q,P1,_) \
path(Ls,Q,P2,_) <=>
P1 >= P2 | true.

The meaning of a constraint path(Ls,q,p,R) is that Ls is a remaining emis-
sion sequence to be processed, q is the current state of the HMM, and p is the
probability of a path R found for the already processed prefix of the emission se-
quence. To simplify the program, a path is represented in reverse order. Constraint
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trans(q,q′,pt) indicates a transition from state q to state q′ with probability pt ,
and emit(q,`,pe) indicates a probability pe for emitting letter ` in state q.

The decoding of a sequence Ls is stated by a query of the form “HMM,
path(Ls,q0,1,[])”, where HMM is an encoding of a particular HMM in terms
of trans and emit constraints. Assuming HMM and Ls to be fixed, the state
invariant I is given as reachability from the indicated query. The program is I-
terminating, as any new path constraint introduced by the expand rule has a first
argument shorter than that of its predecessor. Depending on the application order, it
may run in between linear and exponential time, and [24] proceeds by semantics-
preserving program transformations that lead to an optimal execution order.

The program is not confluent in the classical sense, i.e., without an equivalence,
as the prune rule may need to select one of two different and equally probable
paths. A suitable state equivalence may be defined as follows.

Definition 6.25. Let 〈HMM ∪ PATHS1, T 〉 ≈ 〈HMM ∪ PATHS2, T 〉 whenever: For
any indexed constraint (i : path(Ls,q,P,R1)) ∈ PATHS1, there is a correspond-
ing (i : path(Ls,q,P,R2)) ∈ PATHS2 and vice versa.

The built-ins used in guards, is/2 and >=/2, are logical and I-complete, and thus,
there are no α2- or α3-critical corners. For simplicity of notation, we ignore the
propagation histories. There are three critical α1 patterns to consider:
(i) y

prune← x
prune→ y′, where x contains two path constraints that may differ only

in their last arguments, and y and y′ differ only in which of these constraints are
preserved; thus, y ≈ y′.
(ii) y

prune← x
expand→ y′ where x = {π1, π2, τ, η}, πi = path(L,q,Pi,Ri) for

i = 1, 2, P1 ≥ P2, and τ, η the trans and emit constraints used for the expansion
step. Thus, y = {π1, τ, η} and y′ = {π1, π2, π′2, τ, η}, where π′2 is expanded from
π2. To show joinability, we show the stronger property of the existence of a state z
with y

∗→ z
∗← y′. We select z = {π1, π′1, τ, η}, where π′1 is expanded from π1.1 The

probability in π′1 is greater than or equal to that of π′2, which means that a pruning of
π′2 is possible when both are present. Joinability is shown as follows.

y
expand→ z

prune← {π1, π′1, π2, τ, η}
prune← {π1, π′1, π2, π′2, τ, η}

expand← y′

(iii) As case ii but with P2 ≥ P1 and y = {π2, τ, η}; the proof is similar and therefore
omitted.

Thus, all α-critical corners are joinable. There are no critical β corners, as when-
ever x′ ≈ x r→ y, the rule r can apply to x′ with an analogous result, i.e., there exists
a state y′ such that x′

r→ y′ ≈ y. This finishes the proof of confluence modulo ≈.

1 It may be the case that π′1 was produced and pruned at an earlier stage, and thus, the
propagation history prevents the creation of π′1 anew. A detailed argument can show that in
this case, there will be another constraint π′′1 in store similar to π′1 but with a≥ probability,
and π′′1 can be used for pruning π′2 and obtaining the desired result in that manner.
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6.7 Confluence of Union-Find Modulo Equivalence

The Union-Find algorithm [133] maintains a collection of disjoint sets under union,
with each set represented as a tree. It has been implemented in CHR by [126], who
proved that it is nonconfluent using critical pairs [3]. We have adapted a version
from [44], extending it with a new token constraint to be explained. Let UF token

refer to our program, and let UF 0 refer to the original without token constraints.

union @ token, union(A,B) <=>
find(A,X), find(B,Y), link(X,Y).

findNode @ A ~> B \ find(A,X) <=> find(B,X).
findRoot @ root(A) \ find(A,X) <=> A=X.
linkEq @ link(A,A) <=> token.
link @ root(A) \ link(A,B), root(B) <=> B ~> A, token.

The ~> and root constraints, called tree constraints, represent a set of trees. A finite
set T of ground tree constraints is consistent whenever the following is true: for any
constant a in T , there is either one and only one root(a) ∈ T or a is connected via
a unique chain of ~> constraints to some r with root(r) ∈ T . We define sets(T )
to be the set of sets represented by T , formally: the smallest equivalence relation
over constants in T that contains the reflexive and transitive closure of ~>; set(a, T )
refers to the set in sets(T ) containing the constant a.

The allowed queries are ground and of the form T ∪U ∪{token}, where T is a
consistent set of tree constraints and U is a set of constraints union(ai,bi), where
ai, bi appear in T . The token constraint is necessary for triggering the union rule,
and thus, it needs to be present in the query to get the process started. It is consumed
when one union operation starts and is reintroduced when it has finished (as marked
by the linkEq or link rules), thus ensuring that no two union operations overlap
in time. The invariant I is defined by reachability from these queries. By induction,
we can show the following properties of any I-state S.

• Either S = T ∪ U ∪ {token}, where T is a consistent set of tree constraints
and U is a set of union constraints whose arguments are in T , or
• S = T ∪ U ∪ {link(A1,A2)} ∪ F1 ∪ F2, where T,U are as in the previous

case, and for i = 1, 2,
– if Ai is a constant, Fi = ∅; otherwise,
– Fi = {find(ai,Ai)} or Fi = {(ai = Ai)} for some constant ai.

As shown by [126], UF 0 is not confluent in the classical sense and can be related to
the following issues.

(i) When the detailed steps of two union operations are intertwined in an unfortu-
nate way, the program may become stuck in a state wherein it cannot finish the
operation, as shown in the following derivation.
{root(a), root(b), root(c), union(a,b), union(b,c)} ∗→
{root(a), root(b), root(c), link(a,b), link(b,c)} →
{b ~> a, root(a), root(c), link(b,c)}
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(ii) Different execution orders of the union operations may lead to different data
structures (representing the same sets) as exemplified by the following deriva-
tions from a query q0.
q0 = {root(a), root(b), root(c), union(a,b), union(b,c)}.
q0
∗→ {root(a), root(c), b ~> a, union(b,c)}
∗→ {root(a), b ~> a, c ~> a}

q0
∗→ {root(a), root(b), c ~> b, union(a,b)}
∗→ {root(b), b ~> a, c ~> b}

We proceed to show that UF token is confluent modulo an equivalence ≈, defined
as follows; the letters U and T refer to sets of union constraints and sets of tree
constraints.

• T ∪ U ∪ {token} ≈ T ′ ∪ U ∪ {token} whenever sets(T ) = sets(T ′).
• T ∪U ∪{link(A1,A2)}∪F1∪F2 ≈ T ′∪U ∪{link(A′1,A′2)}∪F ′1∪F ′2

whenever sets(T ) = sets(T ′), and for i = 1, 2, that
– if Ai is a constant and (by I) Fi = ∅, then A′i is a constant, set(Ai, T ) =

set(A′i, T
′) and F ′i = ∅

– if Ai is a variable and Fi = {find(ai,Ai)} for some constant ai, then
F ′i = {find(a′i,A′i)} and set(ai, T ) = set(a′i, T

′),
– ifAi is a variable, Fi = {(ai = Ai)} for some constant ai with root(ai) ∈
T then F ′i = (a′i = A′i)}, root(a′i) ∈ T ′ and set(ai, T ) = set(a′i, T

′).

There are no critical α2- or α3-patterns. The α1-patterns (critical pairs) of UF token

are those of UF 0 and a new one, formed by an overlap of the union rule with itself,
as shown below. We reuse the analysis of [126], who identified all critical pairs for
UF 0; by Lemma 6.21, we consider only those pairs, and they are identified as non-
joinable.

In [126], eight non-joinable critical pairs are identified; the first pair (“the un-
avoidable” pair) concerns issue (ii). Its ancestor state {find(B,A),root(B),
root(C), link(C,B)}, is excluded by I: when any corner is covered, B and C
must be ground in addition to the link constraint, which according to I excludes
a find constraint. This can be traced to the effect of our token constraint, which
forces any union to complete its detailed steps before the next union may be en-
tered. However, issue (ii) arises in the new α1-pattern for UF token, y ← x → y′

where

x = {token,union(A,B),union(A′, B′)}
y = {find(A,X),find(B, Y ),link(X,Y ),union(A′, B′)}
y′ = {find(A′, X ′),find(B′, Y ′),link(X ′, Y ′),union(A,B)}

Showing the joinability of any corner covered by this pattern means to find z, z′ such
that y

∗→ z ≈ z′
∗← y′. This can be done by, from y, first executing all remaining

steps related to union(A,B) and then the steps relating to union(A′, B′) to reach
a state z = T ∪ U ∪ {token}. In a similar manner, we construct z′ = T ′ ∪ U ∪
{token}, starting with the steps relating to union(A′, B′) followed by those of
union(A,B). It can be proved by induction that sets(T ) = sets(T ′); thus, z ≈ z′.
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Next, [126] identifies three critical pairs, which imply inconsistent tree con-
straints. The authors argue informally that these pairs will never occur for a query
with consistent tree constraints. As noticed by [44], this can be formalized using an
invariant. The last four pairs of [126] relate to issue (i) above; [126] argues these to be
avoidable, referring to procedural properties of implemented CHR systems (which is
slightly unusual in a context concerning confluence). In [44], those pairs are avoided
by restricting allowed queries to include only a single union constraint; we can
allow any number of those, but we avoid the problem due to the control patterns
imposed by the token constraints and formalized in our invariant I .

This completes the argument that UF token satisfies the α property, and by in-
spection of the possible derivation steps one by one (for each rule and for the “=”
constraint), it can be seen that there are no critical β corners. Thus, UF token is lo-
cally confluent modulo ≈, and since tree consistency implies termination, it follows
that UF token is confluent modulo ≈.

6.8 Discussion and detailed comments on related work

We already commented on the foundational work on confluence for CHR by [3],
who, with reference to Newman’s lemma, devised a method to prove confluence
by inspecting a finite number of critical pairs. This also formed the foundation of
automatic confluence checkers [3, 43, 85] (with no invariant or equivalence).

The addition of an invariant I in the specification of confluence problems for
CHR was suggested by [44]. The authors considered a construction similar to our α1-
corners and critical α1-patterns. They noted that critical α1-patterns usually do not
satisfy the invariant, and thus, they based their approach on defining a collection of
corners based on I-states as minimal extensions of such patterns. Local confluence,
then, follows from the joinability of this collection of minimally extended states.
However, there are often infinitely many such minimally extended states; this occurs
even for a natural invariant, such as groundness, when infinitely many terms are
possible, as is the case in Prolog-based CHR versions. We can use this construction
(in cases where it is finite!) to further cluster the space of our critical corners, but our
examples worked quite well without this.

Of other work concerned with confluence for CHR, we can mention [63, 112],
which considered confluence for non-terminating CHR programs. We can also refer
to [131], which gives an overview of CHR-related research until 2010, including
confluence.

6.9 Conclusion and future work

We have introduced confluence modulo equivalence for CHR, which allows for a
much larger class of programs to be characterized as confluent in a natural way, thus
increasing the practical relevance of confluence for CHR.
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We demonstrated the power of the framework by showing confluence modulo
equivalence for programs that use a redundant data representation (the set-as-lists and
Union-Find programs) and a dynamic programming algorithm (the Viterbi program);
all these are beyond the scope of previous confluence concepts for CHR. With the
new operational semantics, we can also handle extra-logical and incomplete built-
in predicates, and the notational improvements obtained by this semantics may also
promote new applications of and research on confluence.

As a first steps towards semi- or fully automatic proof methods, it is important to
notice that the classical joinability of a critical pair – as can be decided by existing
confluence checkers, such as [85] – provide a sufficient condition for joinability mod-
ulo any equivalence. Thus, only classically non-joinable pairs – in our terminology,
α1 patterns – need to be examined in more details involving the relevant equivalence;
however, in some cases, there may also be critical α2, α3 and β patterns that need to
be considered.

While the set of critical α1-patterns can be characterized by a finite collection
of patterns consisting of mini-states tied together by derivations, the same things
are not possible for other types of critical patterns. In our examples, we used semi-
formal patterns, whose meta-variables or placeholders are covered by side conditions
such as “x is a variable” and “a is a constant”. However, this must be formalized
to approach automatic or semi-automatic methods. A formal and machine-readable
language for specifying invariants and equivalences will also be an advantage in this
respect.

6.10 Afterword

In this chapter, we introduced confluence modulo equivalence in the context of
constraint-handling rules and demonstrated the power of the framework by showing
confluence modular equivalents for two data redundant programs and one dynamic
programming algorithm. We have continued this work in [26], where we consider
the semantic requirements for constructing the proofs mechanically.

Returning to the context of probabilistic analysis, confluence modulo equiva-
lence implies a functional relation from input to non-overlapping sets of equivalent
output. In case the output properties of interest can be constructed by a union of
these sets/events, there exists a probability measure over these output properties. In
this case we may use the presented approaches, e.g. those of Chapter 5.
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Confluence and Convergence in Probabilistically
Terminating Reduction Systems

In this chapter, we focus on a property for probabilistic programs that reduces their
semantics to functions, which in return ensures that there exists an output probability
measure. The property is called almost-sure convergence, and it ensures that, for each
input, the program terminates in the same state with probability one. We consider
probabilistic programs in the form of probabilistic abstract reduction systems [19]
and show that such a program is almost sure convergent if and only if it is confluent
and almost-surely terminating, that is, the program terminates with probability one.

Foreword. The remainder of this chapter – except for the afterword (Section 7.8) –
has been published with minor corrections in article [77] M. H. Kirkeby, H. Chris-
tiansen. Confluence and convergence in probabilistically terminating reduction
systems. Logic-Based Program Synthesis and Transformation - 27th International
Symposium, LOPSTR 2017, Namur, Belgium, October 10-12, 2017, wolumen
abs/1709.05123, 2017. (accepted for publication).

Abstract. Convergence of an abstract reduction system (ARS) is the property that any deriva-
tion from an initial state will end in the same final state, a.k.a. normal form. We generalize this
for probabilistic ARS as almost-sure convergence, meaning that the normal form is reached
with probability one, even if diverging derivations may exist. We show and exemplify proper-
ties that can be used for proving the almost-sure convergence of probabilistic ARS, generaliz-
ing known results from ARS.

7.1 Introduction

Probabilistic abstract reduction systems, PARS, are general models of systems that
develop over time in discrete steps [20]. In each non-final state, the choice of suc-
cessor state is governed by a probability distribution, which in turn induces a global,
probabilistic behaviour of the system. Probabilities make termination more than a
simple yes-no question, and the following criteria have been proposed: probabilistic
termination – a derivation terminates with some probability > 0 – and almost-sure
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termination – a derivation terminates with probability = 1, even if infinite derivations
may exist (and whose total probability thus amounts to 0). When considering a PARS
as a computational system, almost-sure termination may be the most interesting, and
there exist well-established methods for proving this property [19, 50].

PARS covers a variety of probabilistic algorithms and programs, scheduling
strategies and protocols [13, 20, 110], and PARS is a well-suited abstraction level
for better understanding their termination and correctness properties. Randomized
and probabilistic algorithms (e.g., [12, 89, 102]) can be classified into two groups:
Monte Carlo Algorithms, which allow a set of alternative outputs (typically only
correct with a certain probability or within a certain accuracy), e.g., Karger-Stein’s
Minimum Cut [75], Monte Carlo integration and Simulated Annealing [79], and Las
Vegas Algorithms, which provide one (correct) output and which may be both sim-
pler and on average more efficient than their deterministic counterparts, e.g., Ran-
domized Quicksort [53], checking equivalence of circular lists [71], and probabilis-
tic modular GCD [148]. We focus on results that are relevant for the latter type of
systems, and here, the property of convergence is interesting, as it may be a neces-
sary condition for correctness: a system is convergent if it is guaranteed to terminate
with a unique result. We introduce the concept of almost-sure convergence for PARS,
meaning that a unique result is found with probability = 1, although there may be
diverging computations; this property is a necessary condition for partial correctness,
more precisely, a strengthened version of partial correctness whereby the probability
of not obtaining a result is zero. The related concept of confluence has been ex-
tensively studied for ARS, e.g., [11, 70], and especially for terminating systems for
which confluence implies convergence: a system is confluent if, whenever alterna-
tive paths (i.e., repeated reductions and computations) are possible from some state,
these paths can be extended to join in a common state. Newman’s lemma [105] from
1942 is one of the most central results: in a terminating system, confluence (and
thus convergence) can be shown from a simpler property called local confluence. In,
e.g., term rewriting [11] and (a subset of) the programming language CHR [1, 3],
proving local confluence may be reduced to a finite number of cases, described by
critical pairs (for a definition, see these references), which in some cases may be
checked automatically. It is well-known that Newman’s lemma does not generalize
to non-terminating systems (and thus neither to almost-sure terminating systems);
see, e.g., [70].

Probabilistic and almost-sure versions of confluence were introduced concur-
rently by Frühwirth et al. [56] – in the context of a probabilistic version of CHR
– and by Bournez and Kirchner [20] in more generality for PARS. However, the
definitions in the latter reference were given indirectly, assuming an insight into Ho-
mogeneous Markov Chain Theory, and a number of central properties were listed
without hints of proofs.

In the present paper, we consider the important property of almost-sure con-
vergence for PARS and state properties that are relevant for proving it. In contrast
to [20], our definitions are self-contained, being based on elementary math, and
proofs are included. One of our main and novel results is that almost-sure termi-
nation together with confluence (in the classical sense) gives almost-sure conver-
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gence. Almost-sure convergence and almost-sure termination were introduced in an
early 1983 paper [66] for a specific class of probabilistic programs with a finite state
space, but our generalization to PARS appears to be new.

In 1991, Curien and Ghelli [34] described a powerful method for proving con-
fluence of non-probabilistic systems, therein using suitable transformations from the
original system into one, known to be confluent. We can show how this result ap-
plies to probabilistic systems, and we develop an analogous method for also proving
non-confluence.

In section 7.2, we review definitions for abstract reduction systems and introduce
and motivate our choices of definitions for their probabilistic counterparts; a proof
that the defined probabilities actually constitute a probability distribution is found in
the Appendix. Section 7.3 formulates and proves important properties, relevant for
showing almost-sure convergence of particular systems. Section 7.4 goes in detail
with applications of the transformational approach [34] to (dis-) proving almost-sure
convergence, and in Section 7.5, we demonstrate the use of this for a random walk
system and Hermans’ Ring. We add a few more comments on selected, related work
in section 7.6, and section 7.7 provides a summary and suggestions for future work.

7.2 Basic definitions

The definitions for non-probabilistic systems are standard; see, e.g., [11, 70].

Definition 7.1 (ARS). An Abstract Reduction System is a pairR = (A,→) whereby
the reduction→ is a binary relation on a countable set A.

Instead of (s, t) ∈→, we write s → t (or t ← s when convenient), and s →∗ t
denotes the transitive reflexive closure of→.

In the literature, an ARS is often required to have only finite branching, i.e., for
any element s, the set {t | s → t} is finite. We do not require this, as the implicit
restriction to countable branching is sufficient for our purposes.

The set of normal forms RNF are those s ∈ A for which there is no t ∈ A
such that s → t. For a given element s, the normal forms of s are defined as the set
RNF (s) = {t ∈ RNF | s →∗ t}. An element that is not a normal form is said to be
reducible, i.e., an element s is reducible if and only if {s′ | s→ s′} 6= ∅.

A path from an element s is a (finite or infinite) sequence of reductions s →
s1 → s2 → · · · . A finite path s → s1 → s2 → · · · → sn has length n (n ≥ 0); in
particular, we recognize an empty path (of length 0) from a given state to itself. For
given elements s and t ∈ RNF (s),∆(s, t) denotes the set of finite paths s→ · · · → t
(including the empty path); ∆∞(s) denotes the set of infinite paths from s. A system
is

• confluent if for all s1 ←∗ s→∗ s2 there is a t such that s1 →∗ t←∗ s2,
• locally confluent if for all s1 ← s→ s2 there is a t such that s1 →∗ t←∗ s2,
• terminating1 iff it has no infinite path,
1 A terminating system is also called strongly normalizing elsewhere, e.g., [34].
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• convergent iff it is terminating and confluent, and
• normalizing2 iff every element s has a normal form, i.e., there is an element
t ∈ RNF such that s→∗ t.

Notice that a normalizing system may not be terminating. A fundamental result for
ARS is Newman’s Lemma: a terminating system is confluent if and only if it is
locally confluent.

The following property indicates the complexity of the probability measures that
are needed to address paths in probabilistic abstract reduction systems defined over
countable sets.

Proposition 7.2. Given an ARS as above and given elements s and t ∈ RNF (s), it
holds that ∆(s, t) is countable, and ∆∞(s) may or may not be countable.

Proof. For the first part, ∆(s, t) is isomorphic to a subset of
⋃
n=1,2,...A

n. A count-
able union of countable sets is countable, and thus, ∆(s, t) is countable.

For the second part, consider the ARS 〈{0, 1}, {i → j | i, j ∈ {0, 1}}〉. Each
infinite path can be read as a real number in the unit interval, and any such real
number can be described by an infinite path. The real numbers are not countable.

This means that we can define discrete and summable probabilities over ∆(s, t), and
– which we will avoid – considering probabilities over the space ∆∞(s) requires a
more advanced measure.

In the next definition, a path is considered a Markov process/chain, i.e., each
reduction step is independent of the previous steps, and thus, the probability of a
path is defined as a product in the usual way. PARS can be seen as a special case
of Homogeneous Markov Chains, cf. [20], but for practical reasons, it is relevant to
introduce them as generalizations of ARS.

Definition 7.3 (PARS). A Probabilistic Abstract Reduction System is a pair RP =
(R,P ) wherebyR = (A,→) is an ARS, and for each reducible element s ∈ A\RNF ,
P (s→ ·) is a probability distribution over the reductions from s, i.e.,

∑
s→t P (s→

t) = 1; it is assumed that for all s and t, P (s→ t) > 0 if and only if s→ t.
The probability of a finite path s0 → s1 → . . .→ sn with n ≥ 0 is given as

P (s0 → s1 → . . .→ sn) =
n∏

i=1

P (si−1 → si).

For any element s and normal form t ∈ RNF (s), the probability of s reaching t,
written P (s→∗ t), is defined as

P (s→∗ t) =
∑

δ∈∆(s,t)

P (δ);

the probability of s not reaching a normal form (or diverging) is defined as
2 A normalizing system is also called weakly normalizing or weakly terminating elsewhere,

e.g., [34].
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P (s→∞) = 1−
∑

t∈RNF (s)

P (s→∗ t).

When referring to the confluence, local confluence, termination, and normalization
of a PARS, we refer to these properties for the underlying ARS.

Notice that when s is a normal form, P (s→∗ s) = 1 since ∆(s, t) contains only the
empty path with probability

∏0
i=1 P (si−1 → si) = 1. It is important that P (s→∗ t)

is defined only when t is a normal form of s since otherwise the defining sum may
be ≥ 1, as demonstrated by the following example.

Example 7.4. Consider the PARSRP given in Figure 7.1a; formally,RP = (({0, 1},
{0 � 1, 1 � 1}), P ) with P (0 � 1) = 1 and P (1 � 1) = 1. An attempt to define
P (0→∗ 1) as in Def. 7.3, for the reducible element 1, does not lead to a probability,
i.e., P (0→∗ 1) 6≤ 1: P (0→∗ 1) = P (0�1) + P (0�1�1) + P (0�1�1�1) + . . . =
∞.

0 1
1

1

(a)

0 1 a
1 1/2

1/2

(b)

a 0 1 b
1/2

1/2

1/2

1/2

(c)

0 1 2 3 . . .

. . .
a

1−1/4

1/4

1−1/42

1/42

1−1/43

1/43

1−1/44

1/44

(d)

Fig. 7.1: PARS with different properties; see Table 7.1.

The following proposition justifies that we refer to P as a probability function.

Proposition 7.5. For an arbitrary finite path π, 1 ≥ P (π) > 0. For every el-
ement s, P (s →∗ ·) and P (s →∞) constitute a probability distribution, i.e.,
∀t ∈ RNF (s) : 0 ≤ P (s →∗ t) ≤ 1; 0 ≤ P (s →∞) ≤ 1; and

∑
t∈RNF (s)

P (s →∗
t) + P (s→∞) = 1.

Proof. The proofs are simple but lengthy and are given in the Appendix.

Proposition 7.6 justifies that we refer to P (s→∞) as a probability of divergence.

Proposition 7.6. Consider a PARS that has an element s for which ∆∞(s) is count-
able (finite or infinite). Let P (s1 → s2 → · · · ) =

∏
i=1,2,...P (si → si+1) be the

probability of an infinite path; then, P (s→∞) =
∑
δ∈∆∞(s) P (δ) holds.

Proof. See Appendix.

We can now define probabilistic and almost-surely (abbreviated “a-s.”) versions of
important concepts for derivation systems. A system is

• almost-surely convergent if for all s1 ←∗ s →∗ s2 there is a normal form t ∈
RNF such that s1 →∗ t←∗ s2 and P (s1 →∗ t) = P (s2 →∗ t) = 1,
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• locally almost-surely convergent if for all s1 ← s→ s2 there is a t ∈ RNF such
that s1 →∗ t←∗ s2 and P (s1 →∗ t) = P (s2 →∗ t) = 1,
• almost-surely terminating3 iff every element s has P (s→∞) = 0 and
• probabilistically normalizing iff every element s has a normal form t such that
P (s→∗ t) > 0.

We have deliberately omitted almost-sure confluence and local confluence [20] since
these properties require a more advanced measure to define the probability of visiting
a perhaps reducible element.

(a) (b) (c) (d) (d′)

Loc. confl. + + + + +

Confl. + + – + +

Term. – – – – –

A-s. loc. conv. – + – – +

A-s. conv. – + – – +

A-s. term. – + + – +

Table 7.1: A property overview of the systems a–d in Figure 7.1 and (d′) with the same ARS
as (d) but with all probabilities replaced by 1/2.

Example 7.7. The four probabilistic systems in Figure 7.1 demonstrate these proper-
ties. We notice that b–d are normalizing in {a}, {a, b} and {a}. Furthermore, they
are all non-terminating: system b and c are a-s. terminating, which is not the case for
either a or d; for element 0 in system d, we have P (0→∞) =

∏∞
i=1(1− (1/4)i) ≈

0.6885 > 0.4 Table 7.1 summarizes their properties of (almost-sure) (local) conflu-
ence; (d′) refers to a PARS with the same underlying ARS as d and with all proba-
bilities = 1/2.

System c is a probabilistic version of a classical example [68, 70], which demon-
strates that termination (and not simply a-s. termination) is required for local con-
fluence to imply confluence. The difference between system (d) and system (d′)
emphasizes that the choice of probabilities do matter in terms of whether different
probabilistic properties hold. For any element s in (d′), the probability of reaching
the normal form a is 1/2 + 1/22 + 1/23 + · · · = 1.

7.3 Properties of Probabilistic Abstract Reduction Systems

With a focus on almost-sure convergence, we consider now relevant relationships be-
tween the properties of probabilistic and their underlying non-probabilistic systems.
3 Almost-sure termination is named probabilistic termination elsewhere, e.g., [56, 130].
4 Verified by Mathematica. The exact result is

(
1
4
; 1
4

)
∞; see [143] for the definition of this

notation.
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Lemmas 7.9 and 7.11, below, have previously been suggested by [20] without proofs,
and we have chosen to include them as well as their proofs to provide a better un-
derstanding of the nature of almost-sure convergence. The most important properties
are summarized as follows. For any PARS RP :

• RP is normalizing if and only if it is probabilistically normalizing (Lemma 7.9),
• if RP is almost-surely terminating, then it is normalizing (Lemma 7.10),
• if RP is terminating, then it is almost-surely terminating (Lemma 7.11),
• RP is almost-surely terminating and confluent if and only if it is almost-surely

convergent (Theorem 7.12).

The following inductive characterization of the probabilities for reaching a given
normal form is useful for the proofs that follow.

Proposition 7.8. For any reducible element s, the following holds.

∑

t∈RNF

P (s→∗ t) =
∑

s→s′

(
P (s→ s′)×

∑

t∈RNF

P (s′ →∗ t)
)

Proof. Any path from s to a normal form t will have the form s→ s′ → · · · → t for
some direct successor s′ of s. On the other hand, any normal form for a direct suc-
cessor s′ of s will also be a normal form of s. With this observation, the proposition
follows directly from Definition 7.3 (prob. of path).

Lemma 7.9 ([20]). A PARS is normalizing if and only if it is probabilistically nor-
malizing.

Proof. Every element s in a normalizing PARS has a normal form t such that s →∗
t, and by definition of PARS, P (s →∗ t) > 0, which makes it probabilistically
normalizing. On the other hand, the definition of probabilistic normalizing includes
normalization.

Probabilistic normalization differs from the other properties in nature (requiring
probability > 0 instead of = 1) and is the only property that is equivalent to its
non-probabilistic counterpart. Thus, the existing results on proving and disproving
normalization can be used directly to determine probabilistic normalization. The fol-
lowing lemma is also a consequence of Proposition 7, parts 3 and 5, of [20].

Lemma 7.10. If a PARS is almost-surely terminating, then it is normalizing.

Proof. For every element s in a almost-surely terminating system, Proposition 7.5
gives that

∑
t∈RNF

P (s→∗ t) = 1, and hence, s has at least one normal form t such
that P (s→∗ t) > 0. By Lemma 7.9, the system is also normalizing.

The opposite is not the case, as demonstrated by system d in Figure 7.1; every ele-
ment has a normal form, but the system is not almost-surely terminating.

Lemma 7.11 ([20]). If a PARS is terminating, then it is almost-surely terminating.
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Proof. In a terminating PARS, ∆∞(s) = ∅ for any element s. By Proposition 7.6,
we have P (s→∞) = 0.

The opposite is not the case, as demonstrated by systems b–d in Figure 7.1. The
following theorem is a central tool for proving almost-sure convergence.

Theorem 7.12. A PARS is almost-surely terminating and confluent if and only if it is
almost-surely convergent.

Thus, to prove almost-sure convergence of a given PARS, one may use the meth-
ods of [19, 50] to prove almost-sure termination and prove classical confluence –
referring to Newman’s lemma (cf. our discussion in the Introduction) or using the
method of mapping the system into another system, already known to be confluent,
as described in Section 7.4, below.

Proof (Theorem 7.12). We split the proof into smaller parts, referring to properties
that are shown below: “if”: by Prop. 7.14 and Lemma 7.17. “only if”: by Lemma
7.16.

Lemma 7.13. A PARS is almost-surely terminating if it is locally almost-surely con-
vergent.

Proof. Let RP be a PARS that is locally almost-surely convergent and consider an
arbitrary element s. We must show P (s→∞) = 0 or, equivalently,

∑
t∈RNF

P (s→∗
t) = 1.

When s is a normal form, we have P (s→∗ s) = 1 and thus the desired property.
Assume, now, that s is not a normal form. This means that s has at least one direct
successor; for any two (perhaps identical) direct successors s′, s′′, local almost-sure
convergence implies a unique normal form ts′,s′′ of s′ as well as of s′′ with P (s′ →∗
ts′,s′′) = P (s′′ →∗ ts′,s′′) = 1. Obviously, this normal form is the same for all such
successors and thus a unique normal form of s; therefore, let us call it ts. We can
now use Proposition 7.8 as follows.

∑

t∈RNF

P (s�∗ t) = P (s�∗ ts) =
∑

s→s′

(
P (s�s′) · P (s′�∗ ts)

)
=
∑

s→s′
P (s�s′) = 1.

This finishes the proof.

Since almost-sure convergence implies local almost-sure convergence, we obtain the
weaker version of the above lemma.

Proposition 7.14. A PARS is almost-surely terminating if it is almost-surely conver-
gent.

The following property for (P)ARS is used in the proof of Lemma 7.16 below.

Proposition 7.15. A normalizing system is confluent if and only if every element has
a unique normal form.
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Proof. “If”: By contradiction: Let RP be a normalizing (P)ARS; assume that every
element has a unique normal form and that RP is not confluent. By non-confluence,
there exist s1 ←∗ s →∗ s2 for which there does not exist a t such that s1 →∗
t ←∗ s2. However, s has one unique normal form t′, i.e., {t′} = RNF (s). By
the definition of normal forms of s, we have that ∀s′ : s →∗ s′ ⇒ RNF (s) ⊇
RNF (s

′). This holds specifically for s1 and s2, i.e., {t′} = RNF (s) ⊇ RNF (s1)
and {t′} = RNF (s) ⊇ RNF (s2). Since R is normalizing, every element has at least
one normal form, i.e., RNF (s1) 6= ∅ and RNF (s2) 6= ∅, leaving one possibility:
RNF (s1) = RNF (s2) = {t′}. From this result, we obtain s →∗ s1 →∗ t′ and
s →∗ s2 →∗ t′; this is a contradiction. “Only if”: This is a known result; see,
e.g., [11].

Lemma 7.16. If a PARS is almost-surely terminating and confluent, then it is almost-
surely convergent.

Proof. Lemma 7.10 and Prop. 7.15 ensure that an a-s. terminating system has a
unique normal form. A-s. termination also ensures that this unique normal form is
reached with probability = 1, and thus, the system is almost-surely convergent.

Lemma 7.17. A PARS is confluent if it is almost-surely convergent.

Proof. Assume almost-sure convergence; then, for each s1 ←∗ s→∗ s2, there exists
a t (a normal form) such that s1 →∗ t←∗ s2.

7.4 Showing Probabilistic Confluence by Transformation

The following proposition is a weaker formulation and consequence of Theorem
7.12; it shows that (dis)proving confluence for almost-surely terminating systems is
very relevant when (dis)proving almost-sure convergence.

Proposition 7.18. An almost-surely terminating PARS is almost-surely convergent if
and only if it is confluent.

Proof. This is a direct consequence of Theorem 7.12 (or using Lemma 7.16 and
7.17).

Curien and Ghelli [34] presented a general method for proving confluence by trans-
forming5 the system of interest (under some restrictions) to a new system that is
known to be confluent. We start by repeating their relevant result.

Lemma 7.19 ([34]). Given two ARS R = (A,→R) and R′ = (A′,→R′) and a
mapping G : A→ A′, R is confluent if the following holds.

(C1) R′ is confluent,
(C2) R is normalizing,

5 This is also referred to as interpreting a system elsewhere, e.g., [34].
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(C3) if s→R t then G(s)↔∗R′G(t),
(C4) ∀t ∈ RNF , G(t) ∈ R′NF , and
(C5) ∀t, u ∈ RNF , G(t) = G(u) ⇒ t = u

We present a version that also permits non-confluence of the transformed system
to imply non-confluence of the original system. Notice that (C2)–(C5) is a part of
(C2′)–(C5′), and in particular, (C4′) requires additionally that only normal forms are
mapped to normal forms.

Lemma 7.20. Given two ARS R = (A,→R) and R′ = (A′,→R′) and a mapping
G : A→ A′, satisfying

(C1 ′) (surjective) ∀s′ ∈ A′, ∃s ∈ A,G(s) = s′,
(C2 ′) R and R′ are normalizing,
(C3 ′) if s→R t then G(s)↔∗R′ G(t), and

if G(s)↔∗R′ G(t), then s↔∗R t,
(C4 ′) ∀t ∈ RNF , G(t) ∈ R′NF , and ∀t′ ∈ R′NF , G

−1(t′) ⊆ RNF ,
(C5 ′) (injective on normal forms) ∀t, u ∈ RNF , G(t) = G(u)⇒ t = u,

then R is confluent iff R′ is confluent.

Proof. “⇒”: follows from Lemma 7.19.
“⇐”: Assume that R is confluent and R′ is not confluent, i.e., there exist
s′1←∗R′ s′→∗R′ s′2 for which @t′ ∈ R′ : s′1→∗R′ t′←∗R′ s′2.

By (C2′): ∃t′1, t′2 ∈ R′NF : t′1←∗R′ s′1←∗R′ s′→∗R′ s′2→∗R′ t′2 where t′1 6= t′2.
By (C1′) and (C4′): ∃t1, t2 ∈ RNF : G(t1) = t′1 ∧G(t2) = t′2
By (C5′): t1 6= t2
By (C3′): t′1↔∗R′ t′2 ⇒ t1↔∗R t2
By confluence of R: t1 = t2 (contradicts t1 6= t2).

We summarize the application of the above to probabilistic systems in Theorems 7.21
and 7.23.

Theorem 7.21. An almost-surely terminating PARS RP = ((A,→R), P ) is almost-
surely convergent if there exists an ARSR′ = (A′,→R′) and a mappingG : A→ A′

that together with (A,→R) satisfy (C1)–(C5).

Proof. SinceRP is a-s. terminating,R is normalizing (Lemma 7.10). Thus, given an
ARS R′ and with G as a mapping from R to R′ satisfying (C1), (C3)–(C5), we can
apply Lemma 7.19 and find that R, and thereby, RP is confluent. A-s. convergence
of RP follows from Prop. 7.18 since RP is confluent and a-s. terminating

Example 7.22. We consider the nonterminating, almost-surely terminating system
RP (below to the left) with the underlying normalizing system R (below, middle),
the confluent system R′ (below to the right) and the mapping G(0)= 0, G(a)= a.

RP :
0 a

p

1-p R :
0 a

R′ : 0 a
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The systems R, R′ and the mapping G satisfy (C1)–(C5), and therefore, we can
conclude that RP is almost-surely convergent.

Theorem 7.23. Given an almost-surely terminating PARS RP = (R,P ) with R =
(A,→R), an ARSR′ = (A′,→R′) and a mappingG fromA toA′ that together with
R satisfy (C1′)–(C5′), the system RP is almost-surely convergent if and only R′ is
confluent.

Proof. Assume notation as above. Since RP is a-s. terminating, R is normalizing
(Lemma 7.10), thus satisfying the first part of (C2′). Therefore, given an ARS R′

and G as a mapping from A to A′ that together with R satisfy (C1′)–(C5′), we can
apply Lemma 7.19, finding that R is confluent iff R′ is confluent. Prop. 7.18 gives
that the a-s. terminating RP is a-s. convergent iff R′ is confluent.

7.5 Examples

In the following we show almost-sure convergence in two different cases that ex-
emplifies Theorem 7.23. We use the existing method for showing almost-sure ter-
mination [19, 50]: To prove that a PARS RP = ((A,→), P ) is a-s. terminat-
ing, it suffices to show existence of a Lyapunov ranking function, i.e., a function
V : A → R+ where ∀s ∈ A there exists an ε > 0 so the inequality of s,
V(s) ≥∑s→s′ P (s→ s′) · V(s′) + ε holds.

7.5.1 A Simple, Antisymmetric Random Walk

We consider RP = (R,P ), depicted in Figure 7.2a, a simple positive antisymmetric
1-dimensional random walk. In each step, the value n can either increase to n + 1,
P (n→ n+ 1) = 1/3, or decrease to n− 1 (or if at 0, we “decrease” to the normal
form a instead), P (n → n − 1) = P (0 → a) = 2/3. Formally, the underlying
system R = (A,→) is defined by A = N ] {a} and→ = {0 → a} ] {n → n′ |
n, n′ ∈ N, n′ = n+ 1 ∨ n′ = n− 1}.
We start by showing RP a-s. terminating, i.e., that a Lyapunov ranking function
exists: let the function V be defined as follows.

V(s) =




s+ 2, if s ∈ N

1, if s = a

0 1 2 3 . . .

a

1/3

2/3

1/3

2/3

1/3

2/3

1/3

2/3
2/3

(a) Original RP .

0 1 2 3 . . .

a

(b) Underlying R.

number

a

(c) R′.

Fig. 7.2: Random Walk (1 Dimension)
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This function is a Lyapunov ranking since the inequality (see above) holds for all
elements s ∈ A; we divide this into three cases, s > 0, s = 0, and s = a:

V(s)> 1
3 · V(s+ 1) + 2

3 · V(s− 1)⇔ s+ 2 > 1
3 (s+ 3) + 2

3 (s+ 1) (= s+ 5
3 )

V(0)> 1
3 · V(1) + 2

3 · V(a) ⇔ 2 > 1
3 · 3 + 2

3 · 1 , and
V(a)> 0 ⇔ 1 > 0.

Since RP is a-s. terminating, it suffices to define R′ = ({number, a},number →
a), as seen in Figure 7.2c, and the mapping G : N ] {a} → {number, a}.

G(s) =





number, if s ∈ N

a, otherwise.

Because RP is a-s. terminating, R′ is (trivially) a confluent system, and the mapping
G satisfies (C1′)–(C5′); then, RP is a-s. convergent (by Theorem 7.23).

7.5.2 Herman’s Self-Stabilizing Ring

Herman’s Ring [67] is an algorithm for self-stabilizing n identical processors con-
nected in an uni-directed ring, indexed 1 to n. Each process can hold one or zero
tokens, and for each time step, each process either keeps its token or passes it to
its left neighbour (-1) with probability 1/2 of each event. When a process keeps its
token and receives another, both tokens are eliminated.

Herman showed that for an initial state with an odd number of tokens, the system
will reach a stable state with one token with probability =1. This system is not almost-
surely convergent, but proving this for a similar system can be a part of showing that
Herman’s Ring with 3 processes either will stabilize with 1 token with probability
= 1 or 0 tokens with probability = 1. We use a boolean array to represent whether
each process holds a token (1 indicates a token), and the array is defined as in Figure
7.3, where both dashed and solid edges indicate reductions.
Since [000] is a normal form and {[100], [010], [001]} is the set of successor states
of each of [100],[010] and [001], then we can prove the stabilization of RP by
showing almost-sure convergence for a slightly altered system R′P , i.e., the system
in Figure 7.3 consisting of the solid edges only.

To show the almost-sure convergence of R′P , we prove almost-sure termination
by showing the existence of a Lyapunov ranking function, namely, V([b1 b2 b3]) =
22 ·(b1+b2+b3)+b1 ·20+b2 ·21+b3 ·22, which decreases, first, with the reduction
in tokens and, second, by the position of the tokens. The only two states where V
increases in a direct successor are [110] and [101], where the inequality of [110]
reduces to 11 > 9 + 1

2 and that of [101] to 14 > 9 + 1
2 , thereby showing RP to be

a-s. terminating.
We now provide a mapping G from the elements of the underlying system into

the elements of a trivially confluent system, i.e., R′′ in Figure 7.3b:
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[111]

[001]

[100]

[010]

1/4

1/4

1/4

1/4
1/2

1/2

1/2

1/2

1/2

1/2

[000] [011]

[110]

[101]

1/4

1/4

1/4

1/4
1/4

1/4 1/4

1/4

1/2

1/4

1/4

1/4

(a) Original RP (both dashed and solid edges) and the almost-surely
terminating R′P (without the dashed edges).

odd

[100]

even

[000]

(b) Confluent R′′.

Fig. 7.3: Herman’s Self-Stabilizing Ring

G([100]) = [100] G([000]) = [000]

G([111]) = G([001]) = G([010]) = odd

G([011]) = G([101]) = G([110]) = even

The RP is a-s. terminating, R′′ is confluent, and G satisfies (C1’)–(C5’); then, (by
Thm. 7.23) RP is a-s. convergent.

7.6 Related Work

We see our work as a succession of the earlier work by Bournez and Kirchner [20],
with explicit and simple definitions (instead of referring to Homogeneous Markov
Chain theory) and proofs of central properties. We also show novel properties that
are important for showing (non-) convergence. Our work is inspired by the result
of [56, 129, 130], given specifically for probabilistic extensions of the programming
languages CHR. A concept of so-called nondeterministic PARS has been introduced,
e.g., [19, 50], in which the choice of probability distribution for the next reduction is
nondeterministic; this is not covered by our results.
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PARS can be implemented directly in Sato’s PRISM System [121, 122], which
is a probabilistic version of Prolog, and recent progress on nonterminating pro-
grams [123] may be useful convergence considerations.

7.7 Conclusion

We have considered almost-sure convergence – and how to prove it – for probabilis-
tic abstract reduction systems. Our motivation is the application of such systems as
computational systems having a deterministic input-output relationship, and there-
fore, almost-sure termination is of special importance. We have provided properties
that are useful when showing almost-sure (non-) convergence by consequence of
other probabilistic and “classic” properties and by transformation. We plan to gener-
alize these results to almost-sure convergence modulo equivalence relevant for some
Monte-Carlo Algorithms that produce several correct answers (e.g., Simulated An-
nealing), thereby continuing the work that we have started for (non-probabilistic)
CHR [26].

7.8 Afterword

In the above, we expand Currien and Ghelli’s transformation technique to ensure
that confluence or non-confluence is preserved. At least in the examples, the trans-
formed systems can be seen as abstractions of the original systems, and it may be
worth investigating whether these abstractions can be automated for certain classes
of systems. We suggest using Lyapunov ranking functions for proving almost-sure
termination, but there does not yet exist a tool for the automatic detection of such
ranking functions. It may be possible to expand the techniques of automatic detec-
tion of ordinary ranking functions to the detection of (simple) Lyapunov ranking
functions.

Returning to the context of probabilistic analysis, almost-sure convergence im-
plies a functional relation from input to output. In this case there exists a probability
measure over output properties, and, therefore, we may use the previously presented
approaches.
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Discussion and Future work

First, we will recall the thesis challenge and survey how we have addressed it. Then,
we will discuss future work in the light of three themes.

• Improving precision of the analyses
• Scalability of the proposed methods through compositionality and modularity
• Generalization from deterministic programs to other classes of programs such as

probabilistic and nondeterministic programs

The thesis challenge was the following:

Given a deterministic program, a probability measure over the program in-
puts and an output/resource property, we want to analyse the probability
of the output/resource property. In addition, we want to examine practical
approaches to create such probabilistic analyses.

In Chapter 3, we presented an automatic probabilistic output analysis for sim-
ple functional programs for the special case of discrete probability distributions and
programs over countable input. This approach was the only approach that accepted
parametrized input probability distributions as input, and it yielded a mapping from
output to an upper probability bound of the output. The analysis was demonstrated
by small examples.

We used this approach in a discrete probabilistic resource analysis for C-like
programs. We assumed a deterministic and discrete resource model and used that
to create a functional program that returned the resource usage of the analysable
program. Then, we applied the approach of Chapter 3 to obtain the upper probability
bound of the individual resource usages.

In Chapter 5, we took a step back to the general case whereby any input proba-
bility measure was allowed, as opposed to only discrete ones. We derived a pair of
upper and lower probability bounds for output events, therein using the input proba-
bility distribution and a pre-image over-approximating function pre], i.e. a function
such that pre(A) ⊆ pre](A) whenever A is an output event. We focused on the idea
of “reusing existing analyses”, either forward or backwards, to obtain the necessary
pre-image over-approximating function. We presented two techniques, one for each
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case, and exemplified the forward case by minor examples produced systematically
using implemented analysis and calculating the probability bounds by hand.

In Chapters 6 and 7, we presented approaches to nondeterministic and proba-
bilistic programs that determined whether the program semantics could be seen as a
function that in return ensured that there exist a probabilistic output measure. This
is a step towards applying the techniques in Chapter 5 to probabilistic and nondeter-
ministic programs.

For nondeterministic programs, we identified the property confluence modulo
equivalence that ensures that the program’s input-output relation can be seen as
a function from input to classes of equivalent outputs, which in return ensures
that there exists an output probability measure over these classes1. Note that when
analysing a resource-instrumented program, confluence modulo equivalence must
hold for the resources.

For probabilistic programs, we identified the property almost-surely convergent,
that is, for each input, the program reaches a unique output element with probability
1. We showed that a program is almost-surely convergent if and only if it is almost-
surely terminating, that is, it terminates with probability 1, and is confluent; there
exist methods for proving both of these properties [19, 34, 50, 132].

8.1 Precision

In Chapter 3, we developed a probabilistic analysis for programs over countable in-
put; they lie within the general framework but are amenable to analytical solutions.
This approach approximates solutions by solving recurrence equations and uses the
computer algebra system Mathematica [146] to handle summations and products
symbolically. The approach computes upper probability bounds. The analyses have
been tested on a series of small examples, and the approach derived precise bounds
for the tested programs. However, when the recurrence equations are not solvable,
the method defaults to the trivial bounds. In automatic complexity analysis, the re-
currence equation solutions are approximated [7, 127], and it derives a pair of upper
and lower bounds instead of a single upper bound. Such an approach could improve
the analyses. For instance, let f be a function defined as follows, where (*) indi-
cates some boolean test whereby we do not know whether it evaluates to true or false.
We assume that we call f, and i equals 1.

f(i,y) = if i>=2 then y else f(i+1, g(y))
g(y) = if (*) then y+1 else y

Let the probability distribution over f’s input describe the fact that there is an equal
chance that y has the value 0 and 1. The output of f(1,0) is either 0 or 1, and
the output of f(1,1) is either 1 or 2. Then, the upper probability bound Pf of f’s
output distribution is Pf(z) =

∑
x∈{0,1} 1/2 · c(z = f(1, y)), where c(some test)

1 To be precise, there exists an output probability measure over a σ-algebra containing the
emptyset, these classes and all possible unions of these classes.
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returns 1 if some test evaluates to true and 0 otherwise. If we assume that we have
expanded the analysis such that it can approximate the recurrence equations of f
such that f(1,y) may produce either y or y + 1, we could achieve the following
upper bound for the output distribution.

Pf(z) =
∑

x∈{0,1}
1/2 · c(z = f(1, x))

= 1/2 · c(z = f(1, 0)) + 1/2 · c(z = f(1, 1))

= 1/2 · c(0 ≤ z ≤ 1) + 1/2 · c(1 ≤ z ≤ 2)

This is better than the currently possible Pf(z) = 1, i.e. better than the result given
by the method in Chapter 3.

A second point reveals itself if we analyse the probability bound of an out-
put event consisting of at least two outputs, for instance, the output event {0, 1};
by definition of Pf, Pf(0) + Pf(1) = 1 1

2 is such an upper bound. However, if
we consider the computed Pf using the knowledge from Chapter 5, we see that
the c-inequalities in Pf express img](f(1, 0)) = {0, 1} (the c(0 ≤ z ≤ 1)) and
img](f(1, 1)) = {0, 1} (the c(1 ≤ z ≤ 2)). The 1/2s are their respective input
probabilities. From Theorem 5.21, we know that these fragments together express
not only the probability of single outputs but also the boundaries of sets of output.
Specifically, Pf describes the upper and lower probabilities of output events. For in-
stance, the upper and lower probabilities of the output event {0, 1} are 1 and 1/2,
respectively; the upper bound is 1 since {0, 1} overlaps with both img](f(1, 0)) and
img](f(1, 1)), and the lower bound is 1/2 because {0, 1} is a subset of img](f(1, 0)
but not of img](f(1, 1).

Another aspect of precision is related to the approach in Chapter 5. Here, choos-
ing a more precise “black-box” analysis than those used in the experimental results
may yield more precise results. We could for instance use a convex polyhedron
analysis [32] that obtains better precision than the interval analysis. Other anal-
yses combine different techniques, e.g. [74], to obtain even more precise results.
If these better but more complex analysis results are not measurable in the input
measure, they must be abstracted into measurable sets, and the choice of abstrac-
tion affects the precision (Section 5.2.1). For instance, let us say that we have a
program that takes two independent variables a, b as input and that their probabil-
ity measure would be defined over all rectangles [(xa, ya), (xb, yb)]. On the other
hand, let us say that the analysis result given some output event is a polyhedron
a + b < 5, 1 ≤ a ≤ 2, 1 ≤ b ≤ 2, as indicated by the solid lines in Figure 8.1.
This result is not measurable, and we need to choose some enclosing rectangles. For
instance, [(1, 1), (2, 2)] and [(1, 1), (2, 1.5)]] [(1, 1.5), (1.5, 2)] are both measurable
over-approximations of the polyhedron (see Figure 8.1), but the latter is more precise
and may lead to a more precise probability bound.
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1 2 3

1

2

3

a

b

(a)

1 2 3

1

2

3

a

b

(b)

Fig. 8.1: If the input event is not measurable, it must be abstracted to a measurable input. The
choice affects the precision of the probability bound of the output event.

8.2 Scaling up

The results presented in this thesis are mainly theoretical and are illustrated with
small examples produced either by prototypes or systematically by hand. All the
analyses are developed as whole-program analyses and as such are unlikely to scale.
In the following, we will discuss two approaches to the probabilistic analysis of a
large software system, sys , consisting of many components f1, . . . , fn.

Approach 1. Apply non-probabilistic analysis to each component fi sep-
arately, acquiring pre-image approximations pre]fi ; obtain
pre]sys = Fpre(pre

]
f1
, . . . , pre]fn) by their composition; and ap-

ply the techniques in Chapter 5 or similarly for img]fi .
Approach 2. Apply probabilistic analysis to each component fi separately, acquir-

ing a transformer Pfi from probability distributions to sets of prob-
ability distributions, e.g., as in Chapter 3-4 or [33, 95], and obtain
Psys = FP (Pf1 , . . . , Pfn), which maps the input distribution for the
whole system to a set of output distributions.

One of the main challenges with both approaches is that the components are not
completely independent[30], e.g., the variables in the state may depend on each other.

Approach 1. Consider an interval analysis of the following program f.

f(x) = g(x,h(x))
g(x,y) = x-y
h(x) = x

Interval analysis2 of g with independent arguments is precise, i.e., g([w, x],[y,
z]) = [w - z, x - y], as is that of h, i.e., h([w, x]) = [w, x]. How-
ever, the analysis of f is imprecise due to the repeated argument x, i.e., img]f is
imprecise due to the dependence between the arguments of g. The image approxima-
tion yields img]f ([w, x]) = img]g([w, x], [w, x]) = [w−z, z−x], where for instance

2 Moore described interval arithmetic to evaluate the ranges of functions taking interval ar-
guments; one rule was the interval minus operator [w, x]− [y, z] = [w − z, x− y] [100].
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img]f ([0, 1]) = img]g([0, 1], img]h([0, 1])) = img]g([0, 1], [0, 1]) = [0 − 1, 1 − 0] =
[−1, 1], whereas the precise answer is [0, 0].

One solution to Approach 1 is to find more precise domains that can capture
dependencies, E.g., a relational domain, such as convex polyhedra, gives a precise
solution for f. However, relational abstract interpretations are more expensive to
compute. Other solutions, such as creating dependency graphs and analysing depen-
dent components together, are mentioned in [30]. However, that may be equivalent to
a whole system analysis in the extreme case whereby all components are dependent.

Approach 2. Consider the same program as before (program f). Let Pg and Ph be
probability distribution mappings for g and h, respectively. We wish to construct
a Pf that maps an input distribution to an output distribution. Given a distribution
µX over input X , the distributions µX and Ph(µX) are obviously dependent. As
demonstrated by Example 8.1, it is crucial to consider this dependency. To obtain
an accurate result, we should apply Pg to a joint probability distribution, thereby
capturing the dependency.

Example 8.1. Let f be the program from above, and let x be a uniform distribution
over [0, 1]. The input values of the call to g are dependent in that they have the same
values. Their shared probability distribution is depicted in Figure 8.2a. The correct
result of g(x,h(x)) is depicted in Figure 8.2b by orange intervals (with length
0.2) together with the result of g(x,h(x)), where x and h(x) are (incorrectly)
assumed independent (black 0.2-intervals). The independence result is neither an
upper nor lower probability bound of f’s output.

Interval length 0.2

µX & µh

0%

5%

10%

15%

20%

0.2 0.6 1.0 1.4 1.8

(a)

Interval length 0.2

µf

0%

5%

10%

15%

20%

0.2 0.6 1.0 1.4 1.8

(b)

Fig. 8.2: (a) The input probability of x and output probability of h. (b) The correct and in-
correct output probability of f when the input arguments are (incorrectly) assumed
independent (black) and when they are assumed fully dependent (orange).
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Copulas provide a framework for constructing a joint distribution as a function
of two independent probability distributions. The problem then is to construct appro-
priate copulas to represent the dependencies that arise (e.g., the dependency between
the distributions µX and Ph(µX) in the example). In general, we may not be able
to determine independence nor dependence between a pair of distributions; however,
the possible copulas are encapsulated by the Fréchet-Hoeffding bounds, e.g. [104],
and thus, the set of possible joint probability distributions are restricted. In future
work, we might draw on previous studies of these bounds when defined on (different
representations of) sets of probability measures, e.g. [16, 47, 98, 99].

8.3 Generalizing to other classes of programs

Non-deterministic Programs For the approaches in Chapter 3 and Chapter 4, the
analysis will have to be improved; the biggest challenge is that they cannot produce
nor handle approximations of recurrence relations, that is, recurrence inequations [7,
127], which is necessary for non-deterministic programs.

In retrospect, the techniques presented in Chapter 5 could have been expanded
to non-deterministic programs. A non-deterministic program relation |prg| is a total
one-to-many relation from input to outputs; the pre-image pre |prg|, dual pre-image
p̃re |prg|, and images img |prg| are well defined, but here, p̃re |prg| ⊆ pre |prg|. Nat-
urally, neither µ ◦ pre |prg| nor µ ◦ p̃re |prg| infer probability measures in general;
instead, they infer upper and lower probability bounds [23, 106]. The functions
µ ◦ pre |prg| and µ ◦ p̃re |prg| are known as a plausibility pl and belief bel func-
tion [147], respectively, and both have properties closely related to probability mea-
sures. Their nature is such that Pl ◦ pre |prg| is also a plausibility function, and
Bel ◦ pre |prg| is a belief function. When Pl and Bel are dual, Pl ◦ pre |prg| and
Bel ◦ pre |prg| are dual as well, i.e., Pl(pre |prg|(A)) = 1− (Bel(pre |prg|(A

{)).
Adapting the main theorem in Chapter 5 (Theorem 5.10) to multivalued map-

pings requires proving pre[f ⊆ p̃ref ⊆ pref ⊆ pre]f when assuming pref ⊆ pre]f ;

this is a consequence of p̃ref ⊆ pref and pre]f (A
{) ⊇ pref (A

{) ⇔ pre]f (A
{)

{ ⊆
pref (A

{)
{ ⇔ pre[f (A) ⊇ p̃ref (A). The proof of duality needs no changes.

Probabilistic Programs As we saw in the experimental results of Chapter 5, in trivial
cases, we may be able to transform probabilistic programs into non-probabilistic pro-
grams, where the random generators are given as input. Speculatively, such a trans-
formation would require that the number of calls to random generators be bounded
by a fixed number and that there exists a projector function such that the execu-
tion of a random generator call in the original program can be exchanged with a
unique input (also for calls occurring in loop bodies). It might not be possible to de-
fine such bounds precisely, but the methods of loop bound analysis may provide us
with an over-approximation. When the random generators are independent of each
other, their input must be independent, and when they are dependent, this dependency
should be reflected as well.
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The theory in Chapter 5 cannot handle probabilistic programs; however, provided
an expansion to the handling of non-deterministic programs, it may provide crude
upper and lower bounds for programs where we map random generators to intervals
[0, 1] (with probability 1).

Another possibility could be to mimic the method used by Monniaux in his out-
put analysis, simply partition the output of each random generator, and tag them
with their probability/weight. This requires an execution to maintain a list of possi-
ble interval and weight pairs. One advantage would be that it may be more precise
than the crude abstraction mentioned above, but a disadvantage is that it produces
a combinatorial explosion each time a new random generator call is encountered in
an execution. Adje et al. [4] had a similar issue and suggested limiting the number
of elements and combining the intervals and weights dynamically when the limit
was exceeded, e.g., the list {([0, 1], 0.2), ([0, 2], 0.2)} may be abstracted/reduced to
{([0, 2], 0.4)}.

8.4 Related work

The work presented in the Chapters 3, 4 builds on area of resource analysis [8, 9,
15, 86–88, 103, 109, 127] leading all the way back to Wegbreit’s essential arti-
cle in 1975 [141]. The transformational approach was introduced by Burstall and
Darlington [22] and formed the basis of the transformational approaches within au-
tomatic complexity analysis with the essential work by Le Metayer [91] and by
Rosendahl [116, 117]. Essentially these works follow the same procedure: first derive
recurrence relations (or cost relations) and second solve those to obtain polynomial,
logarithmic, or exponential resource bounds; the advantage being that the bounds are
not constrained to linear bounds.

We extend this technique to handle probabilistic resource analysis (Chapters 3
and 4). The main novelty being that we express and solve probabilistic equations typ-
ically involving sum and product expressions. Both approaches have been illustrated
on simple examples, yet it remains to be seen whether one may achieve the expected
precision for programs with more complex dataflow or whether they merely produce
the trivial upper bound 1 (for each output).

The approaches presented in Chapter 5 builds on abstract interpretation intro-
duced by Cousot and Cousot in 1977 [28, 29]; the classical abstract domains being
intervals [27–29] and polyhedra [32, 64, 65], but more elaborate domains are devel-
oped more recently, for instance octagons [92–94] or ellipsoids [107]. Abstract in-
terpretation is mainly used when analysing deterministic and non-deterministic pro-
grams and to a minor degree when analysing probabilistic programs [4, 39, 97]. The
two essential works by Monniaux [95, 96] and by Cousot and Monerau [33] each
describe a framework for extending existing non-probabilistic analysis (described
using abstract interpretation) to probabilistic and nondeterministic program analysis.

The work presented in Chapter 5, relates to these frameworks. While both frame-
works can analyse a larger class of programs, namely probabilistic programs, they
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require manual development of a new semantics that handles random generators.
One advantage of the presented methods of Chapter 5 is that the original analysis
may be seen as black box, and that the result of several black-box analyses may
be combined in order to get a better approximation of the input leading to a given
property, hence providing tighter bounds. This makes the presented approaches more
amenable to implementation, and future work includes constructing such an imple-
mentation based on existing tools.

As indicated by the experiments of Chapter 5, using Monniaux’s framework to
lift an analysis produces a less or equally precise probabilistic analysis than the one
obtained by applying the methods presented in Chapter 5 to the same analysis us-
ing the same abstraction. The imprecision is caused by the manner in which their
probabilistic abstract semantics propagate probabilities through if-statements. When
deducing the upper probability bound of an output event B, it is essential that the
input-probability µ of each partition element t may contribute to B’s probability
once.

Example 8.2. In this example we compare Monniaux’s probabilistic interval analysis
and the forward approach where we fix the abstract domains so they correspond in
coarseness. We analyse the following program

f(x,y) = if (x>2) then y += 1 else y += 2; (*) return y;

where the (concrete) input probability measure describes that there is an equal chance
that x and y are (independently) uniformly distributed in the interval [1, 3] and that
they are (independently) uniformly distributed in the interval [3, 5].

In the following we analyse the output event [3, 4] for program f using first Mon-
niaux’s framework and then using the forward approach. For comparison we have
manually calculated the correct probability of the output event, namely 0.25. 3 We
fix the abstract domain/input partition so we obtain to two states (i) where x maps
to [1, 3] and y maps to [1, 3] and (ii) where x maps to [3, 5] and y maps to [3, 5].
Because the value of x variable has no influence on the output after the branching
condition, we will exclude it from the states for simplicity.

The interval analysis derives that for state (i) where x and y maps to [1, 3] the
“then” branch yields y maps to [2, 4] and the “else” branch yields y maps to [3, 5],
thus, they are both possible environments at program point (*). For state (ii) where
x and y maps to [3, 5] only the “then” branch is feasible and yields that y maps to
[4, 6].

Monniaux’s probabilistic interval analysis: for case (i) x and ymaps to [1, 3] with
probability 0.5, the “then” branch yields [2, 4]*0.5 meaning that y may be described
by any measure µ such that µ([2, 4]) = 0.5 and with total weight 0.5. The “else”
branch yields [3, 5]*0.5. For case (ii) where x and y maps to [3, 5] with probability
0.5, the “then” branch yields [4, 6]*0.5. After the if-statement, at program point (*),
the states are summed, obtaining [2, 4]*0.5+ [3, 5]*0.5+ [4, 6]*0.5 meaning y may

3 The total of 0.25 stems from two parts of the input: 0.125 from the input cases x∈ [2, 3]
and y∈ [2, 3] where y is incremented by 1 in the “then” branch, and another 0.125 from
the input cases x∈ [1, 2) and y∈ [1, 2] where y is incremented by 2 in the “else” branch.
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be described by any measure µwhich is the sum4 of three measures µ = µ′+µ′′+µ′′′

such that µ′([2, 4]) = 0.5, µ′′([3, 5]) = 0.5, µ′′′([4, 6]) = 0.5, and each has a total
weight of 0.5. The analysis obtain the upper probabilistic bound 1 for the output
event [3, 4].

The forward approach of Chapter 5 yields that for case (i) either [2, 4] or [3, 5] is
reached, and for case (ii) only [4, 6] is reached, thus only the partition relating to the
output event where y is a value in [3, 4] is case (i). The approach provides an upper
probability bound of 0.5 for the output event [3, 4].

We conclude that in the above example5 the forward approach gave a tighter upper
bound than the analysis created using Monniaux’s framework. However, it remains
to be shown formally.

4 The sum of two measures µ = µ′+µ′′ (over the same sigma-algebra) is defined as µ(A) =
µ′(A) + µ′′(A).

5 Another example is program h on page 77 with results presented in Figure 5.6.
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Relations, functions and multi-valued mappings.

Definition A.1. The cartesian product of the sets X and Y is the set of all pairs
(x, y) such that x ∈ X and y ∈ Y , i.e. X × Y = {(x, y) | x ∈ X, y ∈ Y }. We write
X × Y × Z for (X × Y )× Z and Xn for X × . . .×X︸ ︷︷ ︸

n times

.

Definition A.2. A relation is any subset of a cartesian product. An n-ary relation is
a set of n-tuples. An n-ary relation R is a relation on X if R ⊆ Xn.

Definition A.3. If R is a binary relation, the domain of R is dom(R) , {x |
∃y : (x, y) ∈ R},and the range of R is ran(R) , {y | ∃x : (x, y) ∈ R}.

Definition A.4. A relationR ⊆ X×Y is total if dom(R) = X and partial otherwise.

Definition A.5. A binary relation f ⊆ X × Y is a function if (x, y) ∈ f ∧ (x, z) ∈
f ⇒ y = z. The value of f at x is y if (x, y) ∈ f ; we use the functional notation
y = f(x). f is a function on X if dom(f) = X . If dom(F ) = Xn, then f is an
n-ary function on X . f is a function from X to Y , f : X → Y , if dom(f) = X and
ran(f) ⊆ Y .

Note that the notation f : X → Y and saying “f is a function on X” implicitly
provide that f is a total function.

Definition A.6. A relation R ⊆ X × Y over-approximates a relation R′ ⊆ X × Y
if R′ ⊆ R.

Lemma A.7. Let a relation R ⊆ X × Y be total, and let R′ ⊆ X × Y over-
approximate Rf , i.e., R ⊆ R′; then, R′ is also total.

Proof. For all x ∈ X , there is a pair (x, y) in R because R is total. Since R ⊆ R′,
we find that, for all x ∈ X , there is a pair (x, y) in R′. Thus, R′ is total.
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Selected proofs for Chapter 7

Proposition B.1. For an arbitrary finite path π, 1 ≥ P (π) > 0. For every el-
ement s, P (s →∗ ·) and P (s →∞) constitute a probability distribution, i.e.,
∀t ∈ RNF (s) : 0 ≤ P (s →∗ t) ≤ 1; 0 ≤ P (s →∞) ≤ 1; and

∑
t∈RNF (s)

P (s →∗
t) + P (s→∞) = 1.

Proof. Part one follows by Definition 7.3. Part two is shown by defining a sequence
of distributions P (n), n ∈ N, only containing paths up to length n, and we show
that it converges to P . Let∆(n)(s, t) be the subset of ∆(s, t) with paths of length n
or less, and let ∆(n)(s, ]) be the set of paths of length n, starting in s and ending in
a reducible element.
We can now define P (n) over {∆(n)(s, t) | t ∈ RNF (s)} ] {∆(n)(s, ])} as follows:

P (n)(s→∗ t) =∑δ∈∆(n)(s,t) P (δ), and (B.1)

P (n)(s→∞) =
∑
π∈∆(n)(s,]) P (π). (B.2)

First, we prove by induction that P (n) is a distribution for all n. The P (0) is a
distribution because (i) If s is irreducible, P (0)(s →∗ s) = 1 (the empty-path);
P (0)(s→∞) = 0 (a sum of zero elements). (ii) If s is reducible, P (0)(s→∗ s) = 0;
and P (0)(s→∞) =

∑
s→t P (s→ t) = 1 by Definition 7.3.

The inductive step: The sets ∆(n+1)(s, t), t ∈ RNF (s), and ∆(n+1)(s, ]) can be
constructed by, for each path in ∆(n)(s, ]), creating its possible extensions by one
reduction. When an extension leads to a normal form t, it is added to ∆(n)(s, t);
otherwise, i.e., if the new path leads to a reducible, it is included in ∆(n+1)(s, ]).
Formally, for any normal form t of s, we write

∆(n+1)(s, t) ={(s� · · · �u� t) | (s� · · · �u) ∈ ∆(n)(s, ]), u→ t} ]∆(n)(s, t)

∆(n+1)(s, ]) ={(s� · · · �u�v) | (s� · · · �u) ∈ ∆(n)(s, ]), u�v, u 6∈RNF (s)}

We show that for a given s, the probability mass added to the ∆( · )(s, t) sets is equal
to the probability mass removed from ∆( · )(s, ]) as follows (where δsu = (s� · · · �
u)).
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∑

t∈RNF (s)

P (n+1)(s→∗ t) + P (n+1)(s→∞) =
∑

t∈RNF (s)

δ∈∆(n+1)(s,t)

P (n+1)(δ) + P (n+1)(s→∞)

=
∑

t∈RNF (s)

δst∈∆(n)(s,t)

P (n)(δ) +
∑

δsu∈∆(n)(s,]),
u→v,v∈RNF (s)

P (n)(δ)P (u→v) +
∑

δsu∈∆(n)(s,]),
u→v,v 6∈RNF (s)

P (n)(δ)P (u→v)

=
∑

t∈RNF (s)

P (n)(s→∗ t) +
∑

δsu∈∆(n)(s,]),
u→v

P (n)(δ)P (u→v) =
∑

t∈RNF (s)

P (n)(s→∗ t) +
∑

δsu∈∆(n)(s,])

P (n)(δ)

(∑

u→v
P (u→v)

)

=
∑

t∈RNF (s)

P (n)(s→∗ t) + P (n)(s→∞) = 1

Thus, for given s, P (n+1) defines a probability distribution. Notice also that the equa-
tions above indicate that P (n+1)(s→∗ t) ≥ P (n)(s→∗ t) for all t ∈ RNF (s).

Finally, for any s and t ∈ RNF (s), limn→∞∆(n)(s, t) = ∆(s, t), we
obtain (as we consider increasing sequences of real numbers in a closed interval)
limn→∞ P (n)(s→∗ t) = P (s→∗ t), and consequently,
limn→∞ P (n)(s→∞) = P (s→∞). This finishes the proof.

Proposition B.2. Consider a PARS that has an element s for which ∆∞(s) is count-
able (finite or infinite). Let P (s1 → s2 → · · · ) =

∏
i=1,2,...P (si → si+1) be the

probability of an infinite path; then, P (s→∞) =
∑
δ∈∆∞(s) P (δ) holds.

Proof. We assume the characterization in the proof of Proposition 7.5 above and
of P by the limits of the functions P (n)(s →∗ t) and P (n)(s →∞) given by
equations (B.1) and (B.2). When ∆∞(s) is countable, limn→∞ P (n)(s →∞) =∑
δ∈∆∞(s) P (δ).
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