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Abstract

Presented is an approach for source number estimation, applica-

ble when performing multi-source localisation by a mixture-of-

distributions model. The approach is derived from information-

theoretic considerations and allows for estimating the number

of sources both in non-competing and in concurrent talker situ-

ations. We also propose instrumental metrics for evaluating the

performance of source localisation and tracking algorithms in a

multi-source scenario. We implement and evaluate the proposed

source number estimation approach in the framework of our

previously proposed localisation algorithm based on a mixture-

of-Gaussians model. We show that using the source number

estimator reduces the number of ‘ghost’ localisations (i.e. spa-

tial locations falsely deemed as containing an active acoustic

source) without compromising on the accuracy of the localisa-

tion estimates.

Index Terms: source localisation, source separation, source

number estimation, hearing devices.

1. Introduction

The aim of multiple talker localisation is to detect and localise

a number of overlapping or competing speakers, under varying

levels of background noise, by means of the spatial diversity

afforded by microphone arrays. Active speaker localisation is

an important part of the noise suppression chain in state-of-the-

art communication systems and finds its use, for example, in

steering the video camera towards the active speaker in video

conferencing scenarios, for interference cancellation and noise

suppression in hands-free systems, and hearing devices.

An important problem in this context is the adaptive detec-

tion of the number of active speakers. Detection can be done

using Akaike’s Information Criterion (AIC), Rissanen’s Mini-

mum Description Length (MDL), or the Bayesian Information

Criterion (BIC) (see, e.g, [1] and references therein). But the

formulation of these criteria is difficult for the broadband case,

especially where disjoint sources like speech are concerned.

Moreover, the detection problem is coupled with the localisa-

tion, requiring a multi-dimensional non-linear maximum likeli-

hood optimisation, which adds to the complexity. The approach

proposed in [2] decouples the localisation from source num-

ber detection and bases the estimate on the eigenvalue distri-

bution. However, this approach requires, firstly, a sufficiently

large number of microphones in order to evaluate the dynamics

of the eigenvalues. Secondly, it requires sources to be simulta-

neously active during a period sufficient to gather the statistics.

Lastly, it implicitly assumes sources have similar power and the

interference is spatially white. These conditions are too restric-

tive for speech signals in a natural scenario. Such scenarios are,

by nature, dynamic: a speaker may start, be active for a while,

fall silent, and then start again. Even within active speaker seg-

ments, we have speech pauses. Speech signals also demonstrate

sparsity and disjointness, which makes it difficult to adapt this

method for speech. For these reasons, most applications either

assume the number of concurrently active speakers to be known

or implicitly assume a single dominant speaker.

We propose a method for source number estimation that im-

poses neither the constraint of constant multi-speaker activity

(competing situation) nor that of single source dominance. We

build upon the approach developed in [3], since this gives us

an existing framework to evaluate our approach. However, we

note that other mixture-of-distributions model can also be used

such as those employing super-Gaussian kernels [4] or circular

distributions [5]. We begin with a brief discussion of the signal

model and the GMM-based localisation. We then present the

source number estimator. Next we propose the two instrumental

measures to evaluate the performance of localisation algorithms

before testing the complete approach (localisation, source num-

ber estimation and tracking) on single- and multiple- speaker

recordings made in a reverberant and noisy room.

2. Signal model

The signal model we consider is that of a compact array of

M microphones at positions rm = (xm, ym, zm)T , cap-

turing the signals emitted from Q sources at positions rq =
(xq, yq, zq)

T . We consider a spectral representation obtained

from the K–point discrete Fourier transform (DFT) on over-

lapped, windowed segments of the discrete time domain sig-

nal [6, 7]. The signals recorded by any microphone m may then

be formulated as:

Xm(k, b) =

Q∑

q=1

A0,mq(k)S0,q(k, b) + Vm(k, b), (1)

where k and b are, respectively, the discrete frequency bin index

and frame index; A0,mq(k) is the room transfer function from

rq to rm; S0,q(k, b) is the signal produced by source q; and

Vm(k,b), the noise at microphone m. Each A0,mq(k) may be

further decomposed as

A0,mq(k) = |A
′

0,mq(k) |e
−Ωkτmq +A′′

0,mq(k) , (2)

where |A′

0,mq|, represents the gain along the direct path and

A′′

0,mq ∈ C indicates the net gain and phase smearing caused

by the reflections along the indirect paths. τmq represents the

absolute time delay of the signal from source q to the micro-

phone m along the direct path and Ωk = 2πkfs/K represents

the k-th discrete frequency. Usually, the direct path is assumed

dominant and the effect of the indirect paths is subsumed into

the noise. Further, the model is usually simplified by consid-

ering the signals received at the first microphone through the

direct path as the reference:

Sq(k, b) = |A
′

0,1q(k) |e
−Ωkτ1qS0,q(k, b) (3)
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This gives us the following compact representation:

X(k, b) = A(k)S(k, b) + V (k, b) , (4)

with

Amq(k) =

∣∣∣∣
A′

0,mq(k)

A′

0,1q(k)

∣∣∣∣e
Ωk∆τmq ,

where ∆τmq = τ1q − τmq is the time delay of arrival (TDOA)

with respect to the reference sensor. The signal vectors in

(4) are defined as X(k, b) =
(
X1(k, b), . . . , XM (k, b)

)T
,

V (k, b) =
(
V1(k, b), . . . , VM (k, b)

)T
, and S(k, b) =

(
S1(k, b), . . . , SQ(k, b)

)T
, respectively.

In addition to the spatial diversity, a property of speech sig-

nals used frequently is their sparsity and approximate disjoint-

ness [8] in the short-time Fourier transform (STFT) domain.

This means that the STFT spectra of any two speaker signals

overlap at very few time-frequency (T-F) points (k, b). Con-

sequently for a T-F point occupied by the source q, the signal

model of (4) may be approximated as:

X(k, b) ≈ Aq(k)Sq(k, b) + V (k, b) . (5)

For a given sampling frequency, the disjointness is dependent

upon the resolution K of the DFT, the number of simultane-

ously active speakers Q, and the amount of reverberation (quan-

tified by the reverberation time T60) present. This influence of

the parameters on the disjointness assumption has been evalu-

ated in more detail in [9] for a sampling frequency of 16 kHz,

where it is shown that the disjointness attains its maximum

value for K ∈ {512, 1024, 2048}. Correspondingly, we fix

our DFT resolution to lie in this range.

3. Source localisation

The sparsity and disjointness of speech in the time-frequency

plane is exploited for multi-source localisation. The algorithm

of choice is frequently a variant of the steered response power

(SRP) [10, 11] algorithm due to its ease of implementation and

scalability in terms of addition of new sensors and selection of

the candidate locations (see e.g., [12]). Consequently, this algo-

rithm is adopted in its narrowband form in [3, 4, 10] as the basic

building block of the localisation framework.

For localisation along the azimuth direction of arrival

(DOA) θ the narrowband SRP cost function at a frequency bin

k and a time frame b is obtained as:

JSRP(θ, k, b) =
∣∣∣HH

PHAT(θ, k, b)X(k, b)
∣∣∣
2

, (6)

where HPHAT(θ, k, b) is a delay-and-sum beamformer, nor-

malised by the amplitude of the signal at the respective micro-

phone (SRP-PHAT). With the first microphone taken as the ref-

erence sensor, the SRP-PHAT beamformer expression is:

HPHAT(θ, k, b) (7)

=
( 1

|X1(k, b)|
,
eΩk∆τ2(θ)

|X2(k, b)|
, . . . ,

eΩk∆τM (θ)

|XM (k, b)|

)T

,

where ∆τm(θ) is the relative TDOA of a source wavefront at

microphone m, when the source is located along θ.

The JSRP(θ, k, b) is computed for a subset of K′ frequen-

cies k ∈ {klow, kmax} over the pre-selected grid of search lo-

cations. Under the assumption of sparsity and disjointness of

speech in the STFT domain, each time-frequency point (k,b)

can be attributed to the dominant speaker at that point. Corre-

spondingly, the localisation estimate, obtained as the maximum

of the SRP cost function, is the location estimate of the domi-

nant source at that T-F point:

θ̂(k, b) = argmax
θ

JSRP(θ, k, b). (8)

The source location estimates
{
θ̂(klow, b), . . . , θ̂(kmax, b)

}

obtained at frame b, are next clustered to obtain the multi-source

location estimates. A mixture of Gaussians (MoG) model is

employed for the clustering:

θ̂ ∼
I∑

i=1

PiN
(
θi, σ

2
i

)
, (9)

where I is the model order, Pi is the weight (a priori evidence),

and θi is the centroid of the i th element, with the corresponding

variance σ2
i indicating the spatial spread of that component. The

parameters are estimated using the Expectation-Maximisation

(EM) [13] algorithm.

This clustering is done on a per-frame basis. In the follow-

ing, we shall subsequently drop the frame index for convenience

and reintroduce it when necessary. As the number of sources is

not known a priori, we start with a pre-defined model order I.

The EM clustering on the set of θ̂(k) values then yields

the means : θ =
(
θ1, . . . , θI

)T
,

the variances: Ξ =
(
σ2
1 , . . . , σ

2
I

)T
, and

the weights/probabilities: P =
(
P1, . . . , PI

)T

of the I components. Since the initial value of I is chosen

to overestimate the underlying process, the model is iteratively

shrunk and re-estimated such that mean-values lying within a

shrink threshold Υθ of each other are merged and the model

order is correspondingly recomputed.

4. Source number estimation

The model obtained after the iterative shrinkage might still con-

tain clusters not belonging to any source. Such a situation oc-

curs typically when the model utilises its degrees of freedom to

model outliers. Such ghost components may be reduced by the

following information-theoretic consideration. The weights Pi

define a discrete probability distribution with entropy H(I1),

H(I1) =

I1∑

i=1

Pi log2(Pi). (10)

Using this value, we may estimate the number of significant

components in the model as:

I2 = argmin
I′

|H(I1)− log2(I
′)|, I′ ∈ {0, . . . , I1}. (11)

If I2 < I1,

• select the I1 − 1 components with the highest weights,

• normalise weights to yield a well defined but reduced

probability distribution, i.e.,

Pi ← Pi/

I1−1∑

i=1

Pi ∀i ≤ (I1 − 1) (12)

• I1 ← I1 − 1 and repeat (10)–(12) until I2 = I1.



Note that, irrespective of the difference between I1 and I2, the

shrinkage in the first step only reduces the number of elements

by 1. This conservative shrinkage strategy was chosen as it

yielded the best results as compared to a direct shrinkage by

I1 − I2 elements. The value of I2 after convergence is the

source number estimate for that frame.

The rationale for the computation of I2 as in (11) derives

from the information theoretic relationship between entropy and

the optimal average symbol bitlength in source coding. If all the

components of the estimated MoG representation are equally

significant, we would have a uniform distribution on the Pi, and

H = log2(I1). If, however, this distribution is ‘peaky’, some

components are more significant, and this information can be

used to reduce the ghost clusters by the above iterative proce-

dure. After the clustering per time-frame, the non-linear token-

based source tracking discussed in [3] is applied, in order to

preserve the source locations during short pauses and to track

slowly moving sources.

5. Experimental evaluation

As described, the localisation approach consists of three stages:

the parametric clustering of the bin-wise estimates, source-

number estimation and model re-estimation and across-frame

tracking. We now present a rigorous evaluation of the complete

approach vis-à-vis a modified version of the traditional SRP-

PHAT approach that can localise multiple sources. Principally

this modification consists of selecting a maximum of ISRP local

maxima from the spectrally-averaged SRP-PHAT:

JSRP(θ, b) =
∑

k

JSRP(θ, k, b) . (13)

yielding, for each frame b , an estimate of the location of sources

q = 1, . . . , ISRP. This algorithm is denoted in the following as

the multi-source SRP (M-SRP). For a fair evaluation, the M-

SRP is compared to both the raw, frame-by-frame output ob-

tained by MoG clustering (denoted as MoGr), and to the com-

plete algorithm incorporating the tracking framework after the

MoG clustering (subsequently denoted as MoG).

5.1. Experimental setup & parameter settings

The data was recorded with the 5-channel, linear microphone

array (depicted in Figure 1) with the sources in the far-field.

This leads to localization and separation models based on the

DOA θ, measured with respect to the array axis. Through-

out the simulations and the comparisons, the system parame-

ters were set as in Table 1. Ten sentences (5 male, 5 female

speakers) from the TIMIT database were used for the evaluation.

To generate the test scenarios the speaker signals were indi-

vidually played back through a loudspeaker (Genelec 2029BR)

positioned at a distance of 1 m from the center of the array,

for different angles of arrival, and recorded by the array. The

recordings were made in a reverberant office room of dimen-

sions 5.7m× 7.4m× 2.9m, a reverberation time T60 of 0.6 s

and a critical distance [14] of 0.85 m thus placing the sources ef-

fectively outside the critical distance for our experiments. The

competing speaker situation was created by additively mixing

1 2 3 4 5

Figure 1: Linear array used in this work, with inter-sensor spac-

ings of d12 = 3 cm, d23 = 5 cm, d34 = 7 cm, and d45 = 10 cm

the individual speaker recordings at the required azimuths, at

0 dB signal-to-interference ratio (SIR). Sources were recorded

at azimuths of θq ∈ {60
◦, 90 ◦, 120 ◦}.

We test the localisation performance under two different

types of background noise added to the mixtures at varying

signal-to-noise ratio (SNR) (∈ {0 dB, 10 dB, 20 dB}). The

noise types considered were (a) white noise recorded using the

microphone array in a diffuse environment; and (b) cafeteria

babble recorded using the microphone array. Note that the noise

signals are spatially correlated (at least for low frequencies).

5.2. Performance measures

The performance of the respective algorithms are tested accord-

ing to their (a) hit percentage and (b) localisation accuracy. The

hit percentage Z is defined as the percentage of time frames

in which the algorithm estimates a source position in the vicin-

ity of the true source, with the vicinity threshold being set to

Υhit = ±10◦, since this seems to be a realistic value for a

minimum physical separation between two (human) speakers,

if they are clustered around an array in a real scenario. For the

two-source case we define two kinds of hit percentages,

1. Z1: the percentage of frames where the algorithm lo-

calises at least one source within its vicinity (i.e. to

within Υhit = ±10
◦), and

2. Z2: the percentage of frames where the algorithm lo-

calises both sources within their respective vicinities.

In all our evaluation samples the speakers were always active,

with no significant speech pauses. This obviates the need for a

separate voice activity detector for the performance evaluations.

The localisation accuracy is measured by the root mean

square error (RMSE):

RMSE =

√
E
{
(θ − θ̂)2

}
, (14)

where the expectation is replaced by a temporal average in prac-

tice. For this averaging we only consider the θ̂ in frames where

the sources have been localised to within the hit threshold.

The results for each combination of background noise, SNR

and position are averaged over all the speakers for the single

speaker case. This corresponds to averaging over 30 speaker

signals for each setting of background noise and SNR. Fur-

ther, for every combination of background noise type and SNR,

each speaker in the set was simulated at each of the three az-

imuth positions, and against every other speaker in a corre-

sponding ‘interference’ position. The results corresponding

to the same azimuthal difference in the speaker location are

averaged over all such speaker combinations, e.g., results for

{θ1 = 60◦, θ2 = 90◦} and {θ1 = 90◦, θ2 = 120◦} are aver-

aged over all the speaker combinations in these positions. This

corresponds to an average over 10 · 9 = 90 combinations for an

azimuthal separation of 60 ◦ and over 2 ·10 ·9 = 180 combina-

tions for an azimuthal separation of 30 ◦. For reasons of space,

only the results for the sources separated by ∆θq = 30 ◦ are

presented. This is also the most challenging scenario, given the

close proximity of the sources.

Table 1: Parameters for the evaluations, fs = 8kHz

DFT length Frame shift Window type/ I ISRP Υθ

K (ms) (ms) length (ms) (◦)

128 16 von Hann/128 5 5 10



Table 2: Localisation of concurrent speakers, azimuthal separation = 30◦.

Noise type SNR Z1 Z2 RMSE

(dB) (%) (%) (◦)

SRP MoGr MoG SRP MoGr MoG SRP MoGr MoG

Clean N/A 100 100 100 82.54 91.74 97.96 2.14 2.47 2.35

White, diffuse

0 97.09 99.34 100 67.73 93.25 99.69 2.86 3.33 2.52

10 99.62 99.98 100 71.82 92.30 99.74 2.32 2.62 2.22

20 100 99.88 100 77.16 90.87 98.78 2.02 2.36 2.25

Babble, diffuse

0 99.82 99.95 100 79.93 91.34 99.14 1.88 2.62 2.40

10 100 99.98 100 80.81 91.01 98.86 1.83 2.53 2.48

20 100 99.98 100 81.90 90.88 98.85 1.99 2.41 2.50

6. Results and Discussion

In Figure 2 we illustrate the performance of the algorithm on

a sample setup consisting of two simultaneously active sources

at θ1 = 90◦ and θ2 = 120◦ respectively. In the M-SRP plots,

each marker corresponds to a maximum of the spectrally aver-

aged cost function of (13). The size of the marker is propor-

tional to the value of the cost function at that position, with the

absolute maximum being normalised to unity. Thus, markers of

smaller size indicate less intense peaks in (13), and may corre-

spond either to a weaker source or an erroneous estimate. In

the MoGr plots, the markers indicate the localised sources in

that time frame, with the size of the markers being proportional

to the a posteriori probability of the localised source (maximum

value, again, being normalized to unity). In the plots of the com-

plete MoG approach (i.e., including the tracking), the markers

correspond to the localised sources in the time-averaged model

and their size is proportional to their token (normalised to 1).

Thus, while the MoGr plots indicate the reliability of estima-

tion of a source, the MoG plots indicate the introduction of a

grace period during speech pause and when the speaker fades,

and the reduction of ghost clusters. The benefit of the source

number estimation and model re-computation is visible by the

low number of ghost clusters in both the MoG approaches.

In Table 2 we see that the M-SRP and MoG approaches

localise the sources with comparable accuracy. This is partly

to be expected as the MoG algorithm utilises the SRP function

to obtain the individual source estimates. With respect to the

hit percentage for single source localisation, the performance

of M-SRP and MoGr are very similar at high SNRs. In low

SNR conditions we have a flattening of the spectrally averaged

SRP function along with the introduction of spurious maxima,

which leads to false estimates of the source positions using this

approach. On the other hand, as the MoG approach performs a

localisation in each frequency bin, enough information is avail-

able (due to the correct localisation in bins with high SNR)

to localise the sources. Consequently MoGr performs better

than M-SRP under low SNR conditions. The introduction of

the tracking mechanism further improves the performance of

the MoG-based approach, as this framework can preserve the

source location estimate over frames in low-SNR segments or

during speech pauses.

7. Conclusions

When the number of sources to be localised is not known, or

when it is time-variant, traditional model-order estimation algo-

rithms are difficult to formulate. This problem is compounded

for speech signals given their sparsity, non-stationarity, disjoint-

ness of spectra, and the real-time requirements. This contribu-
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(a) M-SRP, two closely spaced sources
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Figure 2: Performance of the M-SRP, MoGr, and MoG algo-

rithms for the case of two concurrent, closely spaced sources.

tion has presented an information-theory inspired algorithm for

source number estimation. This was integrated into a previously

proposed localisation and tracking approach and the combina-

tion was rigorously evaluated. The framework outperforms the

generic SRP in the case of concurrent sources, more so when the

spatial separation between the sources to be localised decreases.

The source number estimation and model re-computation sig-

nificantly reduces the number of ghost-clusters without com-

promising on the localisation accuracy. With the increase in

computational power and the amount of portable computation

power available (e.g. in smartphones), such localisation meth-

ods are becoming increasingly relevant for modern hearing aids,

to assist, e.g, in the beamforming and source separation stages.
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