
Journal of Advanced Zoology 

ISSN: 0253-7214 
Volume 44 Issue S-7 Year 2023 Page 322:330 

  

____________________________________________________________________________________________________________________________ 
 

- 322 -  

Performance Evaluation of WebRTC-Based Video Conferencing: A Comprehensive 

Analysis 

 

Shyam Sunder Saini1*, Lalit Sen Sharma2 

 
1*, 2Department of Computer Science and IT, University of Jammu, Baba Saheb Ambedkar Road, Jammu, 180006, India, 

sundershyam51@gmail.com 
 

*Corresponding Author Email: sundershyam51@gmail.com 

Article History   

   

Received: 23 June 2023 

Revised: 17 Sept 2023  

Accepted: 13 Dec 2023 

 

  

  

  

  

 

 

 

 

 

 

CC License  

CC-BY-NC-SA 4.0  

Abstract 

 
In an ever-evolving technological landscape, addressing the performance 

challenges of real-time communication protocols is crucial. Real-time 

communication, facilitated by streaming media protocols, utilizes peer-to-peer 

or client-server models to enhance Quality of Service (QoS). WebRTC (Web 

Real-Time Communication) stands as a widely adopted, browser-based, open-

source, peer-to-peer protocol, offering real-time media transmission through 

JavaScript APIs without third-party plugins. This paper presents an in-depth 

performance evaluation of a WebRTC-based video conferencing system using 

Socket.io services on a Node.js server. Our research expands on recent studies 

by introducing a comprehensive set of performance parameters, including 

Processing delay, CPU Utilization, Latency, Jitter, and Packet Loss, and packet 

delay. Our findings indicate that WebRTC performs exceptionally well within 

specific latency thresholds. However, scalability concerns emerge when a large 

number of clients are introduced, especially in bandwidth-constrained 

environments. 

 

Keywords: Real-Time Communication; Socket.io; Peer-to-Peer; Scalability 

 

1 Introduction 

In an age marked by rapid technological progress, the domain of real-time communication stands as a linchpin 

of modern connectivity. The ability to communicate seamlessly and instantly across geographical divides has 

reshaped the way we engage, share information [1], and conduct business. At the heart of this transformation 

lie streaming media protocols, pivotal tools that facilitate the efficient transmission of audio, video, and other 

multimedia data across networks. This paper embarks on a comprehensive exploration of the Performance 

Evaluation of Video Conferencing using WebRTC (Web Real-Time Communication) Streaming Media 

Protocol—a crucial area of study in today's landscape [2]. 

The significance of real-time communication in our interconnected world cannot be overstated. It underlies 

numerous facets of our daily lives, from virtual meetings and online gaming to telemedicine and remote 

collaboration. The capacity to exchange information instantly, mirroring face-to-face interactions, has become 

indispensable for both personal and professional communication. Real-time communication transcends mere 

convenience; it has become a necessity [3]. 

Real-time communication has witnessed substantial evolution in the twenty-first century, with a notable surge 

during the COVID-19 pandemic. Video conferencing emerged as a predominant mode of communication, 

adopting various networking models, notably the peer-to-peer model and the Client-server model [4]. These 

models represent innovative approaches to address the evolving demands of real-time communication in a 

rapidly changing world. WebRTC, discussed later, employs the peer-to-peer model for real-time 

communication [5, 6]. 

Central to the efficacy of real-time communication are streaming media protocols, which facilitate the 

transmission of multimedia content, including audio and video, across the internet and other networks [7]. 

These protocols govern the mechanisms for data delivery, encoding, and decoding, ensuring that users can 



Performance Evaluation of WebRTC-Based Video Conferencing: A Comprehensive Analysis 

 

- 323 -   Available online at: https://jazindia.com   

experience audiovisual content seamlessly and without disruptions. Without efficient streaming media 

protocols, the quality of real-time communication experiences would deteriorate, leading to issues such as 

buffering, lag, and subpar audiovisual quality. 

 

WebRTC, as an open-source framework, directly integrates with web browsers, eliminating the need for third-

party software or plugins. In scenarios where network congestion blocks UDP ports, WebRTC employs a 

custom-designed congestion control algorithm to manage such situations adeptly. During connection 

establishment, all involved users exchange crucial Session Description Protocol (SDP) information through a 

centralized signaling server, primarily for sharing user-specific details [8]. This signaling server plays a pivotal 

role in exchanging vital information, including IP addresses, codes, bandwidth details, media types, and other 

essential data among users, ensuring uninterrupted communication. 

 

The overarching objective of this research is to conduct a comprehensive evaluation of the performance of 

video conferencing systems reliant on the WebRTC streaming media protocol. WebRTC, a browser-based, 

open-source technology, has garnered widespread adoption due to its capacity to enable real-time 

communication without necessitating third-party plugins or extensions. It operates seamlessly within web 

browsers, harnessing the capabilities of JavaScript APIs (Application Programming Interfaces) to facilitate 

direct peer-to-peer communication [9]. 

 

However, despite the growing prevalence of WebRTC, critical performance considerations necessitate 

investigation. The primary research problem centers on comprehending the performance of WebRTC video 

conferencing systems under diverse conditions and loads. This entails evaluating factors like Total Assembly 

Time per frame, Processing delay, CPU Utilization, Latency, Jitter, packet loss, and Total decoding time [10]. 

Additionally, the study aims to illuminate the scalability of WebRTC-based systems. As the number of users 

participating in real-time communication sessions escalates, potential challenges associated with bandwidth 

utilization and system resource allocation may surface. Thus, it becomes imperative to scrutinize how 

effectively WebRTC systems address scalability concerns. 

 

This paper is structured into several sections to facilitate a comprehensive exploration of the Performance 

Evaluation of Video Conferencing using WebRTC Streaming Media Protocol. The paper's organization is as 

follows: Section II provides a foundation in theoretical background. Section III conducts an extensive review 

of existing literature concerning real-time communication, streaming media protocols, and WebRTC. Section 

IV, The Methodology section, elucidates the research approach and methods employed in this study. Section 

V presents the results of the performance evaluation, and finally, Section VI interprets these results within the 

context of the research objectives. 

 

Theoretical Background 

In this comprehensive exploration of the theoretical underpinnings of WebRTC (Web Real-Time 

Communication), we delve into the fundamental concepts and protocols that constitute the bedrock of real-

time communication systems. These insights lay the essential groundwork for comprehending the subsequent 

sections of this research. 

 

WebSocket Protocol 

WebSocket is a full-duplex communication protocol that operates atop the TCP (Transmission Control 

Protocol) and is standardized by the Internet Engineering Task Force (IETF) under RFC 6455. It facilitates 

full-duplex communication, allowing simultaneous data exchange between client and server. This is a 

departure from the conventional HTTP protocol, which serves client requests in a half-duplex manner [11]. 

Notably, WebSocket enjoys support from major web browsers, including Chrome, Firefox, Safari, and more, 

making it a cornerstone of real-time web communication [12]. 

 

Signalling Server 

The Signalling Server assumes a critical role in the realm of WebRTC applications, serving as the linchpin for 

establishing connections between users. Its significance lies in its resource-efficient approach, employing the 

TCP protocol to share essential information, as opposed to UDP, which is reserved for media data transmission. 

Notably, this service is not explicitly mentioned within the WebRTC API, as WebRTC primarily focuses on 

the media transfer aspect. Operating in a centralized manner, the Signalling Server orchestrates crucial 

functions, including tracking the online user count, managing the transmission of error and control messages, 

and overseeing the initiation, reception, and termination of calling services. 



Performance Evaluation of WebRTC-Based Video Conferencing: A Comprehensive Analysis 

 

- 324 -   Available online at: https://jazindia.com   

 

Session Description Protocol (SDP) 

Within the intricate WebRTC ecosystem, the Session Description Protocol (SDP) emerges as a cornerstone 

element for conveying vital parameters during connection establishment. These parameters encompass critical 

information, such as media codec specifications (e.g., Opus/VP8), network connectivity details, and codec 

specifics. SDP utilised for exchanging media information which is to be negotiated in streaming (See Fig. 1). 

 

 
Fig. 1. Offering and answering of SDP Information among peers 

 

WebRTC Protocols 

WebRTC relies upon a suite of protocols to ensure the reliability, security, and efficient flow control of media 

data (See Fig. 2). At the core of WebRTC's data transmission lies the User Datagram Protocol (UDP) [13]. 

However, the complexity of real-time communication necessitates additional protocols to bolster security and 

maintain data integrity. During data transmission, the Datagram Transport Layer Security (DTLS) protocol is 

employed to safeguard the data. DTLS enhances UDP security by implementing Transport Layer Security 

(TLS) at the transport layer, effectively thwarting eavesdropping and data tampering. Secure Real-Time 

Transport Protocol (SRTP) comes into play for key generation and media stream encryption, ensuring secure 

data transfer via UDP. 

 

To maintain the proper order of packets during transmission, timestamps and sequence numbers are 

incorporated for the receiver's benefit, facilitating accurate sequence reconstruction. Error control is effectively 

managed by the Secure Real-Time Transport Control Protocol (SRTCP), which operates in a reverse 

direction—flowing from the receiver back to the sender. SRTCP keeps meticulous records of the sequence 

numbers of the last packet received, instances of packet loss, jitter, and latency during the transmission of 

media data. In addition to these vital protocols, WebRTC also harnesses the Stream Control Transmission 

Protocol (SCTP). SCTP integrates TCP-like features such as Flow Control, multiplexing, and congestion 

control with UDP to ensure the ordered delivery of packets. 

 

With these formal introductions and a clear presentation of each element, we have established a comprehensive 

theoretical foundation that sets the stage for the subsequent sections of this research. 

 

Literature Review 

In the realm of WebRTC, a peer-to-peer protocol for real-time streaming media, extensive research has been 

conducted, exploring various techniques and algorithms. The findings of different researchers can be 

summarized as follows: 

 

Prior to the advent of WebRTC, communication between systems posed a significant challenge. Historically, 

systems communicated through public switched telephone networks (PSTN), requiring unique identity 

registration. This approach necessitated third-party applications, often raising security concerns. WebRTC 

eliminates the need for third-party service registration, enhancing security. Research has demonstrated that 

WebRTC ensures security through DTLS (Datagram Transport Layer Security) and SRTP (Secure Real-Time 

Protocol), safeguarding communication from eavesdropping during media packet streaming. 

 

One of the early studies [14] provided a comprehensive evaluation of the initial version of WebRTC. 

Experimental results revealed that latency beyond a certain threshold led to packet drops, and uneven 

bandwidth utilization resulted in network congestion during connection setup. Another group of researchers 

[15] implemented a decentralized system to enhance performance compared to server-based solutions, offering 

a cost-effective approach for video streaming. Research has also explored WebRTC compatibility with various 



Performance Evaluation of WebRTC-Based Video Conferencing: A Comprehensive Analysis 

 

- 325 -   Available online at: https://jazindia.com   

browsers, proposing architectures to address compatibility issues with legacy browsers. However, while the 

architectural concepts were well-explained, implementation details were lacking. 

 

A.Heikkinen et.al [16] implemented a complete decentralized system for WebRTC and aimed to reduce packet 

redundancy among clients in conferencing scenarios. They also integrated protocols like SIP, XMPP, and XHR 

with WebSockets to improve compatibility. Nevertheless, communication via WebSockets in full-duplex mode 

consumed substantial resources as connections remained open until manually closed. 

 

D. Mauro and M. Longo [17] performed an experiment to evaluated WebRTC protocol performance on mobile 

devices, considering parameters like battery life, hardware utilization, and bandwidth consumption. Results 

indicated that WebRTC consumed fewer hardware resources and extended battery life. Another experiment 

was conducted by K.Ng et.al [18] on mobile devices using a 3G network in the NS-3 simulation environment 

involving four users and a NodeJS server. Scalability for a larger number of users was left for future 

exploration. 

 

N.Edan et.al [19] proposed a novel approach for initiating connections with various network topologies, 

including star and mesh for one-to-many and many-to-many connections. They developed the WebNSM 

protocol and conducted experiments on LAN and WAN for performance evaluation. Results showed promise 

for one-to-one connections but revealed resource-intensive bandwidth usage and network congestion in many-

to-many scenarios. 

 

G.Suciu et.al [20] assessed noise caused by congestion and compared SIP and WebRTC-based video and audio 

communication. SIP was developed using C#, and WebRTC was implemented using JavaScript deployed on a 

NodeJS server. Results demonstrated that WebRTC had a lower PSNR (Peak Signal-to-Noise Ratio) compared 

to SIP. Future experiments, focused on protocol capabilities, were conducted by E.Emmanuel  et.al [6]. These 

experiments, conducted on a NodeJS server with higher-speed communication media channels, revealed that 

WebRTC proved to be a scalable protocol for browser-based streaming. Additionally, thermal cameras were 

explored for measuring body temperature to identify COVID-19 symptoms using WebRTC data streaming. 

 

2 Materials and Methods 

In the WebRTC framework, prior to establishing connections among users for video conferencing, a virtual 

room must be created. This room serves as a unique primary space where users can gather to engage in video 

conferencing sessions. The generation of a unique room ID is facilitated through the utilization of the 'Peer-Id' 

Library, which is available through the Node Package Manager (NPM). This room ID is initially generated for 

the first user, and subsequently, other users can join the room to participate in video conferencing sessions. 

Once the virtual room is created, the next step involves the sharing of user information among participants. 

This is achieved through signaling mechanisms utilizing various WebRTC components, including Media 

Stream, RTCPeerConnection, RTCDataChannel, and the getStats API. These components collectively enable 

the exchange of essential data among users, paving the way for seamless communication. 

 

Connecting users directly to one another is a pivotal aspect of WebRTC, achieved through Interactive 

Connectivity Establishment (ICE) candidates. However, this process is not without challenges, particularly 

when users are located in different networks. The traversal through intermediate routers can be a cumbersome 

task, primarily due to the imposition of firewall rules on networking devices. 

 

To overcome these challenges, Network Address Translation (NAT) mechanisms come into play. NAT is 

employed to connect two different networks, and it becomes imperative to integrate STUN (Session Traversal 

Utilities for NAT) and TURN (Traversal Using Relays around NAT) servers within WebRTC. These servers 

are essential in addressing the problem of blocking through intermediate routers when communicating with 

other clients in video conferencing scenarios.  

 



Performance Evaluation of WebRTC-Based Video Conferencing: A Comprehensive Analysis 

 

- 326 -   Available online at: https://jazindia.com   

 
Fig.2. Working of Signalling Server for NAT traversal 

In essence, NAT traversal in WebRTC is accomplished through the use of STUN and TURN servers. STUN 

(Session Traversal Utilities for NAT) operates at the browser level and connects with another user's STUN 

server. In rare cases where direct communication via the STUN server is not feasible, a centralized TURN 

(Traversal Using Relays around NAT) server is employed to share ICE candidate data. This ensures that every 

user intending to join the room possesses the necessary information regarding other users' ICE candidates, thus 

enabling the formation of direct end-to-end connections. 

 

Once this groundwork is laid, the users are equipped to share media streams. Media negotiation includes 

checking compatibility between users also comes into play, facilitating the exchange of crucial information 

such as media codecs, compression and decompression formats, and more. Each user is required to generate 

an offer and respond with an answer to establish compatibility. 

 

Once the connection is established, users can seamlessly share media packets through their browsers in a peer-

to-peer (P2P) manner, obviating the need for dedicated servers. The proposed methodology is visualized in 

Fig. 3. Algorithm 1 describes pseudocode of WebRtcpEval. 

 

Response after that direct peer to peer connection is established and media stream is shared using the 

MediaStream library. The connection is closed and all RTCPeerConnection objects collected and destroyed 

during the connection closing phase.  

 

 
Fig. 3. Flowchart for WebRTC Room Creation and Joining 

Algorithm 1. Procedure WebRtcpEval (Connection Http, media_stream M, Users U, Encoding e1, Bitrate Br1) 

Initialization 

1. User_Media = Media_Stream_Generation(media) 

2. peer_connection1 = RTCPeerConnection() 

3. peer_connection2 = RTCPeerConnection() 

4. user1_sdp = None 



Performance Evaluation of WebRTC-Based Video Conferencing: A Comprehensive Analysis 

 

- 327 -   Available online at: https://jazindia.com   

5. user2_sdp = None 

6. USR = 2 

7. current_media_packet = None 

Step 1. Setting up a connection between two peers 

8. peer_connection1 = RTCPeerConnection() 

9. peer_connection1.create_local_media_stream(audio=True, 

video=True) 

10. peer_connection2 = RTCPeerConnection() 

Step 2. Session Description Exchange 

11. user1_sdp = Generate() 

12. peer_connection1.set_local_description(user1_sdp) 

13. peer_connection1.send(user1_sdp, user2) 

14. user1_sdp = peer_connection2.receive() 

15. user2_sdp = peer_connection2.create_answer_sdp() 

16. peer_connection2.set_local_description(user2_sdp) 

17. peer_connection2.send_response(True) 

18. peer_connection2.send(user2_sdp, user1) 

19. user2_sdp = peer_connection1.receive() 

20. peer_connection1.set_remote_description(user2_sdp) 

Step 3. Exchange ICE Candidates 

21. while not done: 

22.     candidate1 = peer_connection1.waiting_ice() 

23.     candidate2 = peer_connection2.waiting_ice() 

24.     if candidate1 is not None: 

25.         peer_connection1.send_to_remote(candidate1) 

26.     if candidate2 is not None: 

27.         peer_connection2.send_to_remote(candidate2) 

Step 4. Establish Direct Media Communication 

28. while current_media_packet is not None: 

29.     User_Media.append(current_media_packet) 

Step 5. Close the Connection 

30. peer_connection1.close() 

31. peer_connection2.close() 

Step 6. Cleanup 

32. close(RTCPeerConnection) 

 

In this study, various key parameters have been formulated to quantitatively assess the performance of the 

communication system. These parameters are defined as follows, conforming to established scientific 

conventions: 

 

Latency (L): Latency is defined as the sum of various components, including Propagation Time (𝑇𝑝), 

Transmission Time (𝑇𝑡), Queuing Delay, and Processing Delay. It can be mathematically expressed in Eq. (1): 

 

L = 𝑇𝑝 + 𝑇𝑡 + Queuing Delay + Processing Delay (1) 

  

Propagation Time (𝑇𝑝): Propagation Time represents the time it takes for a signal to travel from the sender to 

the receiver over a certain distance (𝑑) at a given transmission speed (𝑣). It can be calculated using the Eq. (2): 

 

𝑇𝑝 = 
𝑑

𝑣
 (2) 

  

Transmission Time (𝑇𝑡): Transmission Time is determined by the packet size (𝑙) and the data transmission rate 

(𝑏). It can be calculated as Eq. (3): 

 

𝑇𝑡 = 
𝑙

𝑏
 (3) 

  



Performance Evaluation of WebRTC-Based Video Conferencing: A Comprehensive Analysis 

 

- 328 -   Available online at: https://jazindia.com   

Throughput: Throughput measures the rate at which data packets are successfully delivered. It is influenced 

by Round-Trip Time (RTT) and packet loss (𝑃). Throughput can be defined as Eq. (4): 

 

Throughput = 
𝑀𝑃𝑆 

𝑅𝑇𝑇
× (1 + √𝑃) (4) 

  

3 Experimental Setup 

The experimental environment was meticulously configured to ensure reliable and robust testing. The setup 

featured a system equipped with an Intel Core i7 8th generation CPU boasting a clock speed of 3.20GHz, 

accompanied by a substantial 16 GB DDR3 RAM operating at 3200MHz clock speed. To enhance graphical 

processing capabilities, an NVIDIA P620 GPU (Graphical Processing Unit) was integrated into the system. 

The experimental phase commenced with the development of the WebRTC protocol and an MEAN 

(MongoDB, Express.js, AngularJS, Node.js) architecture-based application. This development process was 

facilitated using the Visual Studio Code IDE (Integrated Development Environment), incorporating a NodeJS 

compiler plugin for streamlined coding and debugging. 

 

Subsequently, the project was deployed onto a NodeJS server, providing a suitable platform for the evaluation 

of performance. To monitor and measure performance accurately, WebRTC-internals, an API integrated by 

most modern browsers, was employed. This API allows for the meticulous tracking of inbound and outbound 

streams of packets, providing invaluable insights for performance assessment. 

The careful setup and integration of these components laid the foundation for a rigorous and comprehensive 

evaluation of the WebRTC protocol and its associated application, ensuring the reliability of experimental 

results. 

 

4 Experiment Results and Analysis 

In this section, we delve into the outcomes of our conducted experiments and provide a comprehensive analysis 

of the observed results. 

 
 

Fig. 4. CPU utilization in WebRTC 

Our experiments were conducted with varying numbers of users, as outlined in the accompanying table. The 

results revealed a noteworthy observation regarding CPU utilization. Specifically, in the context of audio 

streaming, we observed an optimal level of CPU utilization. However, as the number of users increased in 

video streaming scenarios, there was a noticeable surge in CPU resource utilization as shown in Fig. 4. This 

phenomenon not only escalated streaming costs but also led to a degradation in system performance, primarily 

due to the influx of redundant packets on the client side. 

 

Table 1. Statical Analysis of performance of media data 
Media type No. of users Jitter (ms) Latency (ms) Packet loss (%) Packet delay (ms) 

Audio 

2 10 10 0.0 1.0 

10 14 11 0.0 4.0 

20 13 10 0.0 3.2 

45 19 12 0.1 3.7 

100 24 15 0.2 4.8 

Video 

2 11 30 0.0 1.2 

10 13 30 0.0 3.5 

20 16 13 0.1 2.9 

45 16 32 0.4 4.9 

100 24 53 0.9 7.3 

0

20

40

60

80

2 10 20 45 100 120 150

CPU Usage

Audio Video Both Audio and Video



Performance Evaluation of WebRTC-Based Video Conferencing: A Comprehensive Analysis 

 

- 329 -   Available online at: https://jazindia.com   

Average 

2 10.5 20 0 1.10 

10 13.5 20 0 3.75 

20 14.5 11.5 0.05 3.05 

45 17.5 22 0.25 4.00 

100 24 34 0.55 6.05 

 

Furthermore, the processing delay of packets exhibited a direct correlation with the performance of the 

processing unit. Over-utilization of system resources during high user loads contributed to delays in packet 

processing. However, upon surpassing this threshold, the results did not align with expectations due to the 

prevalence of redundant frames. 

 

Packet drop rates remained minimal, but latency and jitter exhibited more pronounced changes in video 

streaming scenarios involving a larger number of users. These observations are detailed in Table 1. It's worth 

noting that WebRTC's utilization of VP9, an optimized open-source encoding scheme, played a pivotal role in 

reducing total encoding time, contributing to the overall efficiency of the system. 

 

 
Fig. 5. Performance of the STUN and TURN Servers 

 

The performance of STUN (Session Traversal Utilities for NAT) and TURN (Traversal Using Relays around 

NAT) servers also emerged as critical factors in exchanging Session Description Protocol (SDP) information 

for NAT traversal during connection establishment. The performance of these servers is visualized in Fig. 5.  

 

Fig. 6 provides insights into the volume of media data transmitted and received among users over time. 

 

 
Fig.6. Statistics depicting data send and receive between peers 

 

These results and analyses shed light on the intricacies of WebRTC performance, especially in scenarios 

involving varying user loads and different types of media streaming. 

 

Conclusion 

The experimental findings presented in this study draw valuable conclusions regarding the performance of the 

WebRTC protocol. It is evident that the WebRTC protocol functions effectively within its designed parameters, 



Performance Evaluation of WebRTC-Based Video Conferencing: A Comprehensive Analysis 

 

- 330 -   Available online at: https://jazindia.com   

delivering optimal results until the number of users within a room remains below a certain threshold. However, 

once the user count surpasses this threshold, issues related to packet redundancy, inherent to the peer-to-peer 

communication model, begin to surface. These issues manifest as increased processing delays and other 

performance limitations, rendering such scenarios impractical. 

 

To address the limitations observed in the current research, a future direction involves the proposal of an 

optimized framework. This proposed framework will incorporate a hybrid model, seamlessly integrating 

elements of both peer-to-peer and client-server architectures. The primary objective is to mitigate resource 

utilization, reduce latency and jitter, and ultimately alleviate processing time and packet delays. 

 

The experiments conducted in this paper were conducted with up to 100 users for analysis. Future research 

endeavors will expand upon this by considering a larger user base, thereby enhancing the comprehensiveness 

of the analysis. Additionally, the impact of adaptability on protocol performance will be a focal point of future 

investigations, aiming to provide a more detailed and nuanced understanding of WebRTC's capabilities. 

 

References 
1.  Kara IJ, Suprianto A (2023) APLIKASI FILE SHARING PEER TO PEER BERBASIS WEB MENGGUNAKAN 

WEBRTC. Incomtech 12:16–23 

2.  Wu D, Hou YT, Zhu W, et al (2001) Streaming video over the Internet: approaches and directions. IEEE Trans 

Circuits Syst Video Technol 11:282–300. https://doi.org/10.1109/76.911156 

3.  Blum N, Lachapelle S, Alvestrand H (2021) WebRTC: real-time communication for the open web platform. 

Commun ACM 64:50–54. https://doi.org/10.1145/3453182 

4.  Madnani D, Fernandes S, Madnani N (2020) Analysing the impact of COVID-19 on over-the-top media platforms 

in India. Int J Pervasive Comput Commun 

5.  Mousavi H, Nasr MD (2020) Evaluating the Relationship between Overconfidence of Senior Managers and 

Abnormal Cash Fluctuations with respect to Financial Flexibility in Companies Listed in Tehran Stock 

Exchange. Tech Soc Sci J 11:210–225. https://doi.org/10.47577/tssj.v11i1.1570 

6.  Emmanuel EA, Dirting BD (2017) A Peer-To-Peer Architecture For Real-Time Communication Using Webrtc. 3: 

7.  Tarim EA, Teki̇N HC (2019) Performance evaluation of WebRTC-based online consultation platform. Turk J Electr 

Eng Comput Sci 27:4314–4327. https://doi.org/10.3906/elk-1903-44 

8.  Improving the Efficiency of WebRTC Layered Simulcast Using Software Defined Networking | SpringerLink. 

https://link.springer.com/chapter/10.1007/978-3-031-40467-2_2. Accessed 2 Oct 2023 

9.  Abu-AlShaeer A (2023) The Using JavaScript on 5G networks to improve real-time communication through 

WebRTC. Al-Rafidain J Eng Sci 09–23. https://doi.org/10.61268/xkftbq59 

10.  Diallo B, Ouamri A, Keche M (2023) A Hybrid Approach for WebRTC Video Streaming on Resource-Constrained 

Devices. Electronics 12:. https://doi.org/10.3390/electronics12183775 

11.  Namee K, Sawatdee P, Promsorn N, et al (2023) Applying of Websocket and WebRTC for Video Calling in 

Telemedicine during COVID-19 Pandemic. In: 2023 International Conference on Information Networking 

(ICOIN). pp 340–346 

12.  python-socketio — python-socketio documentation. https://python-socketio.readthedocs.io/en/latest/. Accessed 2 

Oct 2023 

13.  Sharma T, Mangla T, Gupta A, et al (2023) Estimating WebRTC Video QoE Metrics Without Using Application 

Headers 

14.  Johansson D, Holmgren M (2014) Towards Implementing Web-Based Adaptive Application Mobility Using Web 

Real-Time Communications. IEEE Computer Society, pp 483–486 

15.  Sredojev B, Samardzija D, Posarac D (2015) WebRTC technology overview and signaling solution design and 

implementation. In: 2015 38th International Convention on Information and Communication Technology, 

Electronics and Microelectronics (MIPRO). pp 1006–1009 

16.  Heikkinen A, Koskela T, Ylianttila M (2015) Performance evaluation of distributed data delivery on mobile devices 

using WebRTC. In: 2015 International Wireless Communications and Mobile Computing Conference 

(IWCMC). pp 1036–1042 

17.  Mauro MD, Longo M, Carullo G, Tambasco M (2016) A Performance Evaluation of WebRTC over LTE 

18.  Fai Ng K, Yan Ching M, Liu Y, et al (2014) A P2P-MCU Approach to Multi-Party Video Conference with WebRTC. 

Int J Future Comput Commun 3:319–324. https://doi.org/10.7763/IJFCC.2014.V3.319 

19.  Edan NM, Al-Sherbaz A, Turner SJ (2017) WebNSM: a novel WebRTC signalling mechanism for one-to-many bi-

directional video conferencing. IEEE, London 

20.  Suciu G, Stefanescu S, Beceanu C, Ceaparu M (2020) WebRTC role in real-time communication and video 

conferencing. In: 2020 Global Internet of Things Summit (GIoTS). pp 1–6 

 


