3,934 research outputs found

    Generic Rigidity Matroids with Dilworth Truncations

    Get PDF
    We prove that the linear matroid that defines generic rigidity of dd-dimensional body-rod-bar frameworks (i.e., structures consisting of disjoint bodies and rods mutually linked by bars) can be obtained from the union of (d+12){d+1 \choose 2} graphic matroids by applying variants of Dilworth truncation nrn_r times, where nrn_r denotes the number of rods. This leads to an alternative proof of Tay's combinatorial characterizations of generic rigidity of rod-bar frameworks and that of identified body-hinge frameworks

    Iterative Universal Rigidity

    Full text link
    A bar framework determined by a finite graph GG and configuration p\bf p in dd space is universally rigid if it is rigid in any RDRd{\mathbb R}^D \supset {\mathbb R}^d. We provide a characterization of universally rigidity for any graph GG and any configuration p{\bf p} in terms of a sequence of affine subsets of the space of configurations. This corresponds to a facial reduction process for closed finite dimensional convex cones.Comment: 41 pages, 12 figure

    From graphs to tensegrity structures: Geometric and symbolic approaches

    Get PDF
    A form-finding problem for tensegrity structures is studied; given an abstract graph, we show an algorithm to provide a necessary condition for it to be the underlying graph of a tensegrity in Rd\mathbb{R}^d (typically d=2,3d=2,3) with vertices in general position. Furthermore, for a certain class of graphs our algorithm allows to obtain necessary and sufficient conditions on the relative position of the vertices in order to underlie a tensegrity, for what we propose both a geometric and a symbolic approach.Comment: 17 pages, 8 figures; final versio

    Finite motions from periodic frameworks with added symmetry

    Get PDF
    Recent work from authors across disciplines has made substantial contributions to counting rules (Maxwell type theorems) which predict when an infinite periodic structure would be rigid or flexible while preserving the periodic pattern, as an engineering type framework, or equivalently, as an idealized molecular framework. Other work has shown that for finite frameworks, introducing symmetry modifies the previous general counts, and under some circumstances this symmetrized Maxwell type count can predict added finite flexibility in the structure. In this paper we combine these approaches to present new Maxwell type counts for the columns and rows of a modified orbit matrix for structures that have both a periodic structure and additional symmetry within the periodic cells. In a number of cases, this count for the combined group of symmetry operations demonstrates there is added finite flexibility in what would have been rigid when realized without the symmetry. Given that many crystal structures have these added symmetries, and that their flexibility may be key to their physical and chemical properties, we present a summary of the results as a way to generate further developments of both a practical and theoretic interest.Comment: 45 pages, 13 figure
    corecore