26,307 research outputs found

    Outlier robust system identification: a Bayesian kernel-based approach

    Full text link
    In this paper, we propose an outlier-robust regularized kernel-based method for linear system identification. The unknown impulse response is modeled as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. To build robustness to outliers, we model the measurement noise as realizations of independent Laplacian random variables. The identification problem is cast in a Bayesian framework, and solved by a new Markov Chain Monte Carlo (MCMC) scheme. In particular, exploiting the representation of the Laplacian random variables as scale mixtures of Gaussians, we design a Gibbs sampler which quickly converges to the target distribution. Numerical simulations show a substantial improvement in the accuracy of the estimates over state-of-the-art kernel-based methods.Comment: 5 figure

    Making Consensus Tractable

    Get PDF
    We study a model of consensus decision making, in which a finite group of Bayesian agents has to choose between one of two courses of action. Each member of the group has a private and independent signal at his or her disposal, giving some indication as to which action is optimal. To come to a common decision, the participants perform repeated rounds of voting. In each round, each agent casts a vote in favor of one of the two courses of action, reflecting his or her current belief, and observes the votes of the rest. We provide an efficient algorithm for the calculation the agents have to perform, and show that consensus is always reached and that the probability of reaching a wrong decision decays exponentially with the number of agents.Comment: 18 pages. To appear in Transactions on Economics and Computatio

    Consensus Message Passing for Layered Graphical Models

    Full text link
    Generative models provide a powerful framework for probabilistic reasoning. However, in many domains their use has been hampered by the practical difficulties of inference. This is particularly the case in computer vision, where models of the imaging process tend to be large, loopy and layered. For this reason bottom-up conditional models have traditionally dominated in such domains. We find that widely-used, general-purpose message passing inference algorithms such as Expectation Propagation (EP) and Variational Message Passing (VMP) fail on the simplest of vision models. With these models in mind, we introduce a modification to message passing that learns to exploit their layered structure by passing 'consensus' messages that guide inference towards good solutions. Experiments on a variety of problems show that the proposed technique leads to significantly more accurate inference results, not only when compared to standard EP and VMP, but also when compared to competitive bottom-up conditional models.Comment: Appearing in Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS) 201

    Constant Step Size Stochastic Gradient Descent for Probabilistic Modeling

    Get PDF
    Stochastic gradient methods enable learning probabilistic models from large amounts of data. While large step-sizes (learning rates) have shown to be best for least-squares (e.g., Gaussian noise) once combined with parameter averaging, these are not leading to convergent algorithms in general. In this paper, we consider generalized linear models, that is, conditional models based on exponential families. We propose averaging moment parameters instead of natural parameters for constant-step-size stochastic gradient descent. For finite-dimensional models, we show that this can sometimes (and surprisingly) lead to better predictions than the best linear model. For infinite-dimensional models, we show that it always converges to optimal predictions, while averaging natural parameters never does. We illustrate our findings with simulations on synthetic data and classical benchmarks with many observations.Comment: Published in Proc. UAI 2018, was accepted as oral presentation Camera read

    Voting with preferences over margins of victory

    Get PDF
    This paper analyzes a two-alternative voting model with the distinctive feature that voters have preferences over margins of victory. We study voting contests with a finite as well as an infinite number of voters, and with and without mandatory voting. The main result of the paper is the existence and characterization of a unique equilibrium outcome in all those situations. At equilibrium, voters who prefer a larger support for one of the alternatives vote for such alternative. The model also provides a formal argument for the conditional sincerity voting condition in Alesina and Rosenthal (1995) and the benefit of voting function in Llavador (2006). Finally, we offer new insights on explaining why some citizens may vote strategically for an alternative different from the one declared as the most preferred.Margin of victory, plurality, abstention, strategic voting, committee voting, elections

    Structural graph matching using the EM algorithm and singular value decomposition

    Get PDF
    This paper describes an efficient algorithm for inexact graph matching. The method is purely structural, that is, it uses only the edge or connectivity structure of the graph and does not draw on node or edge attributes. We make two contributions: 1) commencing from a probability distribution for matching errors, we show how the problem of graph matching can be posed as maximum-likelihood estimation using the apparatus of the EM algorithm; and 2) we cast the recovery of correspondence matches between the graph nodes in a matrix framework. This allows one to efficiently recover correspondence matches using the singular value decomposition. We experiment with the method on both real-world and synthetic data. Here, we demonstrate that the method offers comparable performance to more computationally demanding method

    A Bayesian Approach to Discovering Truth from Conflicting Sources for Data Integration

    Full text link
    In practical data integration systems, it is common for the data sources being integrated to provide conflicting information about the same entity. Consequently, a major challenge for data integration is to derive the most complete and accurate integrated records from diverse and sometimes conflicting sources. We term this challenge the truth finding problem. We observe that some sources are generally more reliable than others, and therefore a good model of source quality is the key to solving the truth finding problem. In this work, we propose a probabilistic graphical model that can automatically infer true records and source quality without any supervision. In contrast to previous methods, our principled approach leverages a generative process of two types of errors (false positive and false negative) by modeling two different aspects of source quality. In so doing, ours is also the first approach designed to merge multi-valued attribute types. Our method is scalable, due to an efficient sampling-based inference algorithm that needs very few iterations in practice and enjoys linear time complexity, with an even faster incremental variant. Experiments on two real world datasets show that our new method outperforms existing state-of-the-art approaches to the truth finding problem.Comment: VLDB201

    A new kernel-based approach to system identification with quantized output data

    Full text link
    In this paper we introduce a novel method for linear system identification with quantized output data. We model the impulse response as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. This serves as a starting point to cast our system identification problem into a Bayesian framework. We employ Markov Chain Monte Carlo methods to provide an estimate of the system. In particular, we design two methods based on the so-called Gibbs sampler that allow also to estimate the kernel hyperparameters by marginal likelihood maximization via the expectation-maximization method. Numerical simulations show the effectiveness of the proposed scheme, as compared to the state-of-the-art kernel-based methods when these are employed in system identification with quantized data.Comment: 10 pages, 4 figure
    • …
    corecore