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In voting theory, two different settings are commonplace: either voters express a preference ordering 

on the set of candidates or they express an individual evaluation of each candidate. In either case, the 

aim may be to obtain a global ranking of the candidates and, in particular, to determine the winner 

of the election. We introduce a probabilistic framework that allows us to explore a correspondence be- 

tween some usual voting procedures based on either preference orderings (e.g. the Borda count and the 

Condorcet procedure) or individual evaluations (e.g. the Borda majority count and the majority judg- 

ment) and some classical stochastic orderings (e.g. comparison of expected values, comparison of medi- 

ans and statistical preference). We also consider a recently-introduced multivariate stochastic ordering, 

called probabilistic preference, and show its connection with the plurality and veto procedures. 
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. Introduction 

Voting procedures and stochastic orderings are two commonly

sed tools in different branches of operations research, such as

ecision support for the former and stochastic modelling for

he latter. Just as illustrative recent examples, voting procedures

ave been used in the aggregation of rankings ( Aledo, Gámez, &

osete, 2018; Ding, Han, & Yang, 2018 ), social welfare ( Darmann &

chauer, 2015 ), and decision making ( García-Lapresta & del Pozo,

019; Kolgour & Vetschera, 2018 ), whereas stochastic orderings

ave been applied in decision making ( Jiang, Lian, Liang, & Yang,

018; Montes, Miranda, & Montes, 2014 ) and in reliability theory

 Navarro, Arriaza, & Suárez-Llorens, 2019 ), among many others. 

Formally, voting theory is the subfield of social sciences de-

oted to the study and development of mathematical tools (voting

rocedures) used to deduce the winner of an election. There are

wo main settings in voting theory: the framework in which voters

xpress a preference ordering on the set of candidates (hereinafter

eferred to as Arrow’s framework ( Arrow, 1950; 1963 ) 1 ) and

he framework in which voters express individual evaluations

f the candidates on a given (linearly-ordered) linguistic scale
∗ Corresponding author. 

E-mail addresses: imontes@uniovi.es (I. Montes), perezfernandez@uniovi.es , 

aul.perezfernandez@ugent.be (R. Pérez-Fernández), bernard.debaets@ugent.be 

(B. De Baets). 
1 Arrow’s framework could be traced back in time much further. Some authors 

efer to the eighteenth century and the discussions between Jean Charles de Borda 

nd Nicolas de Condorcet, whereas some others refer to Ramon Llull in the thir- 

eenth century and Nicolas Cusanus in the fifteenth century. 
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hereinafter referred to as Balinski and Laraki’s framework

 Balinski & Laraki, 2007; 2011a; 2011b ) 2 ). In both frameworks, the

nal objective may be to obtain a global ranking of the candidates

nd, in this way, determine the winner of the election according

o the opinions of the voters. 

Probably the most prominent and often used voting proce-

ures in Arrow’s framework are the Borda count ( de Borda, 1784 ),

hich determines a winner based on numerical values assigned

o each candidate according to its position in the preference or-

erings given by the voters, the Condorcet procedure ( Condorcet,

785 ), which determines a winner based on pairwise comparisons

etween candidates, as well as the plurality and veto procedures,

hich consider the winner to be the candidate that appears with

he highest frequency at the first and last positions, respectively.

n Balinski and Laraki’s framework, the most common voting pro-

edures are majority judgment ( Balinski & Laraki, 2007; 2011a;

011b ) and the Borda majority count ( Zahid & de Swart, 2015 ) (or

ange voting ( Smith, 20 0 0 )), in which the individual evaluations of

ach candidate are aggregated and, subequently, ranked according

o these aggregated evaluations. However, using the Borda major-

ty count in this setting has some significant problems, as argued

n Zahid and de Swart (2015) . In this direction, an alternative to

he Borda majority count and majority judgment was recently pre-

ented in Ngoie, Savadogo, and Ulungu (2015) . 
2 Balinski and Laraki’s framework could actually be traced back to Laplace in the 

ineteenth century and to Galton in the early twentieth century. Approval voting 

 Brams & Fishburn, 1983 ) could also be argued to fit within this framework. 

https://core.ac.uk/display/322827631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ejor.2020.02.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2020.02.038&domain=pdf
mailto:imontes@uniovi.es
mailto:perezfernandez@uniovi.es
mailto:raul.perezfernandez@ugent.be
mailto:bernard.debaets@ugent.be
https://doi.org/10.1016/j.ejor.2020.02.038


978 I. Montes, M. Rademaker and R. Pérez-Fernández et al. / European Journal of Operational Research 285 (2020) 977–987 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

o  

r  

t  

w  

v  

F

2

 

n  

v  

d  

l  

p

i  

f  

d  

g  

i  

o

 

i  

{  

C  

t  

s  

s  

t  

w  

p

 

c  

(  

C  

p  

o  

s  

o  

B  

t  

p  

y  

t  

a

 

p  

1  

a  

v  

c  

l  

w  

w

 

t  

c  

c  

e

 

s  

r  

p  

a  

(  
In this work, we define a probability space that allows to

link the most prominent voting procedures and the comparison

of some appropriately defined random variables. Recall that the

comparison of random variables is usually performed in terms of

stochastic orderings ( Müller & Stoyan, 2002; Shaked & Shanthikur-

mar, 2006 ). Some of the most common stochastic orderings are the

comparison of expected values and the comparison of medians , both

based on the comparison of location parameters. Statistical prefer-

ence ( De Schuymer, De Meyer, & De Baets, 2003a; De Schuymer,

De Meyer, De Baets, & Jenei, 2003b ) is another common stochas-

tic ordering that is based on a reciprocal relation computed from

the bivariate marginal distributions of pairs of random variables. A

recently-proposed approach based on multivariate distributions is

probabilistic preference ( Montes, Montes, & De Baets, 2019 ), allow-

ing for the simultaneous comparison of all the random variables. 

In Arrow’s framework we associate a random variable with each

candidate such that for any voter the random variable expresses

the position of the candidate in the preference ordering of this

voter. We will prove that the Borda count and the Condorcet pro-

cedure are equivalent to the comparison of the random variables

associated with the candidates in terms of expected values and sta-

tistical preference, respectively. Since there is a close connection

between voting procedures and stochastic orderings, we will also

compare the random variables associated with the candidates in

terms of probabilistic preference, and we will investigate the win-

ner of the election in this setting, which will turn to be closely

related to the plurality and veto winners. 

In Balinski and Laraki’s framework, we also associate a random

variable with each candidate expressing for any voter the individ-

ual evaluation of the candidate given by this voter. In this setting,

the evaluations are usually given on a (linearly-ordered) linguis-

tic scale, and therefore we are dealing with qualitative random

variables. We will show that if we apply the comparison of ex-

pected values or medians to the random variables associated with

the candidates, we obtain the same result as the Borda majority

count and the majority judgment, respectively. We will also con-

sider probabilistic preference in this framework. 

The idea of connecting voting procedures and stochastic order-

ings already appeared in the literature in Stein, Mizzi, and Pfaffen-

berger (1994) , where the authors proposed a voting procedure in

the spirit of stochastic dominance as an alternative to the usual

Borda count or Condorcet procedures. However, as we will discuss

later on in Remark 1 , this approach could lead to incomparability. 

It must be noted that we do stick to classical deterministic

ranking voting problems and that the here-defined probabilistic

space does not aim at defining a probabilistic voting procedure

(see, e.g. Fishburn, 1972; Fishburn, 1984 for some introductory pa-

pers on probabilistic social choice). In addition, the objective of this

paper is not to compare the mentioned voting procedures to deter-

mine the most adequate one. Instead, the main goal of this contri-

bution is to show that similar ideas arise in two apparently sepa-

rated fields when a voting problem is seen as a result of compar-

ing random variables defined on a probabilistic space with a uni-

form distribution over the voters. Interestingly, the uniform distri-

bution over the voters aligns with the standard assumption in so-

cial choice theory in which all voters are assumed to be equally

important (neutrality). We end this introduction by noting that

this paper shows a correspondence between the most prominent

stochastic orderings and the classics of social choice theory, and

does not cover the closely related field of (group/multiattribute)

decision making ( Huynh & Nakamori, 2005; Yan & Ma, 2015; Yan,

Ma, & Huynh, 2017 ). 

The remainder of this paper is organized as follows.

Section 2 introduces basic notions related to voting theory. In

Section 3 , we develop an approach that allows to express voting

procedures in terms of a probability space and stochastic orderings
n case the voters express their opinions in terms of preference

rderings. Section 4 introduces the probabilistic approach to

anking candidates in case the voters express their opinions in

erms of individual evaluations. As in the preceding section, we

ill show that the usual procedures for dealing with this kind of

oting problems can be expressed in terms of stochastic orderings.

inally, Section 5 ends the paper with some concluding remarks. 

. Basics of voting theory 

In the framework of voting theory, a number of candidates, de-

oted C 1 , . . . , C m 

, participate in an election. The voters, denoted

 1 , . . . , v n , usually give their preference orderings over the candi-

ates, denoted e 1 , . . . , e n , each of these preference orderings estab-

ishing a total order on the set of candidates. A voter v i thus ex-

resses the preference ordering e i as C σi (1) � . . . � C σi (m ) , where σ i 

s a permutation of { 1 , . . . , m } . We say that C σi (1) is the most pre-

erred candidate for voter v i and C σi (m ) is the least preferred can-

idate for voter v i . The aim of voting procedures is to establish a

lobal ranking on the set of candidates to be able to decide which

s(are) the preferred candidate(s) according to the given preference

rderings. 

Once we apply a voting procedure, we obtain a global rank-

ng C σ (1) �����C σ ( m ) , where σ again denotes a permutation of

 1 , . . . , m } . C σ (1) will be called the winner of the election, while

 σ ( m ) will be called the loser . Also, a candidate C σ ( i ) is preferred

o another candidate C σ ( j ) in the global ranking if C σ ( i ) �C σ ( j ) . One

hould note that the global ranking might not be unique and/or

ome candidates might be considered to be tied for some collec-

ions of preference orderings given by the voters. In the latter case,

e will denote the fact that the candidates at the j th and ( j + 1) th

ositions are tied by C σ ( j) ∼ C σ ( j+1) . 

Probably the procedure most often used for aggregating a

ollection of preference orderings is the Borda count procedure

 de Borda, 1784 ). If voter v i gives her preference ordering e i as

 σi (1) � · · · � C σi (m ) , then the Borda count procedure assigns m − 1

oints to C σi (1) , m − 2 points to C σi (2) , ..., and 0 points to C σi (m ) . To

btain the global ranking, the Borda count procedure computes the

um of the points any candidate receives in each of the preference

rderings. For a candidate C , this sum is usually referred to as the

orda count of C and is denoted by B( C ). Naturally, it holds that

he greater the Borda count of a certain candidate is, the more

referred the candidate is according to the Borda count procedure,

ielding a global ranking on the set of candidates. However, since

wo (or more) candidates could have the same Borda count, ties

re allowed. 

The Borda count procedure belongs to the oldest and most

rominent family of voting rules: scoring rules ( Saari, 20 0 0; Young,

975 ). Other classical examples in this family are the plurality rule

nd the veto rule (also known as the antiplurality rule or the in-

erse plurality rule), which respectively rank the candidates ac-

ording to the number of times that they appear at the first or

ast position. Different elimination procedures have been combined

ith scoring rules, to reduce the effect of unimportant candidates

ithin the election ( Richelson, 1980 ). 

Another common procedure for ranking the candidates given

he preference orderings is that of Condorcet (1785) : for any two

andidates C i and C j we denote by n C i �C j 
the number of voters that

onsider C i preferred to C j . In this way, C i is preferred to C j when-

ver n C i �C j 
> n C j �C i 

. 

Note that this procedure might not lead to a global ranking

ince cycles might arise. The presence of such cycles is usually

eferred to as the voting paradox or, more precisely, the Condorcet

aradox. For avoiding such cycles, different procedures respecting

s far as possible the rationale of Condorcet have been proposed

e.g. the Kemeny procedure ( Kemeny, 1959 )). These procedures
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re commonly referred to as Condorcet procedures. Note that the

orda count, the plurality rule and the veto rule are not Condorcet

rocedures since they might yield a different winner than the

ondorcet procedure, even in the absence of cycles. 

A slightly different approach to voting theory is based on in-

ividual evaluations of candidates instead of preference orderings

 Balinski & Laraki, 2007; 2011a; 2011b ). In this framework, each

oter assigns a label to each candidate, indicating her evaluation.

hese evaluations are usually expressed on a (linearly-ordered) lin-

uistic scale L = { l 1 , . . . , l s } , where the linguistic terms are ordered

rom the worst to the best, i.e., l 1 < ��� < l s . This approach is in

ome sense more expressive than the previous one, since a prefer-

nce ordering can be obtained from the evaluations (yet allowing

or ties), however, the converse does not hold. 

The evaluations provided by the voters can be summarized in a

atrix: 

 = 

⎛ 

⎝ 

g 11 g 12 . . . g 1 n 
. . . 

. . . 
. . . 

. . . 
g m 1 g m 2 . . . g mn 

⎞ 

⎠ , (1) 

here g i j ∈ L . For each candidate C i , (g i 1 , . . . , g in ) denotes the eval-

ations given by the n voters. The main problem here is to aggre-

ate the evaluations of the voters in order to obtain the final eval-

ation of every candidate. 

Two of the most commonly used procedures for solving this

roblem are the majority judgment ( Balinski & Laraki, 2007; Gal-

on, 1907 ) and the Borda majority count ( Zahid & de Swart, 2015 )

rocedures. The first is defined in the following way: 

1. If n is odd and the evaluations of a candidate C can be or-

dered as g 1 ≥ ��� ≥ g n , then her majority grade is defined as

MG (C) = g (n +1) / 2 . Note that in this case the majority grade is

a unique value and amounts to the median or (lower/upper)

middlemost. 

2. If n is even and the evaluations of a candidate C can be or-

dered as g 1 ≥ ��� ≥ g n , then her majority grade is defined as

MG (C) = [ g n/ 2 , g (n +2) / 2 ] , where g n /2 is the lower middlemost

grade and g (n +2) / 2 is the upper middlemost grade. 

The candidates are ordered by comparing majority grades: the

reater the majority grade is, the more preferred the candidate is.

alinski and Laraki (2011b) argue that when n is even, MG( C ) must

e defined as the lower middlemost grade g n /2 and not as the in-

erval [ g n/ 2 , g (n +2) / 2 ] . In this way, the problem of comparing inter-

als of grades is avoided. In case two or more candidates have

he same majority grade, one single appearance of this value is

emoved from the evaluations of both candidates and the newly-

btained majority grade is used. This procedure is followed until

oth majority grades differ or until there are no more evaluations,

n which case the candidates are tied. 

The Borda majority count procedure ( Zahid & de Swart, 2015 )

orks as follows: first of all, the linguistic labels L = { l 1 , . . . , l s }
re transformed into a numerical scale L 

∗ = { 0 , 1 , . . . , s − 1 } . This

ssumes that all linguistic terms are equally spaced. The matrix

is transformed into a matrix G ∗ such that any element g i j = l k 
s transformed into g ∗

i j 
= k − 1 . Then the Borda majority count of

andidate C i is defined as: 

 MC (C i ) = 

n ∑ 

j=1 

g ∗i j . 

s before, the greater the Borda majority count is, the more pre-

erred the candidate is. 
. A probabilistic approach to the ranking of candidates based 

n preference orderings 

In this section we introduce a probabilistic approach that allows

o express the voting procedures for ranking candidates based on

reference orderings in terms of stochastic orderings. 

.1. Probability space and random variables 

By V = { v 1 , . . . , v n } we denote the set of all voters. We define a

robability space (V, P(V ) , P ) , where P is the uniform distribution

ver the voters. Note that the choice of the uniform distribution

ollows the same line of thought as the standard requirement of

he neutrality property in social choice theory assuring that all vot-

rs are considered to be equally important. Then any candidate C i 
as an associated random variable X i defined on (V, P(V ) , P ) that

ssigns for any v j ∈ V the position of the candidate C i in the pref-

rence ordering e j . 

Similarly, for any candidate C i we can also define another ran-

om variable ˜ X i on (V, P(V ) , P ) that assigns for any v j ∈ V the

umber of candidates ranked at a worse position than C i in the

reference ordering e j . Of course, there is a linear relation between

he random variables X i and 

˜ X i , because if a voter ranks C i at the

 th position, there are m − j candidates ranked at a worse position

han C i , that is: ˜ X i = m − X i , for any i = 1 , . . . , m . Let us stress that

either the random variables X 1 , . . . , X m 

, nor the random variables
˜ 
 1 , . . . , ˜ X m 

are independent, because the position of one candidate

bviously influences the position of the other candidates. Further-

ore, both { X 1 , . . . , X m 

} and { ̃  X 1 , . . . , ˜ X m 

} are sets of distinct ran-

om variables. 

xample 1. Consider an election with three candidates C 1 , C 2 and

 3 and five voters v 1 , . . . , v 5 , whose preference orderings are given

y: 

 1 : C 1 � C 3 � C 2 

 2 : C 3 � C 1 � C 2 

 3 : C 2 � C 1 � C 3 

 4 : C 3 � C 1 � C 2 

 5 : C 2 � C 3 � C 1 

he random variables X 1 , X 2 , X 3 and 

˜ X 1 , ˜ X 2 , ˜ X 3 associated with the

andidates C 1 , C 2 , C 3 , are given by: 

v 1 v 2 v 3 v 4 v 5 
X 1 1 2 2 2 3 

X 2 3 3 1 3 1 

X 3 2 1 3 1 2 

v 1 v 2 v 3 v 4 v 5 
˜ X 1 2 1 1 1 0 
˜ X 2 0 0 2 0 2 
˜ X 3 1 2 0 2 1 

learly, all the information given by the voters is captured by the

andom variables. 

In this probabilistic approach, candidates are represented by

andom variables, and therefore the global ranking of the candi-

ates should be obtained by means of the comparison of their as-

ociated random variables. Stochastic ordering is the subfield of

robability theory that allows for the comparison of random vari-

bles (see, for instance, Müller & Stoyan, 2002; Shaked & Shan-

hikurmar, 2006 ). In the remainder of this section, we are going to

ee that some procedures for ranking candidates can be expressed

n terms of stochastic orderings applied to the random variables

f the candidates. For this aim, we consider three different cases:

tochastic orderings that only consider the univariate distribution

f the random variables, stochastic orderings based on the bivari-

te distributions and stochastic orderings that consider the joint

istribution of all the random variables. 
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3.2. Univariate stochastic orderings 

Probably the most basic stochastic ordering we can find in the

literature is the comparison of expected values . The main character-

istic of this stochastic ordering is that it is based on the univari-

ate marginal distributions of the random variables. This fact has

advantages and disadvantages: on the one hand, it is much sim-

pler to handle univariate distributions than bivariate or multivari-

ate ones; on the other hand, bivariate or multivariate distributions

are much more informative than the univariate marginal distribu-

tions, which do not take into account the possible dependence be-

tween the random variables. 

Recall that given two random variables X and Y , X is preferred

to Y with respect to expected value ( Müller & Stoyan, 2002 ), de-

noted by X �EV Y , if E ( X ) ≥ E ( Y ), where E ( X ) and E ( Y ) denote the ex-

pected values of X and Y . Next, we investigate the meaning of the

comparison of expected values when applied to the comparison of

random variables associated with candidates. 

We have already mentioned the Borda count, which probably is

the most commonly used procedure for ranking candidates when

voters express preference orderings. For any candidate, this pro-

cedure only considers its position in each preference ordering, re-

gardless of the position of the other candidates. It will thus be not

surprising that the Borda count and the univariate stochastic or-

dering are closely related. 

Proposition 1. A candidate C i is preferred to a candidate C j in the

global ranking induced by the Borda count if and only if X j �EV X i , or,

equivalently, if and only if ˜ X i �EV 
˜ X j . 

Proof. Denote by n ( C i , k ) the number of voters v ∈ V that rank C i at

the k th position. The Borda count of C i takes the following value: 

B (C i ) = 

m ∑ 

k =1 

(m − k ) · n (C i , k ) = 

m −1 ∑ 

k =0 

k · n (C i , m − k ) . 

Considering the relationship 

˜ X i = m − X i , it holds that: 

E( ̃  X i ) = 

m −1 ∑ 

k =0 

k · P ( ̃  X i = k ) = 

m −1 ∑ 

k =0 

k · P (X i = m − k ) 

= 

m −1 ∑ 

k =0 

k · n (C i , m − k ) 

n 

= 

B (C i ) 

n 

. 

Furthermore, E( ̃  X i ) = m − E(X i ) , and therefore: 

B (C i ) ≥ B (C j ) ⇔ E(X j ) ≥ E(X i ) ⇔ E( ̃  X i ) ≥ E( ̃  X j ) . 

�

Note that the expected value is quite sensitive to extreme val-

ues. The strong connection between the expected value and the

Borda count implies that the same holds for the Borda count. This

translates to possibilities for manipulation by voters: suppose two

candidates would have a very close Borda count, then by (insin-

cerely) assigning these two candidates positions 1 and m , a voter

could attempt to produce a big difference between these two can-

didates. There is quite some literature on this topic in the field of

voting theory ( Chamberlin, 1985; Kelly, 1993; Saari, 1990 ). 

Remark 1. Another univariate stochastic ordering is stochastic

dominance, which is probably the most common stochastic order-

ing that can be found in the literature ( Lehmann, 1955 ). It com-

pares the cumulative distribution functions of the random vari-

ables X and Y , which are given by: 

F X (t) = P (X ≤ t ) , F Y (t ) = P (Y ≤ t) ∀ t ∈ R . 

We say X is stochastically preferred to Y , denoted by X �FSD Y , if

F ( t ) ≤ F ( t ) for any t ∈ R . 
X Y 
For the random variables X 1 , . . . , X m 

associated with the candi-

ates, F X i (k ) denotes the number of voters that rank candidate C i 
t the first k positions of their preference orderings. With this very

eaning, stochastic dominance has been used in the field of voting

heory under the name of Borda-dominance ( Fishburn, 1974; Stein

t al., 1994 ). Its main drawback is that it might lead to incompa-

ability. In our framework, this means that stochastic dominance

annot be counted on to produce a ranking on the set of candi-

ates. 

.3. Bivariate stochastic orderings 

We have mentioned in the previous subsection that one of the

ain drawbacks of the expected value is that it only takes into

ccount univariate marginal distributions, so it ignores the possi-

le dependence between the random variables. One possible way

f dealing with the dependence between the random variables is

o use stochastic orderings based on the bivariate marginal distri-

utions (or even the entire multivariate distribution, as will be dis-

ussed in the next subsection). Statistical preference is one approach

o do so, and it is based on a reciprocal relation ( Bezdek, Spilman,

 Spilman, 1978; De Baets, De Loof, & De Meyer, 2015 ). 

efinition 1. Given a set of alternatives A , a reciprocal relation

s a function Q : A × A → [0 , 1] such that Q(a, b) + Q(b, a ) = 1 , for

ny a, b ∈ A . 

Reciprocal relations are a very important tool because Q ( a , b )

an be interpreted as a measure of the strength of the preference

or a over b on the scale [0,1], where 1 
2 is understood as indif-

erence, 1 is understood as total preference for a over b and 0 is

nderstood as total preference for b over a . 

When the set of alternatives is formed by random variables de-

ned on the same probability space ( �, �, P ), it is possible to de-

ne the following reciprocal relation: 

(X, Y ) = P (X > Y ) + 

1 

2 

P (X = Y ) . (2)

he value Q ( X , Y ), called winning probability of X over Y , measures

he strength of the preference for X over Y , and statistical prefer-

nce is defined by considering the strong 1 
2 -cut of the relation Q

 De Schuymer et al., 2003a; De Schuymer et al., 2003b ). 

efinition 2. X is statistically preferred to Y when Q(X, Y ) > 

1 
2 , and

his is denoted by X �SP Y . 

It is obvious that X �SP Y if and only if P ( X ≥ Y ) > P ( X ≤ Y ). Fur-

hermore, when P (X = Y ) = 0 , like for instance for continuous ran-

om vectors or discrete random variables with disjoint supports,

he reciprocal relation given in Eq. (2) becomes Q(X, Y ) = P (X >

 ) . 

Statistical preference can be understood as a stochastic order-

ng based on the bivariate marginal distributions. It takes into ac-

ount the possible dependence between the random variables and

ields winning probabilities, in the sense that the greater the win-

ing probability is, the more preferred is one random variable over

he other. Moreover, since it only takes into account the order be-

ween the values X ( ω) and Y ( ω) for any ω ∈ � instead of their val-

es, statistical preference can also be applied to qualitative random

ariables. 

Let us now consider the random variables X i associated with

he candidates C i , for i = 1 , . . . , m . First of all, note that these ran-

om variables cannot take the same value simultaneously, and

ence Q(X i , X k ) = P (X i > X k ) for any i � = k . 

roposition 2. A candidate C i is a Condorcet winner if and only if

 � X for any k � = i. 
k SP i 
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roof. Let us develop the expression Q ( X k , X i ): 

(X k , X i ) = P (X k > X i ) = P ({ v ∈ V | X k (v ) > X i (v ) } ) 
= 

|{ v ∈ V | X k (v ) > X i (v ) }| 
n 

= 

|{ v j ∈ V | σ j (i ) < σ j (k ) }| 
n 

. 

ence, X k �SP X i means that C i is preferred to C k in pairwise com-

arisons. Then, if such preference holds for any k � = i , this is equiv-

lent to being a Condorcet winner. �

Of course, the previous result can also be expressed in terms of

he random variables ˜ X i , because X k �SP X i is equivalent to ˜ X i �SP 
˜ X k .

We have already mentioned that the Condorcet procedure

ight lead to cycles. This is related to the lack of transitivity of

tatistical preference ( De Baets & De Meyer, 20 05; 20 08; De Baets,

e Meyer, & De Loof, 2010; De Baets, De Meyer, De Schuymer, &

enei, 2006; Martinetti, Montes, Díaz, & Montes, 2011 ): it is pos-

ible to find random variables X , Y , Z such that X �SP Y , Y �SP Z , but

 �SP X . 

.4. Multivariate stochastic orderings 

.4.1. Probabilistic preference on a set of candidates 

As mentioned above, one of the most important drawbacks of

tatistical preference is its lack of transitivity. This is due to the

act that statistical preference is based on bivariate marginal dis-

ributions only, so it does not consider all the information given

y the multivariate distribution. Hence, in order to construct a vot-

ng procedure giving a ranking, one could use the multivariate dis-

ribution of all the random variables to be compared, rather than

nly the bivariate marginal distributions. One possible way of do-

ng so is by using probabilistic preference ( Montes et al., 2019 ). This

rocedure was introduced as an extension of statistical preference

llowing for the comparison of more than two random variables

imultaneously. 

efinition 3. Let A be a finite set of distinct random variables de-

ned on the same probability space ( �, �, P ). For every X ∈ A , the

ultivariate winning probability of X in A is defined as 3 : 

�A (X ) 

= 

∑ 

Y⊆A\{ X} 

1 

1 + |Y| P 
((∀ Z ∈ Y 

)(∀ W ∈ A \ ({ X} ∪ Y) 
)(

X = Z > W 

))
. 

(3) 

As we can see, the multivariate winning probabilities preserve

he idea of the (pairwise) winning probabilities in Eq. (2) . In fact,

onsidering a set of random variables A = { X, Y } , we obtain the

eciprocal relation in Eq. (2) : 

A (X ) = Q(X, Y ) and �A (Y ) = Q(Y, X ) . 

n this way, the function �A also measures the intensity of prefer-

nce for one random variable in the set A , preserving the property

hat 
∑ 

∈A 
�A (X ) = 1 . 

sing these multivariate winning probabilities, we can define a

eak ordering (allowing for ties) on the random variables in A . 

efinition 4. Let A be a finite set of distinct random variables de-

ned on the same probability space. Given X, Y ∈ A , X is probabilis-

ically preferred to Y in A if �A (X ) ≥ �A (Y ) . Similarly, given X ∈ A ,
3 Note that the notation 
{(∀ Z ∈ Y )(∀ W ∈ A \ ({ X} ∪ Y) 

)(
X = Z > W 

)}
in 

q. (3) is a shorthand for 
{
ω ∈ � | (∀ Z ∈ Y )(∀ W ∈ A \ ({ X} ∪ Y) 

)(
X(ω) = Z(ω) > 

 (ω) 
)}

. 

�

C

w  

c

 is the probabilistically preferred random variable in A if: 

A (X ) ≥ max 
Y ∈A\{ X} 

�A (Y ) . 

As we can see, probabilistic preference reduces to statistical

reference when A = { X, Y } . For an in-depth study on this stochas-

ic ordering, we refer to Montes et al. (2019) . 

When we deal with a set of discrete and distinct random vari-

bles A whose supports are pairwisely disjoint, it holds that P (X =
 ) = 0 for every X, Y ∈ A , and the expression of the multivariate

inning probabilities becomes simpler, more precisely (see Montes

t al., 2019 , Prop. 13): 

A (X ) = Q 

(
X, max 

Y ∈A\{ X} 
Y 

)
= P 

(
X > max 

Y ∈A\{ X} 
Y 

)
. (4)

e have seen that by computing the expected value of the ran-

om variables associated with the preference orderings given by

he voters (either the random variables X i or ˜ X i ) we obtain the

orda count, and when applying statistical preference, we obtain

he Condorcet procedure. In the remainder of this section, we ap-

ly the notion of probabilistic preference to the comparison of the

andom variables X i and 

˜ X i associated with the candidates to ob-

ain a ranking of them. 

Although for univariate or bivariate stochastic orderings, we

ave seen that the use of either the random variables X i or the

andom variables ˜ X i is equivalent, this is no longer the case for

robabilistic preference, and two possible ways of ranking the can-

idates arise. 

On the one hand, the random variable ˜ X i indicates the number

f candidates ranked at a worse position than C i for any voter. This

eans that the greater the value of ˜ X i is, the more preferred the

andidate C i is. Applying the notion of probabilistic preference to

he set of random variables A = { ̃  X 1 , . . . , ˜ X m 

} , we can rank the can-

idates from the winner to the loser. This approach will be called

he top-down probabilistic preference procedure . 

On the other hand, the random variable X i indicates the po-

ition of C i in the preference orderings given by the voters. This

eans that the smaller the value of X i is, the more preferred the

andidate C i is. Hence, the greater the multivariate winning prob-

bility is, the less preferred the candidate is. So if we apply the

otion of probabilistic preference to the set of random variables

 = { X 1 , . . . , X m 

} , we will obtain a ranking from the loser to the

inner. This approach will be called the bottom-up probabilistic

reference procedure . 

Next, we study both approaches in detail. 

.4.2. Top-down probabilistic preference procedure 

Let us consider the set of random variables A = { ̃  X 1 , . . . , ˜ X m 

} as-

ociated with the candidates. Recall that all the random variables

n A are distinct, so we can apply the notion of probabilistic pref-

rence to them. If we apply the top-down probabilistic preference

rocedure to this set of distinct random variables A = { ̃  X 1 , . . . , ˜ X m 

} ,
e obtain that not all the candidates have a strictly positive mul-

ivariate winning probability. 

roposition 3. Consider the set of distinct random variables A =
 ̃

 X 1 , . . . , ˜ X m 

} associated with the candidates. A candidate has a strictly

ositive top-down multivariate winning probability if and only if it is

he most preferred candidate in at least one preference ordering. 

roof. If there is a voter v j ∈ V for which C i is considered the most

referred candidate, then 

˜ X i (v j ) = m − 1 . This implies that: 

A ( ̃  X i ) ≥ P ({ v j } ) = 

1 

m 

> 0 . 

onversely, if �A ( ̃  X i ) > 0 , this means that there is at least one v j 
ith 

˜ X i (v j ) = m − 1 , which means that C i is the most preferred

andidate for the voter v j . �
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Using this property, we can easily identify which candidate will

be the winner of the election. 

Proposition 4. Consider the set of distinct random variables A =
{ ̃  X 1 , . . . , ˜ X m 

} associated with the candidates. A candidate is the winner

of the election with respect to the top-down probabilistic preference

procedure if it is the most preferred candidate in at least as many

preference orderings as any other candidate. 

Proof. Let us compute �A ( ̃  X i ) : 

�A ( ̃  X i ) = P 

(
˜ X i > max 

Y ∈A\{ ̃ X i } 
Y 

)
= P ( ̃  X i = m − 1) 

= 

|{ v ∈ V | ˜ X i (v ) = m − 1 }| 
n 

= 

|{ v j ∈ V | σ j (i ) = 1 }| 
n 

. 

Then a winner of the election is the most preferred candidate in at

least as many preference orderings as any other candidate. �

This result allows to relate top-down probabilistic preference to

the plurality rule. Moreover, the previous results show that if there

is a subset of candidates C that contains only the candidates that

appear at the first position of at least one preference ordering, the

ranking given by the top-down probabilistic preference procedure

ranks them at the first |C| positions, and all of them have posi-

tive multivariate winning probabilities. The top-down probabilistic

preference procedure thus creates a ranking of the candidates in

the set C, but it does not rank the other candidates. If we want to

obtain a ranking of all the candidates, we can apply the top-down

probabilistic preference procedure recursively: 

Step 0 . Let A 1 = { ̃  X 1 , . . . , ˜ X m 

} be the set of distinct random vari-

ables associated with the candidates. 

Step i . For any ˜ X ∈ A i , compute the multivariate winning prob-

ability �A i ( ̃
 X ) . 

i .1: Rank the candidates such that their associated random

variables ˜ X ∈ A i carry a positive multivariate winning

probability �A i ( ̃
 X ) > 0 according to decreasing �A i ( ̃

 X ) . 

i .2: Let A i +1 = A i \ { ̃  X ∈ A i | �A i ( ̃
 X ) > 0 } . 

i .3: If A i +1 = ∅ , then all the candidates are ranked. Other-

wise, go to step i + 1 . 

In the first step, this procedure considers the candidates that

are ranked at the first position of the preference ordering for at

least one voter. Then, it ranks those candidates according to their

frequency at the first position. In the next step, we remove the

candidates that have already been ranked and we iterate the pro-

cedure. 

Example 2. Consider an election with five candidates C 1 , C 2 , C 3 , C 4 
and C 5 , and 100 voters. The following table summarizes the pref-

erence orderings: 

Number of votes Preference orderings 
40 C 1 � C 2 � C 3 � C 4 � C 5 
35 C 2 � C 3 � C 4 � C 5 � C 1 
25 C 4 � C 5 � C 2 � C 3 � C 1 

Consider the random variables ˜ X i associated with the candidates,

which are defined by: 

v 1 , . . . , v 40 v 41 , . . . , v 75 v 76 , . . . , v 100 

˜ X 1 4 0 0 

˜ X 2 3 4 2 

˜ X 3 2 3 1 

˜ X 4 1 2 4 

˜ X 5 0 1 3 

Applying the top-down probabilistic preference procedure to the

set of distinct random variables A = { ̃  X , ˜ X , ˜ X , ˜ X , ˜ X } associated
1 1 2 3 4 5 
ith the candidates, we obtain the following multivariate winning

robabilities: 

A 1 ( ̃  X 1 ) = 0 . 4 , �A 1 ( ̃  X 2 ) = 0 . 35 , 

A 1 ( ̃  X 4 ) = 0 . 25 , �A 1 ( ̃  X 3 ) = �A 1 ( ̃  X 5 ) = 0 . 

his means that C 1 , C 2 and C 4 are the candidates that are ranked at

he first position in at least one preference ordering, and the mul-

ivariate winning probabilities express the frequency with which

hey appear at the first position. Then, C 1 is the winner with mul-

ivariate winning probability 0.4, C 2 is the candidate ranked second

nd C 4 is ranked third. Next, in order to rank ˜ X 3 and 

˜ X 5 , we con-

ider the set of random variables A 2 = { ̃  X 3 , ˜ X 5 } and we compute

he multivariate winning probabilities in A 2 : 

A 2 ( ̃  X 3 ) = 0 . 75 and �A 2 ( ̃  X 5 ) = 0 . 25 . 

hus, the ranking given by the top-down probabilistic preference

rocedure is C 1 �C 2 �C 4 �C 3 �C 5 . 

emark 2. The top-down probabilistic preference procedure can

e seen as a slightly modified version of the plurality rule. The dif-

erence lies in the tie-breaker used to rank the candidates that do

ot appear at the first position in at least one preference ordering.

Note that the Borda count and the top-down probabilistic pref-

rence procedures could give different winners. In fact, if we con-

ider the previous example, it holds that: 

 (C 1 ) = 27 , B (C 2 ) = 21 , B (C 3 ) = 22 , B (C 4 ) = 8 . 

 1 is the Borda winner, while the winner with respect to the top-

own probabilistic preference procedure is C 2 . This is quite rea-

onable, because, as we have shown in Montes et al. (2019) , the

anking with respect to the comparison of expected values and the

robabilistic preference may give different results. 

We have seen that the top-down probabilistic preference pro-

edure uses all the available information about the random vari-

bles ˜ X i (or, in this framework, about the preference orderings

iven by the voters). Since the Condorcet procedure only consid-

rs bivariate marginal distributions, it is reasonable that the top-

own probabilistic preference procedure does not necessarily give

he same winner as the Condorcet procedure, as the following ex-

mple shows. 

xample 3. Consider an election with three candidates C 1 , C 2 and

 3 and 100 voters. The preference orderings given by the voters are

ummarized in the following table: 

Number of votes Preference ordering 
49 C 1 � C 2 � C 3 
49 C 3 � C 2 � C 1 
2 C 2 � C 1 � C 3 

 2 is the winner with respect to the Condorcet procedure be-

ause: 

 C 2 �C 1 = 

51 

100 

> 

49 

100 

= n C 1 �C 2 , n C 3 �C 1 = 

51 

100 

> 

49 

100 

= n C 1 �C 3 , 

ut according to the top-down probabilistic preference procedure

 1 and C 3 are considered the winners with multivariate winning

robability 0.49, while the multivariate winning probability of C 2 
s only 0.02. 

The fact that the winner according to the top-down probabilis-

ic preference procedure might differ from the winners according

o the Borda count and Condorcet procedures was to be expected

ince it is widely known in the field of voting theory that the plu-

ality rule might yield a different winner than the Borda count and

he Condorcet procedure. 
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Fig. 1. Graphical explanation of the relationship between the top-down and 

bottom-up probabilistic preference procedures. 

3

 

p  

n  

A  

f

 

 

 

 

 

 

a  

l  

f  

d  

d

R  

a  

T  

t  

o

 

b  

p  

t  

o  

c  

p  

i

E  

a  

s  

w

W

�

A  

C  

{  

i

�

T  

b

 

t  

t

R  

a  

a  

k  

f  

i  

c  

t

4

o

 

v  

s  

v  

i  

p  

o

4

 

o  

w  

i  

d  

a  

o  

fi  

Y

 

l  

1  

t

Y

I  

t  

t  

e  

a

4

 

t  

a  

t  

m  

m

R  

v  

p  
.4.3. Bottom-up probabilistic preference procedure 

Next, let us consider the bottom-up probabilistic preference

rocedure, which ranks the candidates from the loser to the win-

er. For this aim, we consider the set of distinct random variables

 = { X 1 , . . . , X m 

} associated with the candidates and perform the

ollowing steps: 

Step 0 . Let A 1 = { X 1 , . . . , X m 

} be the set of distinct random vari-

ables associated with the candidates. 

Step i . For any X ∈ A i , compute the multivariate winning prob-

ability �A i (X ) . 

i .1: Rank the candidates such that their associated random

variables X ∈ A i carry a positive multivariate winning

probability �A i (X ) > 0 according to increasing �A i (X ) . 

i .2: Let A i +1 = A i \ { X ∈ A i | �A i (X ) > 0 } . 
i .3: If A i +1 = ∅ , then all the candidates are ranked. Other-

wise, go to step i + 1 . 

In the first step, this procedure considers the candidates that

re ranked at the last position of the preference ordering for at

east one voter. Then, it ranks those candidates according to their

requency at the last position. In the next step, we remove the can-

idates that have already been ranked and we iterate the proce-

ure. 

emark 3. The bottom-up probabilistic preference procedure can

lso be understood as a slightly modified version of the veto rule.

he difference lies in the tie-breaker used to rank the candidates

hat do not appear at the last position in at least one preference

rdering. 

A sharp reader would note that there exists a connection

etween the top-down and bottom-up probabilistic preference

rocedures. The reason is that, due to the relationship between

he random variables X i and 

˜ X i , the reversed ranking of the one

btained with the bottom-up probabilistic preference procedure

oincides with the ranking given by the top-down probabilistic

reference applied to the reversed preference orderings. This fact

s graphically explained in Fig. 1 . 

xample 4. Consider again the election of Example 2 . Let us now

pply the bottom-up probabilistic preference procedure to the

et of distinct random variables A 1 = { X 1 , X 2 , X 3 , X 4 , X 5 } associated

ith the candidates, which are given by: 

v 1 , . . . , v 40 v 41 , . . . , v 75 v 76 , . . . , v 100 

X 1 1 5 5 

X 2 2 1 3 

X 3 3 2 4 

X 4 4 3 1 

X 5 5 4 2 

e obtain the following multivariate winning probabilities: 

A (X 1 ) = 0 . 6 , �A (X 5 ) = 0 . 4 , �A (X 2 ) = �A (X 3 ) = �A (X 4 ) = 0 . 

1 1 1 1 1 
ccording to Step 1.1 , this means that C 1 is the loser, followed by

 5 . Next, we consider the set of unranked random variables A 2 =
 X 2 , X 3 , X 4 } , and compute again the multivariate winning probabil-

ties: 

A 2 (X 2 ) = 0 , �A 2 (X 3 ) = 0 . 25 , �A 2 (X 4 ) = 0 . 75 . 

hen, of these random variables, X 4 is the least preferred, followed

y X 3 and X 2 . The final ranking is given by: C 2 �C 3 �C 4 �C 5 �C 1 . 

If we compare this result with the one obtained in Example 2 ,

he ranking is quite different, because C 1 moves from the first to

he last position. 

emark 4. When there are only two candidates, both top-down

nd bottom-up probabilistic preference procedures are equivalent

nd coincide with statistical preference. This is related to the well-

nown fact in voting theory that the only meaningful procedure

or ranking candidates in a two-candidate election is simple major-

ty, to which all among the plurality rule, the veto rule, the Borda

ount and the Condorcet procedure reduce in two-candidate elec-

ions. 

. A probabilistic approach to the ranking of candidates based 

n individual evaluations 

We now consider Balinski and Laraki’s framework, where the

oters express their evaluations on a (linearly-ordered) linguistic

cale. In this case, we also define a probability space and a random

ariable for each candidate, and we express the voting procedures

n terms of the comparison of those random variables. Also, we ap-

ly the probabilistic preference procedure and analyze the winner

f the election following this procedure. 

.1. Probability space and random variables 

Let us now consider that voters express an individual evaluation

f the candidates instead of a preference ordering. In this frame-

ork, as we have seen in Eq. (1) , these evaluations can be collected

n a matrix G = (g i j ) m,n such that g ij denotes the evaluation of can-

idate C i given by voter v j . In this situation, we can also consider

 probability space (V, P(V ) , P ) , where V = { v 1 , . . . , v n } is the set

f voters and P is the uniform distribution on V . Then, we can de-

ne a random variable Y i associated with a given candidate C i by

 i (v j ) = g i j . 

We can consider the scale L 

′ = { l ′ 
1 
, . . . , l ′ s } such that l ′ 

1 
> . . . >

 

′ 
s , and a function N : L → L 

′ that assigns N(l i ) = l ′ 
s −i +1 

for any i =
 , . . . , s . This means that for any candidate C i , we can also consider

he random variable ˜ Y i given by 

˜ 
 i (v j ) = N(Y i (v j )) = N(g i j ) . 

n this section we will try to express the procedures for ranking

he candidates based on individual evaluations in terms of stochas-

ic orderings, and in particular we will apply the probabilistic pref-

rence procedure to the sets of random variables A = { Y 1 , . . . , Y m 

}
nd A = { ̃  Y 1 , . . . , ̃  Y m 

} and investigate the rankings they yield. 

.2. Univariate stochastic orderings 

The use of univariate stochastic orderings is closely related to

he use of an aggregation function for aggregating the evaluations

ssigned to each of the candidates and, subsequently, to compare

hese results of the aggregation. In the following, we consider the

edian and the mean and, tie-breakers aside, relate them to the

ajority judgment and the Borda majority count. 

emark 5. Since stochastic dominance only requires the random

ariables to be defined on a linearly-ordered scale, we can also ap-

ly it in this framework. However, as we have already mentioned
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in Remark 1 in Arrow’s framework, it can give rise to incompara-

bilities, so it will rarely give a ranking on the set of candidates.

Note that if the evaluations of each candidate are aggregated by

means of an increasing and symmetric aggregation function, any

ranking obtained by comparing these aggregated results will be a

refinement of the ordering given by stochastic dominance. 

4.2.1. Comparison of medians 

First of all, let us consider a stochastic ordering based on the

comparison of the medians. In this way, X is preferred to Y with re-

spect to the median criterion , denoted by X �Me Y , when inf Me (X ) >

inf Me (Y ) , where the median of a random variable Z is defined

as: 

Me (Z) = 

{ 

t | P (Z ≥ t) ≥ 1 

2 

, P (Z ≤ t) ≥ 1 

2 

} 

. 

When applying the median criterion to the random variables asso-

ciated with evaluations of candidates, we obtain the most primitive

version of majority judgment due to Galton (1907) in which only

the median evaluations are used for comparing the candidates. The

introduction of a suitable tie-breaker is due to Balinski and Laraki

(2007, 2011b) . 

Proposition 5. Let Y 1 , . . . , Y m 

be the random variables associated

with the candidates C 1 , . . . , C m 

. Then Y i �Me Y j for any j � = i if and only

if C i is the winner with respect to the majority grade. 

Proof. The main point is that Me (Y i ) = MG (C i ) , and then the result

trivially follows. �

4.2.2. Comparison of means 

In the case of ranking candidates based on preference orderings,

we have seen that the Borda count procedure can be expressed

in terms of the comparison of the expected values of the random

variables. When dealing with evaluations of candidates, we also

obtain a connection between the comparison of expected values

and the Borda majority count. 

Proposition 6. Let Y 1 , . . . , Y m 

be the random variables asso-

ciated with the candidates C 1 , . . . , C m 

. Consider the mapping

f : L = { l 1 , . . . , l s } → { 0 , . . . , s − 1 } given by f (l k ) = k − 1 . Then

E ( f ( Y i )) > E ( f ( Y j )) for any j � = i if and only if C i is the winner with re-

spect to the Borda majority count. 

Proof. Let us compute E ( f ( Y i )): 

E( f (Y i )) = 

n ∑ 

j=1 

1 

n 
f (g i j ) = 

1 

n 

s −1 ∑ 

k =0 

k · |{ j | g(i, j) = l k +1 }| = 

1 

n 
B MC (C i ) . 

We conclude that E( f (Y i )) = 

1 
n B MC (C i ) , and therefore Y i is the ran-

dom variable with the greatest expected value if and only if C i is

the candidate with the greatest Borda majority count. �

We have to point out that the Borda majority count can be

criticized from several points of view (see, for instance, Balinski &

Laraki, 2011b; Zahid & de Swart, 2015 ). In our probabilistic frame-

work, the most important critique is that the expected value is not

an adequate location parameter for describing qualitative random

variables. Instead, it seems more natural to use the median or, as

we will see in Section 4.4 , a multivariate stochastic ordering that

could be used for this kind of random variables. 

4.3. Bivariate stochastic orderings 

Statistical preference is a stochastic ordering that can be applied

whenever the random variables are defined on a linearly-ordered

scale. Hence, as we did in Section 3.3 , we can also apply it in this

framework. Thus, a candidate C i is the winner of the election if

Q ( Y i , Y j ) ≥ 0.5 for every j � = i . Of course, this is exactly the Condorcet
rocedure where we take into account possible ties. As was the

ase in Arrow’s framework, the main drawback of statistical pref-

rence is that it might lead to cycles. 

.4. Multivariate stochastic orderings 

Just as statistical preference, probabilistic preference is a

tochastic ordering that allows for the comparison of qualitative

andom variables. In this framework, we are going to apply the

otion of probabilistic preference to the sets of random variables

 = { Y 1 , . . . , Y m 

} and A = { ̃  Y 1 , . . . , ̃  Y m 

} . 
.4.1. Distinction between both approaches 

As in Section 3.4 , we have to distinguish two cases. On the one

and, for the random variables Y i , the greater the value is, the

ore preferred the candidate is. This means that when applying

he notion of probabilistic preference to A = { Y 1 , . . . , Y m 

} , we rank

he random variables from the winner to the loser. On the other

and, for the random variables ˜ Y i , the greater the value is, the

ess preferred the candidate is. This means that when applying the

otion of probabilistic preference to A = { ̃  Y 1 , . . . , ̃  Y m 

} , we rank the

andidates from the loser to the winner. Following the terminol-

gy from Section 3.4 , these procedures will be called the top-down

robabilistic preference procedure and the bottom-up probabilistic

reference procedure, respectively. 

Note that one of the main differences with respect to ranking

andidates based on preference orderings is that the random vari-

bles considered could take the same value, i.e., ties are allowed,

n contrast with the random variables considered in Section 3 . This

eans that for computing the multivariate winning probabilities,

e have to use Eq. (3) , but we cannot use the simplified formula

n Eq. (4) . Additionally, unlike the random variables defined in

ection 3 , A = { Y 1 , . . . , Y m 

} and A = { ̃  Y 1 , . . . , ̃  Y m 

} do not necessarily

eed to be sets of distinct random variables. Thus, for computing

he multivariate winning probabilities, we assume in the remain-

er of this section that the random variables Y 1 , . . . , Y m 

, and, hence,
˜ 
 1 , . . . , ̃  Y m 

, are all distinct. Note that this is not a heavy restriction

ecause, if two random variables Y i and Y j are equal, this means

hat the candidates Y i and Y j have the same evaluations for all the

oters, so we can simple remove one of them and, at the end, as-

ign the same position in the global ranking to both candidates. 

.4.2. Top-down probabilistic preference procedure 

For the set of distinct random variables A = { Y 1 , . . . , Y m 

} ex-

ressing the evaluations of the candidates by the voters, the

reater the evaluation (with respect to the qualitative scale) is, the

ore preferred the candidate is. Hence, we will compute the mul-

ivariate winning probabilities using Eq. (3) , and the greater the

ultivariate winning probability is, the more preferred the candi-

ate is. In order to rank all the candidates, we follow a procedure

hat is quite similar to that of Section 3.4.2 : 

Step 0 . Let A 1 = { Y 1 , . . . , Y m 

} be the set of distinct random vari-

ables associated with the candidates. 

Step i . For any Y ∈ A i , compute the multivariate winning prob-

ability �A i (Y ) . 

i .1: Rank the candidates such that their associated random

variables Y ∈ A i carry a positive multivariate winning

probability �A i (Y ) > 0 according to decreasing �A i (Y ) . 
i .2: Let A i +1 = A i \ { Y ∈ A i | �A i (Y ) > 0 } . 
i .3: If A i +1 = ∅ , then all the candidates are ranked. Other-

wise, go to step i + 1 . 

As we can see, this procedure is quite similar to that of

ection 3.4.2 , since we rank the candidates starting from the win-

er to the loser according to their frequency at the first position.
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herefore, we also name it top-down probabilistic preference proce-

ure . 

xample 5. Consider an election with five candidates C 1 , C 2 , C 3 , C 4 
nd C 5 and ten voters that evaluate each candidate on the follow-

ng linguistic scale: 

 = { poor (po), acceptable (ac), good (go), very good (vg), 

excellent (ex) } . 
heir evaluations are given in matrix form as in Eq. (1) . 

 = 

⎛ 

⎜ ⎜ ⎝ 

go ac ac go go ex v g go ac go 
v g go go ac po ac go v g ac go 
ac v g go ac ac go go go go ac 
po ac po po ac v g go ac po po 
ac po po po ac go ac ac po po 

⎞ 

⎟ ⎟ ⎠ 

et us apply the top-down probabilistic preference procedure to

he set of distinct random variables A 1 = { Y 1 , Y 2 , Y 3 , Y 4 , Y 5 } asso-

iated with the candidates. First, let us compute the multivariate

inning probabilities: 

�A 1 (Y 1 ) = P ({ v 4 } ) + P ({ v 5 } ) + P ({ v 6 } ) + P ({ v 7 } ) + 

1 

2 
P ({ v 10 } ) = 0 . 45

�A 1 (Y 2 ) = P ({ v 1 } ) + 

1 

2 
P ({ v 3 } ) + P ({ v 8 } ) + 

1 

2 
P ({ v 10 } ) = 0 . 3 ;

�A 1 (Y 3 ) = P ({ v 2 } ) + 

1 

2 
P ({ v 3 } ) + P ({ v 9 } ) = 0 . 25 ;

�A 1 (Y 4 ) = �A 1 (Y 5 ) = 0 . 

e conclude that Y 1 is the winner, with multivariate winning

robability 0.45, followed by Y 2 and Y 3 , with multivariate winning

robabilities 0.3 and 0.25, respectively. 

Next, consider the set of random variables A 2 = { Y 4 , Y 5 } , and let

s compute their multivariate winning probabilities: 

A 2 (Y 4 ) = 

1 

2 

(
P ({ v 2 } ) + P ({ v 3 } ) + P ({ v 4 } ) + P ({ v 5 } ) + P ({ v 8 } ) + P ({ v 9 } 

+ P ({ v 10 } ) 
)

+ P ({ v 1 } ) + P ({ v 6 } ) + P ({ v 7 } ) = 0 . 65 ;
A 2 (Y 5 ) = 1 − �A 2 (Y 4 ) = 0 . 35 . 

he global ranking obtained from the top-down probabilistic pref-

rence procedure is: 

 1 � C 2 � C 3 � C 4 � C 5 . 

The following result is quite similar to Proposition 3 . Its proof

s obvious and therefore omitted. 

roposition 7. Let A = { Y 1 , . . . , Y m 

} be the set of distinct random

ariables associated with the candidates C 1 , . . . , C m 

. A candidate has

 strictly positive top-down probability if and only if it is a most pre-

erred candidate for at least one voter. 

.4.3. Bottom-up probabilistic preference procedure 

As we did in Section 3.4.3 , we can also apply the notion

f probabilistic preference to the set of random variables A =
 ̃

 Y 1 , . . . , ̃  Y m 

} . In that case, taking into account that the greater the

alue of ˜ Y i is, the worse the evaluation of the candidate is, the mul-

ivariate winning probabilities establish a ranking from the loser to

he winner. This means that the greater the multivariate winning

robability is, the less preferred the evaluation of the candidate is.

aking this comment into account, we obtain the following proce-

ure: 

Step 0 . Let A 1 = { ̃  Y 1 , . . . , ̃  Y m 

} be the set of distinct random vari-

ables associated with the candidates. 

Step i . For any ˜ Y ∈ A i , compute the multivariate winning prob-

ability �A i ( ̃
 Y ) . 
i .1: Rank the candidates such that their associated random

variables ˜ Y ∈ A i carry a positive multivariate winning

probability �A i ( ̃
 Y ) > 0 according to increasing �A i ( ̃

 Y ) . 

i .2: Let A i +1 = A i \ { ̃  Y ∈ A i | �A i ( ̃
 Y ) > 0 } . 

i .3: If A i +1 = ∅ , then all the candidates are ranked. Other-

wise, go to step i + 1 . 

In this framework, there is also a relationship between the

op-down and bottom-up probabilistic preference procedures. The

anking obtained from the bottom-up probabilistic preference pro-

edure is the reversed ranking of the one we obtain if we apply the

op-down probabilistic preference procedure to the random vari-

bles ˜ Y 1 , . . . , ̃  Y m 

. 

xample 6. Let us apply this approach to the evaluations given in

xample 5 . First of all, consider the set of distinct random vari-

bles A 1 = { ̃  Y 1 , ̃  Y 2 , ̃  Y 3 , ̃  Y 4 , ̃  Y 5 } , and let us compute the multivariate

inning probabilities: 

�A 1 ( ̃  Y 1 ) = �A 1 ( ̃  Y 3 ) = 0 ;
�A 1 ( ̃  Y 2 ) = P ({ v 5 , v 6 } ) = 0 . 2 ;
�A 1 ( ̃  Y 4 ) = P ({ v 1 } ) + 

1 
2 

P ({ v 3 , v 4 , v 8 , v 9 , v 10 } ) = 0 . 35 ;
�A 1 ( ̃  Y 5 ) = P ({ v 2 , v 7 } ) + 

1 
2 

P ({ v 3 , v 4 , v 8 , v 9 , v 10 } ) = 0 . 45 . 

˜ 
 2 , ̃  Y 4 and 

˜ Y 5 are the random variables with positive multivariate

inning probability. According to Step 1.1 , C 5 is the loser, followed

y C 4 and C 2 . 

Next, we compute the multivariate winning probabilities on the

et of random variables A 2 = { ̃  Y 1 , ̃  Y 3 } of the still unranked candi-

ates C 1 and C 3 : 

A 2 ( ̃  Y 1 ) = 0 . 35 and �A 2 ( ̃  Y 3 ) = 0 . 65 . 

he global ranking obtained from the bottom-up probabilistic pref-

rence procedure is: 

 1 � C 3 � C 2 � C 4 � C 5 . 

s we can see, the ranking given by the bottom-up probabilistic

reference procedure is slightly different from the one obtained in

xample 5 , but in both cases C 1 is the winner of the election. 

. Conclusions 

In the framework of voting theory, there are two common sce-

arios: voters either give their preference orderings or their indi-

idual evaluations of the candidates. In this work, we have consid-

red a probabilistic approach to model both situations. 

In the first scenario, any candidate defines a random variable

hat expresses the position in the preference ordering of this can-

idate for any voter. We have seen that the most common pro-

edure used for solving this kind of problems, the Borda count,

s related to the comparison of expected values of those random

ariables. Furthermore, the Condorcet procedure is also connected

o the comparison of the random variables through the notion of

tatistical preference. The recently-proposed notion of probabilistic

reference is proved to be linked to the plurality and veto rules.

ore precisely, top-down probabilistic preference relates to the

ormer and bottom-up probabilistic preference relates to the latter.

he choice between the top-down and the bottom-up approaches

s similar to that of decision making with maximax and maximin

riteria, and depends on the interpretation. If we are looking for

he candidate that is ranked as the most preferred candidate for

ost voters, we should use the top-down probabilistic preference

rocedure; on the other hand, if we are looking for the candidate

hat is not ranked as the least preferred candidate for most vot-

rs, we will apply the bottom-up probabilistic preference proce-

ure. A summary of the connections between stochastic orderings
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and voting procedures in Arrow’s framework is shown in the next

table: 

Arrow’s framework 

Voting procedure Stochastic ordering 

Borda Expected value 

Borda-dominance Stochastic dominance 

Condorcet Statistical preference 

Plurality Probabilistic preference (top-down) 

Veto Probabilistic preference (bottom-up) 

In the second scenario, any candidate has an associated random

variable that expresses the evaluation of this candidate for any

voter. In this case, we have seen that the two most common

procedures – the majority judgment and the Borda majority count

– are equivalent to the comparison of the medians and expected

values of the random variables, respectively, whereas the Con-

dorcet procedure, allowing ties, is again equivalent to applying

statistical preference. In this second scenario, we have also

analyzed probabilistic preference, both the top-down and the

bottom-up procedure. To the best of our knowledge, there is

no connection between these two stochastic orderings and any

existing voting procedure in the framework of Balinski and Laraki.

Again, the choice of procedure depends on the kind of winner

we are looking for. The next table summarizes the connection

between the voting procedures in this framework and stochastic

orderings. 

Balinski and Laraki’s framework 

Voting procedure Stochastic ordering 

Majority judgement Comparison of medians 

Borda majority count Expected value 

Condorcet Statistical preference 

Probabilistic preference (top-down) 

Probabilistic preference (bottom-up) 

We end by recalling that the aim of this paper was not to

compare the different voting procedures but, instead, showing a

correspondence between voting procedures and stochastic order-

ings. Determining which is the most suitable procedure for solving

voting problems seems to be closely related to the question of

which is the most suitable stochastic ordering for comparing

random variables: it depends on the available information and the

interpretation we are adopting. A conclusion is clear nevertheless:

both voting theory and the comparison of random variables build

upon some common concepts. 
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