66 research outputs found

    Roaming Real-Time Applications - Mobility Services in IPv6 Networks

    Full text link
    Emerging mobility standards within the next generation Internet Protocol, IPv6, promise to continuously operate devices roaming between IP networks. Associated with the paradigm of ubiquitous computing and communication, network technology is on the spot to deliver voice and videoconferencing as a standard internet solution. However, current roaming procedures are too slow, to remain seamless for real-time applications. Multicast mobility still waits for a convincing design. This paper investigates the temporal behaviour of mobile IPv6 with dedicated focus on topological impacts. Extending the hierarchical mobile IPv6 approach we suggest protocol improvements for a continuous handover, which may serve bidirectional multicast communication, as well. Along this line a multicast mobility concept is introduced as a service for clients and sources, as they are of dedicated importance in multipoint conferencing applications. The mechanisms introduced do not rely on assumptions of any specific multicast routing protocol in use.Comment: 15 pages, 5 figure

    Computer-mediated knowledge communication

    Get PDF
    New communication technologies enable an array of new working and learning scenarios in which knowledge is being communicated. This article deals with the question to what extent these technologies can impede or facilitate knowledge communication. First, the various computer-based communication technologies will be classified. Second, effects of the medium on knowledge communication will be discussed based on results of studies of the current special priority program "Net-based Knowledge Communication in Groups". Third and last, computer-based possibilities to facilitate computer-mediated knowledge communication will be reviewNeue Kommunikationstechnologien ermöglichen eine Reihe neuer Arbeits- und Lernszenarien in denen Wissen kommuniziert wird. Dieser Beitrag beschäftigt sich damit, inwiefern diese Technologien Wissenskommunikation einschränken oder fördern können. Dazu werden in einem ersten Schritt die verschiedenen computerbasierten Kommunikationstechnologien untergliedert. In einem zweiten Schritt werden Wirkungen des Mediums auf die Wissenskommunikation diskutiert. Dazu werden u. a. die Ergebnisse von Studien des aktuellen Forschungsschwerpunkts "Netzbasierte Wissenskommunikation in Gruppen" berichtet. In einem dritten und letzten Schritt werden computerbasierte Möglichkeiten zusammengefasst, computervermittelte Wissenskommunikation zu förd

    Performance Analysis of Multicast Mobility in a Hierarchical Mobile IP Proxy Environment

    Full text link
    Mobility support in IPv6 networks is ready for release as an RFC, stimulating major discussions on improvements to meet real-time communication requirements. Sprawling hot spots of IP-only wireless networks at the same time await voice and videoconferencing as standard mobile Internet services, thereby adding the request for multicast support to real-time mobility. This paper briefly introduces current approaches for seamless multicast extensions to Mobile IPv6. Key issues of multicast mobility are discussed. Both analytically and in simulations comparisons are drawn between handover performance characteristics, dedicating special focus on the M-HMIPv6 approach.Comment: 11 pages, 7 figure

    VCD: A Video Conferencing Dataset for Video Compression

    Full text link
    Commonly used datasets for evaluating video codecs are all very high quality and not representative of video typically used in video conferencing scenarios. We present the Video Conferencing Dataset (VCD) for evaluating video codecs for real-time communication, the first such dataset focused on video conferencing. VCD includes a wide variety of camera qualities and spatial and temporal information. It includes both desktop and mobile scenarios and two types of video background processing. We report the compression efficiency of H.264, H.265, H.266, and AV1 in low-delay settings on VCD and compare it with the non-video conferencing datasets UVC, MLC-JVC, and HEVC. The results show the source quality and the scenarios have a significant effect on the compression efficiency of all the codecs. VCD enables the evaluation and tuning of codecs for this important scenario. The VCD is publicly available as an open-source dataset at https://github.com/microsoft/VCD

    A Distributed Multimedia Communication System and its Applications to E-Learning

    Get PDF
    In this paper we report on a multimedia communication system including a VCoIP (Video Conferencing over IP) software with a distributed architecture and its applications for teaching scenarios. It is a simple, ready-to-use scheme for distributed presenting, recording and streaming multimedia content. We also introduce and investigate concepts and experiments to IPv6 user and session mobility, with the special focus on real-time video group communication.Comment: Including 6 figure

    Performance Evaluation of WebRTC-Based Video Conferencing: A Comprehensive Analysis

    Get PDF
    In an ever-evolving technological landscape, addressing the performance challenges of real-time communication protocols is crucial. Real-time communication, facilitated by streaming media protocols, utilizes peer-to-peer or client-server models to enhance Quality of Service (QoS). WebRTC (Web Real-Time Communication) stands as a widely adopted, browser-based, open-source, peer-to-peer protocol, offering real-time media transmission through JavaScript APIs without third-party plugins. This paper presents an in-depth performance evaluation of a WebRTC-based video conferencing system using Socket.io services on a Node.js server. Our research expands on recent studies by introducing a comprehensive set of performance parameters, including Processing delay, CPU Utilization, Latency, Jitter, and Packet Loss, and packet delay. Our findings indicate that WebRTC performs exceptionally well within specific latency thresholds. However, scalability concerns emerge when a large number of clients are introduced, especially in bandwidth-constrained environments

    AdapINT: A Flexible and Adaptive In-Band Network Telemetry System Based on Deep Reinforcement Learning

    Full text link
    In-band Network Telemetry (INT) has emerged as a promising network measurement technology. However, existing network telemetry systems lack the flexibility to meet diverse telemetry requirements and are also difficult to adapt to dynamic network environments. In this paper, we propose AdapINT, a versatile and adaptive in-band network telemetry framework assisted by dual-timescale probes, including long-period auxiliary probes (APs) and short-period dynamic probes (DPs). Technically, the APs collect basic network status information, which is used for the path planning of DPs. To achieve full network coverage, we propose an auxiliary probes path deployment (APPD) algorithm based on the Depth-First-Search (DFS). The DPs collect specific network information for telemetry tasks. To ensure that the DPs can meet diverse telemetry requirements and adapt to dynamic network environments, we apply the deep reinforcement learning (DRL) technique and transfer learning method to design the dynamic probes path deployment (DPPD) algorithm. The evaluation results show that AdapINT can redesign the telemetry system according to telemetry requirements and network environments. AdapINT can reduce telemetry latency by 75\% in online games and video conferencing scenarios. For overhead-aware networks, AdapINT can reduce control overheads by 34\% in cloud computing services.Comment: 14 pages, 19 figure

    Adaptive cross-device videoconferencing solution for wireless networks based on QoS monitoring

    Full text link
    The increase in CPU power and screen quality of todays smartphones as well as the availability of high bandwidth wireless networks has enabled high quality mobile videoconfer- encing never seen before. However, adapting to the variety of devices and network conditions that come as a result is still not a trivial issue. In this paper, we present a multiple participant videoconferencing service that adapts to different kind of devices and access networks while providing an stable communication. By combining network quality detection and the use of a multipoint control unit for video mixing and transcoding, desktop, tablet and mobile clients can participate seamlessly. We also describe the cost in terms of bandwidth and CPU usage of this approach in a variety of scenarios
    corecore