2,136 research outputs found

    Finding Preference Profiles of Condorcet Dimension kk via SAT

    Full text link
    Condorcet winning sets are a set-valued generalization of the well-known concept of a Condorcet winner. As supersets of Condorcet winning sets are always Condorcet winning sets themselves, an interesting property of preference profiles is the size of the smallest Condorcet winning set they admit. This smallest size is called the Condorcet dimension of a preference profile. Since little is known about profiles that have a certain Condorcet dimension, we show in this paper how the problem of finding a preference profile that has a given Condorcet dimension can be encoded as a satisfiability problem and solved by a SAT solver. Initial results include a minimal example of a preference profile of Condorcet dimension 3, improving previously known examples both in terms of the number of agents as well as alternatives. Due to the high complexity of such problems it remains open whether a preference profile of Condorcet dimension 4 exists.Comment: Corrected typos, updated references, and added conclusio

    Split Cycle: A New Condorcet Consistent Voting Method Independent of Clones and Immune to Spoilers

    Full text link
    We propose a Condorcet consistent voting method that we call Split Cycle. Split Cycle belongs to the small family of known voting methods that significantly narrow the choice of winners in the presence of majority cycles while also satisfying independence of clones. In this family, only Split Cycle satisfies a new criterion we call immunity to spoilers, which concerns adding candidates to elections, as well as the known criteria of positive involvement and negative involvement, which concern adding voters to elections. Thus, in contrast to other clone-independent methods, Split Cycle mitigates both "spoiler effects" and "strong no show paradoxes."Comment: 71 pages, 15 figures. Added a new explanation of Split Cycle in Section 1, updated the caption to Figure 2, the discussion in Section 3.3, and Remark 4.11, and strengthened Proposition 6.20 to Theorem 6.20 to cover single-voter resolvability in addition to asymptotic resolvability. Thanks to Nicolaus Tideman for helpful discussio

    Condorcet Domains, Median Graphs and the Single Crossing Property

    Get PDF
    Condorcet domains are sets of linear orders with the property that, whenever the preferences of all voters belong to this set, the majority relation has no cycles. We observe that, without loss of generality, such domain can be assumed to be closed in the sense that it contains the majority relation of every profile with an odd number of individuals whose preferences belong to this domain. We show that every closed Condorcet domain is naturally endowed with the structure of a median graph and that, conversely, every median graph is associated with a closed Condorcet domain (which may not be a unique one). The subclass of those Condorcet domains that correspond to linear graphs (chains) are exactly the preference domains with the classical single crossing property. As a corollary, we obtain that the domains with the so-called `representative voter property' (with the exception of a 4-cycle) are the single crossing domains. Maximality of a Condorcet domain imposes additional restrictions on the underlying median graph. We prove that among all trees only the chains can induce maximal Condorcet domains, and we characterize the single crossing domains that in fact do correspond to maximal Condorcet domains. Finally, using Nehring's and Puppe's (2007) characterization of monotone Arrowian aggregation, our analysis yields a rich class of strategy-proof social choice functions on any closed Condorcet domain

    Split Cycle: A New Condorcet Consistent Voting Method Independent of Clones and Immune to Spoilers

    Get PDF
    We introduce a new Condorcet consistent voting method, called Split Cycle. Split Cycle belongs to the small family of known voting methods satisfying independence of clones and the Pareto principle. Unlike other methods in this family, Split Cycle satisfies a new criterion we call immunity to spoilers, which concerns adding candidates to elections, as well as the known criteria of positive involvement and negative involvement, which concern adding voters to elections. Thus, relative to other clone-independent Paretian methods, Split Cycle mitigates “spoiler effects” and “strong no show paradoxes.

    Approximately Strategyproof Tournament Rules: On Large Manipulating Sets and Cover-Consistence

    Get PDF
    We consider the manipulability of tournament rules, in which n teams play a round robin tournament and a winner is (possibly randomly) selected based on the outcome of all binom{n}{2} matches. Prior work defines a tournament rule to be k-SNM-? if no set of ? k teams can fix the ? binom{k}{2} matches among them to increase their probability of winning by >? and asks: for each k, what is the minimum ?(k) such that a Condorcet-consistent (i.e. always selects a Condorcet winner when one exists) k-SNM-?(k) tournament rule exists? A simple example witnesses that ?(k) ? (k-1)/(2k-1) for all k, and [Jon Schneider et al., 2017] conjectures that this is tight (and prove it is tight for k=2). Our first result refutes this conjecture: there exists a sufficiently large k such that no Condorcet-consistent tournament rule is k-SNM-1/2. Our second result leverages similar machinery to design a new tournament rule which is k-SNM-2/3 for all k (and this is the first tournament rule which is k-SNM-(<1) for all k). Our final result extends prior work, which proves that single-elimination bracket with random seeding is 2-SNM-1/3 [Jon Schneider et al., 2017], in a different direction by seeking a stronger notion of fairness than Condorcet-consistence. We design a new tournament rule, which we call Randomized-King-of-the-Hill, which is 2-SNM-1/3 and cover-consistent (the winner is an uncovered team with probability 1)

    Guilbaud's Theorem : An early contribution to judgment aggregation

    Get PDF
    In a paper published in 1952, the French mathematician Georges-Théodule Guilbaud has generalized Arrow's impossibility result to the "logical problem of aggregation", thus anticipating the literature on abstract aggregation theory and judgment aggregation. We reconstruct the proof of Guilbaud's theorem, which is also of technical interest, because it can be seen as the first use of ultrafilters in social choice theory.Arrow's theorem, aggregation rule, judgment aggregation, logical connexions, simple game, ultrafilter.
    • …
    corecore