11,741 research outputs found

    Configurations of Lines in 3-Space and Rigidity of Planar Structures

    Get PDF
    Let L be a sequence (l_1,l_2,...,l_n) of n lines in C^3. We define the intersection graph G_L=([n],E) of L, where [n]:={1,..., n}, and with {i,j} in E if and only if ineq j and the corresponding lines l_i and l_j intersect, or are parallel (or coincide). For a graph G=([n],E), we say that a sequence L is a realization of G if G subset G_L. One of the main results of this paper is to provide a combinatorial characterization of graphs G=([n],E) that have the following property: For every generic realization L of G, that consists of n pairwise distinct lines, we have G_L=K_n, in which case the lines of L are either all concurrent or all coplanar. The general statements that we obtain about lines, apart from their independent interest, turns out to be closely related to the notion of graph rigidity. The connection is established due to the so-called Elekes-Sharir framework, which allows us to transform the problem into an incidence problem involving lines in three dimensions. By exploiting the geometry of contacts between lines in 3D, we can obtain alternative, simpler, and more precise characterizations of the rigidity of graphs

    Skeletal Rigidity of Phylogenetic Trees

    Full text link
    Motivated by geometric origami and the straight skeleton construction, we outline a map between spaces of phylogenetic trees and spaces of planar polygons. The limitations of this map is studied through explicit examples, culminating in proving a structural rigidity result.Comment: 17 pages, 12 figure

    Generation of planar tensegrity structures through cellular multiplication

    Full text link
    Tensegrity structures are frameworks in a stable self-equilibrated prestress state that have been applied in various fields in science and engineering. Research into tensegrity structures has resulted in reliable techniques for their form finding and analysis. However, most techniques address topology and form separately. This paper presents a bio-inspired approach for the combined topology identification and form finding of planar tensegrity structures. Tensegrity structures are generated using tensegrity cells (elementary stable self-stressed units that have been proven to compose any tensegrity structure) according to two multiplication mechanisms: cellular adhesion and fusion. Changes in the dimension of the self-stress space of the structure are found to depend on the number of adhesion and fusion steps conducted as well as on the interaction among the cells composing the system. A methodology for defining a basis of the self-stress space is also provided. Through the definition of the equilibrium shape, the number of nodes and members as well as the number of self-stress states, the cellular multiplication method can integrate design considerations, providing great flexibility and control over the tensegrity structure designed and opening the door to the development of a whole new realm of planar tensegrity systems with controllable characteristics.Comment: 29 pages, 19 figures, to appear at Applied Mathematical Modelin

    Locked and Unlocked Chains of Planar Shapes

    Full text link
    We extend linkage unfolding results from the well-studied case of polygonal linkages to the more general case of linkages of polygons. More precisely, we consider chains of nonoverlapping rigid planar shapes (Jordan regions) that are hinged together sequentially at rotatable joints. Our goal is to characterize the families of planar shapes that admit locked chains, where some configurations cannot be reached by continuous reconfiguration without self-intersection, and which families of planar shapes guarantee universal foldability, where every chain is guaranteed to have a connected configuration space. Previously, only obtuse triangles were known to admit locked shapes, and only line segments were known to guarantee universal foldability. We show that a surprisingly general family of planar shapes, called slender adornments, guarantees universal foldability: roughly, the distance from each edge along the path along the boundary of the slender adornment to each hinge should be monotone. In contrast, we show that isosceles triangles with any desired apex angle less than 90 degrees admit locked chains, which is precisely the threshold beyond which the inward-normal property no longer holds.Comment: 23 pages, 25 figures, Latex; full journal version with all proof details. (Fixed crash-induced bugs in the abstract.

    Physics of thick polymers

    Full text link
    We present the results of analytic calculations and numerical simulations of the behaviour of a new class of chain molecules which we call thick polymers. The concept of the thickness of such a polymer, viewed as a tube, is encapsulated by a special three body interaction and impacts on the behaviour both locally and non-locally. When thick polymers undergo compaction due to an attractive self-interaction, we find a new type of phase transition between a compact phase and a swollen phase at zero temperature on increasing the thickness. In the vicinity of this transition, short tubes form space filling helices and sheets as observed in protein native state structures. Upon increasing the chain length, or the number of chains, we numerically find a crossover from secondary structure motifs to a quite distinct class of structures akin to the semi-crystalline phase of polymers or amyloid fibers in polypeptides.Comment: 41 pages, 20 figures. Accepted for publication in J. Pol. Sci.
    • …
    corecore