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Abstract

Stochastic gradient methods enable learning
probabilistic models from large amounts of
data. While large step-sizes (learning rates)
have shown to be best for least-squares (e.g.,
Gaussian noise) once combined with param-
eter averaging, these are not leading to con-
vergent algorithms in general. In this pa-
per, we consider generalized linear models,
that is, conditional models based on exponen-
tial families. We propose averaging moment
parameters instead of natural parameters for
constant-step-size stochastic gradient descent.
For finite-dimensional models, we show that
this can sometimes (and surprisingly) lead to
better predictions than the best linear model.
For infinite-dimensional models, we show that
it always converges to optimal predictions,
while averaging natural parameters never does.
We illustrate our findings with simulations on
synthetic data and classical benchmarks with
many observations.

1 INTRODUCTION

Faced with large amounts of data, efficient parameter es-
timation remains one of the key bottlenecks in the ap-
plication of probabilistic models. Once cast as an op-
timization problem, for example through the maximum
likelihood principle, difficulties may arise from the size
of the model, the number of observations, or the poten-
tial non-convexity of the objective functions, and often
all three (Koller and Friedman, 2009; Murphy, 2012).

In this paper we focus primarily on situations where the
number of observations is large; in this context, stochas-
tic gradient descent (SGD) methods which look at one
sample at a time are usually favored for their cheap iter-

ation cost. However, finding the correct step-size (some-
times referred to as the learning rate) remains a practi-
cal and theoretical challenge, for probabilistic modeling
but also in most other situations beyond maximum like-
lihood (Bottou et al., 2016).

In order to preserve convergence, the step size γn at the
n-th iteration typically has to decay with the number of
gradient steps (here equal to the number of data points
which are processed), typically as C/nα for α ∈ [1/2, 1]
(see, e.g., Bach and Moulines, 2011; Bottou et al., 2016).
However, these often leads to slow convergence and the
choice of α and C is difficult in practice. More re-
cently, constant step-sizes have been advocated for their
fast convergence towards a neighborhood of the optimal
solution (Bach and Moulines, 2013), while it is a stan-
dard practice in many areas (Goodfellow et al., 2016).
However, it is not convergent in general and thus small
step-sizes are still needed to converge to a decent estima-
tor.

Constant step-sizes can however be made to converge
in one situation. When the functions to optimize are
quadratic, like for least-squares regression, using a con-
stant step-size combined with an averaging of all estima-
tors along the algorithm can be shown to converge to the
global solution with the optimal convergence rates (Bach
and Moulines, 2013; Dieuleveut and Bach, 2016).

The goal of this paper is to explore the possibility of such
global convergence with a constant step-size in the con-
text of probabilistic modeling with exponential families,
e.g., for logistic regression or Poisson regression (Mc-
Cullagh, 1984). This would lead to the possibility of
using probabilistic models (thus with a principled quan-
tification of uncertainty) with rapidly converging algo-
rithms. Our main novel idea is to replace the averag-
ing of the natural parameters of the exponential family
by the averaging of the moment parameters, which can
also be formulated as averaging predictions instead of
estimators. For example, in the context of predicting bi-
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Figure 1: Convergence of iterates θn and averaged it-
erates θ̄n to the mean θ̄γ under the stationary distribu-
tion πγ .

nary outcomes in {0, 1} through a Bernoulli distribution,
the moment parameter is the probability p ∈ [0, 1] that
the variable is equal to one, while the natural parameter
is the “log odds ratio” log p

1−p , which is unconstrained.
This lack of constraint is often seen as a benefit for op-
timization; it turns out that for stochastic gradient meth-
ods, the moment parameter is better suited to averaging.
Note that for least-squares, which corresponds to mod-
eling with the Gaussian distribution with fixed variance,
moment and natural parameters are equal, so it does not
make a difference.

More precisely, our main contributions are:

• For generalized linear models, we propose in Sec-
tion 4 averaging moment parameters instead of
natural parameters for constant-step-size stochastic
gradient descent.

• For finite-dimensional models, we show in Sec-
tion 5 that this can sometimes (and surprisingly)
lead to better predictions than the best linear model.

• For infinite-dimensional models, we show in Sec-
tion 6 that it always converges to optimal pre-
dictions, while averaging natural parameters never
does.

• We illustrate our findings in Section 7 with simu-
lations on synthetic data and classical benchmarks
with many observations.

2 CONSTANT STEP SIZE
STOCHASTIC GRADIENT DESCENT

In this section, we present the main intuitions behind
stochastic gradient descent (SGD) with constant step-
size. For more details, see Dieuleveut et al. (2017). We

consider a real-valued function F defined on the Eu-
clidean space Rd (this can be generalized to any Hilbert
space, as done in Section 6 when considering Gaussian
processes and positive-definite kernels), and a sequence
of random functions (fn)n>1 which are independent and
identically distributed and such that Efn(θ) = F (θ) for
all θ ∈ Rd. Typically, F will the expected negative log-
likelihood on unseen data, while fn will be the negative
log-likelihood for a single observation. Since we require
independent random functions, we assume that we make
single pass over the data, and thus the number of itera-
tions is equal to the number of observations.

Starting from an initial θ0 ∈ Rd, then SGD will perform
the following recursion, from n = 1 to the total number
of observations:

θn = θn−1 − γn∇fn(θn−1). (1)

Since the functions fn are independent, the iterates (θn)n
form a Markov chain. When the step-size γn is con-
stant (equal to γ) and the functions fn are identically
distributed, the Markov chain is homogeneous. Thus,
under additional assumptions (see, e.g., Dieuleveut et al.,
2017; Meyn and Tweedie, 1993), it converges in distribu-
tion to a stationary distribution, which we refer to as πγ .
These additional assumptions include that γ is not too
large (otherwise the algorithm diverges) and in the tra-
ditional analysis of step-sizes for gradient descent tech-
niques, we analyze the situation of small γ’s (and thus
perform asymptotic expansions around γ = 0).

The distribution πγ is in general not equal to a Dirac
mass, and thus, constant-step-size SGD is not conver-
gent. However, averaging along the path of the Markov
chain has some interesting properties. Indeed, several
versions of the “ergodic theorem” (see, e.g., Meyn and
Tweedie, 1993) show that for functions g from Rd to any
vector space, then the empirical average 1

n

∑n
i=1 g(θi)

converges in probability to the expectation
∫
g(θ)dπγ(θ)

of g under the stationary distribution πγ . This conver-
gence can also be quantified by a central limit theorem
with an error whichs tends to a normal distribution with
variance proportional equal to a constant times 1/n.

Thus, if denote θ̄n = 1
n+1

∑n
i=0 θi, applying the previ-

ous result to the identity function g, we immediately ob-
tain that θ̄n converges to θ̄γ =

∫
θdπγ(θ), with a squared

error converging inO(1/n). The key question is the rela-
tionship between θ̄γ and the global optimizer θ∗ of F , as
this characterizes the performance of the algorithm with
an infinite number of observations.

By taking expectations in Eq. (1), and taking a limit
with n tending to infinity we obtain that∫

∇F (θ)dπγ(θ) = 0, (2)



that is, under the stationary distribution πγ , the aver-
age gradient is zero. When the gradient is a linear
function (like for a quadratic objective F ), this leads to
∇F (

∫
θdπγ(θ)) = ∇F (θ̄γ) = 0, and thus θ̄γ is a sta-

tionary point of F (and hence the global minimizer if F
is convex). However this is not true in general.

As shown by Dieuleveut et al. (2017), the deviation
θ̄γ − θ∗ is of order γ, which is an improvement on
the non-averaged recursion, which is at average distance
O(γ1/2) (see an illustration in Figure 1); thus, small or
decaying step-sizes are needed. In this paper, we ex-
plore alternatives which are not averaging the estimators
θ1, . . . , θn, and rely instead on the specific structure of
our cost functions, namely negative log-likelihoods.

3 WARM-UP: EXPONENTIAL
FAMILIES

In order to highlight the benefits of averaging moment
parameters, we first consider unconditional exponential
families. We thus consider the standard exponential fam-
ily q(x|θ) = h(x) exp(θ>T (x) − A(θ)), where h(x) is
the base measure, T (x) ∈ Rd is the sufficient statis-
tics and A the log-partition function. The function A
is always convex (see, e.g., Koller and Friedman, 2009;
Murphy, 2012). Note that we do not assume that the
data distribution p(x) comes from this exponential fam-
ily. The expected (with respect to the input distribution
p(x)) negative log-likelihood is equal to

F (θ) = −Ep(x) log q(x|θ)
= A(θ)− θ>Ep(x)T (x)− Ep(x) log h(x).

It is known to be minimized by θ∗ such that ∇A(θ∗) =
Ep(x)T (x). Given i.i.d. data (xn)n>1 sampled from
p(x), then the SGD recursion from Eq. (1) becomes:

θn = θn−1 − γ
[
∇A(θn−1)− T (xn)

]
,

while the stationarity equation in Eq. (2) becomes∫ [
∇A(θ)− Ep(x)T (x)]dπγ(θ) = 0,

which leads to∫
∇A(θ)dπγ(θ) = Ep(x)T (x) = ∇A(θ∗).

Thus, averaging∇A(θn) will converge to∇A(θ∗), while
averaging θn will not converge to θ∗. This simple obser-
vation is the basis of our work.

Note that in this context of unconditional models, a sim-
pler estimator exists, that is, we can simply compute the

empirical average 1
n

∑n
i=1 T (xi) that will converge to

∇A(θ∗). Nevertheless, this shows that averaging mo-
ment parameters∇A(θ) rather than natural parameters θ
can bring convergence benefits. We now turn to condi-
tional models, for which no closed-form solutions exist.

4 CONDITIONAL EXPONENTIAL
FAMILIES

Now we consider the conditional exponential family
q(y|x, θ) = h(y) exp

(
y·ηθ(x)−a(ηθ(x))

)
. For simplic-

ity we consider only one-dimensional families where y ∈
R—but our framework would also extend to more com-
plex models such as conditional random fields (Lafferty
et al., 2001). We will also assume that h(y) = 1 for all y
to avoid carrying constant terms in log-likelihoods. We
consider functions of the form ηθ(x) = θ>Φ(x), which
are linear in a feature vector Φ(x), where Φ : X → Rd
can be defined on an arbitrary input set X. Calculating
the negative log-likelihood, one obtains:

fn(θ) = − log q(yn|xnθ) = −ynΦ(xn)>θ+a
(
Φ(xn)θ

)
,

and, for any distribution p(x, y), for which p(y|x) may
not be a member of the conditional exponential family,

F (θ) = Ep(xn,yn)fn(θ)

= Ep(xn,yn)
[
− ynΦ(xn)>θ + a

(
Φ(xn)θ

)]
.

The goal of estimation in such generalized linear models
is to find an unknown parameter θ given n observations
(xi, yi)i=1,...,n:

θ∗ = arg min
θ∈Rd

F (θ). (3)

4.1 FROM ESTIMATORS TO PREDICTION
FUNCTIONS

Another point of view is to consider that an estima-
tor θ ∈ Rd in fact defines a function η : X → R,
with value a natural parameter for the exponential family
q(y) = exp(ηy − a(η)). This particular choice of func-
tion ηθ is linear in Φ(x), and we have, by decomposing
the joint probability p(xn, yn) in two (and dropping the
dependence on n since we have assumed i.i.d. data):

F (θ) = Ep(x)
(
Ep(y|x)

[
− yΦ(x)>θ + a(Φ(x)>θ)

])
= Ep(x)

(
− Ep(y|x)yΦ(x)>θ + a(Φ(x)>θ)

)
= F(ηθ),

with F(η) = Ep(x)
(
− Ep(y|x)y · η(x) + a(η(x))

)
is the

performance measure defined for a function η : X → R.
By definition F (θ) = F(ηθ) = F(θ>Φ(·)).



Figure 2: Graphical representation of reparametrization:
firstly we expand the class of functions, replacing pa-
rameter θ with function η(·) = Φ>(·)θ and then we do
one more reparametrization: µ(·) = a′(η(·)). Best linear
prediction µ∗ is constructed using θ∗ and the global min-
imizer of G is µ∗∗. Model is well-specified if and only if
µ∗ = µ∗∗.

However, the global minimizer of F(η) over all functions
η : X → R may not be attained at a linear function
in Φ(x) (this can only be the case if the linear model
is well-specified or if the feature vector Φ(x) is flexi-
ble enough). Indeed, the global minimizer of F is the
function η∗∗ : x 7→ (a′)−1(Ep(y|x)y) (starting from
F(η) =

∫ [
a(η(x)) − Ep(x|y)y · η(x)

]
p(x)dx and writ-

ing down the Euler - Lagrange equation: ∂F∂η −
d
dx

∂F
∂η′ =

0 ⇔
[
a′(η) − Ep(x|y)y

]
p(x) = 0 and finally η 7→

(a′)−1(Ep(x|y)y)) and is typically not a linear function
in Φ(x) (note here that p(y|x) is the conditional data-
generating distribution).

The function η corresponds to the natural parameter of
the exponential family, and it is often more intuitive to
consider the moment parameter, that is defining func-
tions µ : X → R that now correspond to moments of
outputs y; we will refer to them as prediction functions.
Going from natural to moment parameter is known to
be done through the gradient of the log-partition func-
tion, and we thus consider for η a function from X to R,
µ(·) = a′(η(·)), and this leads to the performance mea-
sure

G(µ) = F((a′)−1(µ(·))).

Note now, that the global minimum of G is reached at

µ∗∗(x) = Ep(y|x)y.

We introduce also the prediction function µ∗(x) corre-
sponding to the best η which is linear in Φ(x), that is:

µ∗(x) = a′
(
θ>∗ Φ(x)

)
.

We say that the model is well-specified when µ∗ = µ∗∗,
and for these models, infθ F (θ) = infµ G(µ). How-
ever, in general, we only have infθ F (θ) > infµ G(µ)

and (very often) the inequality is strict (see examples in
our simulations).

To make the further developments more concrete, we
now present two classical examples: logistic regression
and Poisson regression.

Logistic regression. The special case of conditional
family is logistic regression, where y ∈ {0, 1}, a(t) =
log(1 + e−t) and a′(t) = σ(t) = 1

1+e−t is the sigmoid
function and the probability mass function is given by
p(y|η) = exp(ηy − log(1 + eη)).

Poisson regression. One more special case is Poisson
regression with y ∈ N, a(t) = exp(t) and the response
variable y has a Poisson distribution. The probability
mass function is given by p(y|η) = exp(ηy − eη −
log(y!)). Poisson regression may be appropriate when
the dependent variable is a count, for example in ge-
nomics, network packet analysis, crime rate analysis, flu-
orescence microscopy, etc. (Hilbe, 2011).

4.2 AVERAGING PREDICTIONS

Recall from Section 2 that πγ is the stationary distribu-
tion of θ. Taking expectation of both parts of Eq. (1), we
get, by using the fact that πγ is the limiting distribution
of θn and θn−1:

Eπγ(θn)θn
= Eπγ(θn−1)θn−1 − γEπγ(θn−1)Ep(xn,yn)f

′
n(θn−1),

which leads to Eπγ(θ)Ep(xn,yn)∇fn(θ) = 0, that is, now
removing the dependence on n (data (x, y) are i.i.d.):

Eπγ(θ)Ep(x,y)
[
− yΦ(x) + a′

(
Φ(x)>θ

)
Φ(x)

]
= 0,

which finally leads to

Ep(x)
[
Eπγ(θ)a

′(Φ(x)>θ
)
− µ∗∗(x)

]
Φ(x) = 0. (4)

This is the core equation our method relies on. It does
not imply that b(x) = Eπγ(θ)a′

(
Φ(x)>θ

)
− µ∗∗(x) is

uniformly equal to zero (which we want), but only that
Ep(x)Φ(x)b(x) = 0, i.e., b(x) is uncorrelated with Φ(x).

If the feature vector Φ(x) is “large enough” then this is
equivalent to b = 0.1

1Let Φ(x) = (φ1(x), . . . , φn(x))> be an orthogonal ba-
sis and b(x) =

∑n
i=1 ciφi(x) + ε(x), where ε(x) is small

if the basis is big enough. Then Ep(x)Φ(x)b(x) = 0 ⇔
Eφi(x)

[∑n
i=1 ciφi(x) + ε(x)

]
= 0 for every i, and due

to the orthogonality of the basis and the smallness of ε(x):
ci · Ep(x)φ

2(x) ≈ 0 and hence ci ≈ 0 and thus b(x) ≈ 0.



For example, when Φ(x) is composed of an orthonormal
basis of the space of integrable functions (like for ker-
nels in Section 6), then this is exactly true. Thus, in this
situation,

µ∗∗(x) = Eπγ(θ)a
′(Φ(x)>θ

)
, (5)

and averaging predictions a′
(
Φ(x)>θn

)
, along the path

(θn) of the Markov chain should exactly converge to the
optimal prediction.

This exact convergence is weaker (requires high-
dimensional fatures) than for the unconditional family in
Section 3 but it can still bring surprising benefits even
when Φ is not large enough, as we present in Section 5
and Section 6.

4.3 TWO TYPES OF AVERAGING

Now we can introduce two possible ways to estimate the
prediction function µ(x).

Averaging estimators. The first one is the usual way:
we first estimate parameter θ, using Ruppert-Polyak av-
eraging (Polyak and Juditsky, 1992): θ̄n = 1

n+1

∑n
i=0 θi

and then we denote

µ̄n(x) = a′(Φ(x)>θ̄n) = a′
(

Φ(x)> 1
n+1

∑n
i=0 θi

)
the corresponding prediction. As discussed in Section 2
it converges to µ̄γ : x 7→ a′(Φ(x)>θ̄γ), which is not
equal to in general to a′(Φ(x)>θ∗), where θ∗ is the op-
timal parameter in Rd. Since, as presented at the end of
Section 2, θ̄γ − θ∗ is of order O(γ), F (θ̄γ)−F (θ∗) is of
order O(γ2) (because∇F (θ∗) = 0), and thus an error of
O(γ2) is added to the usual convergence rates inO(1/n).

Note that we are limited here to prediction functions
which corresponds to linear functions in Φ(x) in the nat-
ural parameterization, and thus F (θ∗) > G(µ∗∗), and the
inequality is often strict.

Averaging predictions. We propose a new estimator

¯̄µn(x) =
1

n+ 1

n∑
i=0

a′(θ>i Φ(x)).

In general G(¯̄µn) − G(µ∗∗) does not converge to zero
either (unless the feature vector Φ is large enough and
Eq. (5) is satisfied). Thus, on top of the usual conver-
gence inO(1/n) with respect to the number of iterations,
we have an extra term that depends only on γ, which we
will study in Section 5 and Section 6.

We denote by ¯̄µγ(x) the limit when n → ∞, that is,
using properties of converging Markov chains, ¯̄µγ(x) =
Eπγ(θ)a′

(
Φ(x)>θ

)
.

Rewriting Eq. (4) using our new notations, we get:

E
[
(µ∗∗(x)− ¯̄µγ(x))Φ(xn)

]
= 0.

When Φ : R → Rd is high-dimensional, this leads to
µ∗∗ = ¯̄µγ and in contrast to µ̄γ , averaging predictions
potentially converge to the optimal prediction.

Computational complexity. Usual averaging of esti-
mators (Polyak and Juditsky, 1992) to compute µ̄n(x) =
a′(Φ(x)>θ̄n) is simple to implement as we can sim-
ply update the average θ̄n with essentially no extra cost
on top the complexity O(nd) of the SGD recursion.
Given the number n of training data points and the num-
ber m of testing data points, the overall complexity is
O(d(n+m)).

Averaging prediction functions is more challenging
as we have to store all iterates θi, i = 1, . . . , n,
and for each testing point x, compute ¯̄µn(x) =
1

n+1

∑n
i=0 a

′(θ>i Φ(x)). Thus the overall complexity is
O(dn+mnd), which could be too costly with many test
points (i.e., m large).

There are several ways to alleviate this extra cost: (a)
using sketching techniques (Woodruff et al., 2014), (b)
using summary statistics like done in applications of
MCMC (Gilks et al., 1995), or (c) leveraging the fact that
all iterates θi will end up being close to θ̄γ and use a Tay-
lor expansion of a′

(
θ>Φ(x)

)
around θ̄γ . This expansion

is equal to:

a′
(
Φ(x)>θγ

)
+ (θ − θγ)>Φ(x) · a′′

(
Φ(x)>θγ

)
+

+
1

2

(
(θ− θγ)>Φ(x)

)2 ·a′′′(Φ(x)>θγ
)

+O
(
‖θ− θγ‖3

)
.

Taking expectation in both sides above leads to:

¯̄µγ(x) ≈ µ̄γ(x) +
1

2
Φ(x)>cov (θ) ·Φ(x) ·a′′′

(
θ
>
γ Φ(x)

)
,

where cov (θ) is the covariance matrix of θ under πγ .
This provides a simple correction to µ̄γ , and leads to an
approximation of ¯̄µn(x) as

µ̄n(x) +
1

2
Φ(x)>covn(θ) Φ(x) · a′′′

(
θ
>
nΦ(x)

)
,

where covn(θ) is the empirical covariance matrix of the
iterates (θi).

The computational complexity now becomes O(nd2 +
md2), which is an improvement when the number of test-
ing points m is large. In all of our experiments, we used
this approximation.



5 FINITE-DIMENSIONAL MODELS

In this section we study the behavior of ¯̄A(γ) = G(¯̄µγ)−
G(µ∗) for finite-dimensional models, for which it is usu-
ally not equal to zero. We know that our estimators
¯̄µn will converge to ¯̄µγ , and our goal is to compare it
to Ā(γ) = G(µ̄γ) − G(µ∗) = F (θ̄γ) − F (θ∗) which
is what averaging estimators tends to. We also con-
sider for completeness the non-averaged performance
A(γ) = Eπγ(θ)

[
F (θ)− F (θ∗)

]
.

Note that we must have A(γ) and Ā(γ) non-negative,
because we compare the negative log-likelihood perfor-
mances to the one of of the best linear prediction (in the
natural parameter), while ¯̄A(γ) could potentially be neg-
ative (it will in certain situations), because the the corre-
sponding natural parameters may not be linear in Φ(x).

We consider the same standard assumptions
as Dieuleveut et al. (2017), namely smoothness of
the negative log-likelihoods fn(θ) and strong convexity
of the expected negative log-likelihood F (θ). We first
recall the results from Dieuleveut et al. (2017). See
detailed explicit formulas in the supplementary material.

5.1 EARLIER WORK

Without averaging. We have that A(γ) = γB +
O(γ3/2), that is γ is linear in γ, with B non-negative.

Averaging estimators. We have that Ā(γ) = γ2B̄ +
O(γ5/2), that is Ā is quadratic in γ, with B̄ non-
negative. Averaging does provably bring some benefits
because the order in γ is higher (we assume γ small).

5.2 AVERAGING PREDICTIONS

We are now ready to analyze the behavior of our new
framework of averaging predictions. The following re-
sult is shown in the supplementary material.

Proposition 1 Under the assumptions on the negative
loglikelihoods fn of each observation from Dieuleveut
et al. (2017):

• In the case of well-specified data, that is, there exists
θ∗ such that for all (x, y), p(y|x) = q(y|x, θ∗), then
¯̄A ∼ γ2 ¯̄Bwell, where ¯̄Bwell is a positive constant.

• In the general case of potentially mis-specified data,
¯̄A = γ ¯̄Bmis +O(γ2), where ¯̄Bmis is constant which

may be positive or negative.

Note, that in contrast to averaging parameters, the con-
stant ¯̄Bmis can be negative. It means, that we obtain the

estimator better than the optimal linear estimator, which
is the limit of capacity for averaging parameters. In our
simulations, we show examples for which ¯̄Bmis is pos-
itive, and examples for which it is negative. Thus, in
general, for low-dimensional models, averaging predic-
tions can be worse or better than averaging parameters.
However, as we show in the next section, for infinite di-
mensional models, we always get convergence.

6 INFINITE-DIMENSIONAL MODELS

Recall, that we have the following objective function to
minimize:

F (θ) = Ex,y
[
− y · ηθ(x) + a

(
ηθ(x)

)]
, (6)

where till this moment we consider unknown functions
ηθ(x) which were linear in Φ(x) with Φ(x) ∈ Rd, lead-
ing to a complexity in O(dn).

We now consider infinite-dimensional features, by con-
sidering that Φ(x) ∈ H, where H is a Hilbert space.
Note that this corresponds to modeling the function ηθ
as a Gaussian process (Rasmussen and Williams, 2006).

This is computationally feasible through the usual “ker-
nel trick” (Scholkopf and Smola, 2001; Shawe-Taylor
and Cristianini, 2004), where we assume that the kernel
function k(x, y) = 〈Φ(x),Φ(y)〉 is easy to compute. In-
deed, following Bordes et al. (2005) and Dieuleveut and
Bach (2016), starting from θ0, each iterate of constant-
step-size SGD is of the form θn =

∑n
t=1 αtΦ(xt),

and the gradient descent recursion θn = θn−1 −
γ[a′(ηθn−1

(xn)) − yn]Φ(xn) leads to the following re-
cursion on αt’s:

αn = −γ
[
a′
(∑n−1

t=1 αt〈Φ(xt),Φ(xn)〉
)
− yn

]
= −γ

[
a′
(∑n−1

t=1 αtk(xt, xn)
)
− yn

]
.

This leads to ηθn(x) = 〈Φ(x), θn〉 and µθn(x) =
a′
(
ηθn(x)

)
with

ηθn(x) =

n∑
t=1

αt〈Φ(x),Φ(xt)〉 =

n∑
t=1

αtk(x, xt),

and finally we can express ¯̄µn(x) in kernel form as:

¯̄µn(x) =
1

n+ 1

n∑
t=0

a′
[ t∑
l=1

αl · k(x, xl)
]
.

There is also a straightforward estimator for averaging

parameters, i.e., µ̄n(x) = a′
(

1
n+1

n∑
t=0

t∑
l=1

αlk(x, xl)
)
. If

we assume that the kernel function is universal, that is, H



is dense in the space of squared integrable functions, then
it is known that if Exb(x)Φ(x) = 0, then b = 0 (Sripe-
rumbudur et al., 2008). This implies that we must have
¯̄µγ = 0 and thus averaging predictions does always con-
verge to the global optimum (note that in this setting, we
must have a well-specified model because we are in a
non-parametric setting).

Column sampling. Because of the usual high running-
time complexity of kernel method in O(n2), we con-
sider a “column-sampling approximation” (Williams
and Seeger, 2001). We thus choose a small sub-
set I = (x1, . . . , xm) of samples and construct
a new finite m-dimensional feature map Φ̄(x) =
K(I, I)−1/2K(I, x) ∈ Rm, whereK(I, I) is them×m
kernel matrix of the m points and K(I, x) the vector
composed of kernel evaluations k(xi, x). This allows
a running-time complexity in O(m2n). In theory and
practice, m can be chosen small (Bach, 2013; Rudi et al.,
2017).

Regularized learning with kernels. Although we can
use an unregularized recursion with good convergence
properties (Dieuleveut and Bach, 2016), adding a reg-
ularisation by the squared Hilbertian norm is easier to
analyze and more stable with limited amounts of data.
We thus consider the recursion (in Hilbert space), with λ
small:

θn = θn−1 − γ
[
f ′n(θn−1) + λθn−1

]
= θn−1 + γ(yn − a′(〈Φ(xn), θ〉))Φ(xn)− γλθn−1.

This recursion can also be computed efficiently as above
using the kernel trick and column sampling approxima-
tions.

In terms of convergence, the best we can hope for is
to converge to the minimizer θ∗,λ of the regularized ex-
pected negative log-likelihood F (θ) + λ

2 ‖θ‖
2 (which we

assume to exist). When λ tends to zero, then θ∗,λ con-
verges to θ∗.

Averaging parameters will tend to a limit θ̄γ,λ which is
O(γ)-close to θ∗,λ, thus leading to predictions which de-
viate from the optimal predictions for two reasons: be-
cause of regularization and because of the constant step-
size. Since λ should decrease as we get more data, the
first effect will vanish, while the second will not.

When averaging predictions, the two effects will vanish
as λ tends to zero. Indeed, by taking limits of the gradient
equation, and denoting by ¯̄µγ,λ the limit of ¯̄µn, we have

E
[
(µ∗∗(x)− ¯̄µγ,λ(x))Φ(x)

]
= λθ̄γ,λ. (7)

Given that θ̄γ,λ is O(γ)-away from θ∗, if we assume that

θ∗ corresponds to a sufficiently regular2 element of the
Hilbert space H, then the L2-norm of the deviation sat-
isfies ‖µ∗∗(x) − ¯̄µγ,λ‖ = O(λ) and thus as the regular-
ization parameter λ tends to zero, our predictions tend to
the optimal one.

7 EXPERIMENTS

In this section, we compare the two types of averag-
ing (estimators and predictions) on a variety of prob-
lems, both on synthetic data and on standard bench-
marks. When averaging predictions, we always consider
the Taylor expansion approximation presented at the end
of Section 4.3.

7.1 SYNTHETIC DATA

Finite-dimensional models. we consider the follow-
ing logistic regression model:

q(y|x, θ) = exp
(
y · ηθ(x)− a(ηθ(x))

)
,

where we consider a linear model ηθ(x) = θ>x in x
(i.e., Φ(x) = x), the link function a(t) = log(1+et) and
a′(t) = σ(t) is the sigmoid function. Let x be distributed
as a standard normal random variable in dimension d =
2, y ∈ {0, 1} and P(y = 1|x) = µ∗∗(x) = σ

(
η∗∗(x)

)
,

where we consider two different settings:

• Model 1: η∗∗(x) = sinx1 + sinx2,

• Model 2: η∗∗(x) = x31 + x32.

The global minimum F∗∗ of the corresponding optimiza-
tion problem can be found as

F∗∗ = Ep(x)
[
− µ∗∗(x) · η∗∗(x) + a(η∗∗(x))

]
.

We also introduce the performance measure F(η)

F(η) = Ep(x)
[
− µ∗∗(x) · η(x) + a(η(x))

]
, (8)

which can be evaluated directly in the case of synthetic
data. Note that in our situation, the model is misspeci-
fied because η∗∗(x) is not linear in Φ(x) = x, and thus,
infθ F (θ) > F∗∗, and thus our performance measures
F(µn)−F∗∗ for various estimators µn will not converge
to zero.

The results of averaging 10 replications are shown in
Fig. 3 and Fig. 4. We first observed that constant step-
size SGD without averaging leads to a bad performance.

2While our reasoning is informal here, it can be made more
precise by considering so-called “source conditions” com-
monly used in the analysis of kernel methods (Caponnetto and
De Vito, 2007), but this is out of the scope of this paper.
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Figure 3: Synthetic data for linear model ηθ(x) = θ>x
and η∗∗(x) = sinx1 + sinx2. Excess prediction perfor-
mance vs. number of iterations (both in log-scale).
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Figure 4: Synthetic data for linear model ηθ(x) = θ>x
and η∗∗(x) = x31 + x32. Excess prediction performance
vs. number of iterations (both in log-scale).

Moreover, we can see, that in the first case (Fig. 3) aver-
aging predictions beats averaging parameters, and more-
over beats the best linear model: if we use the best linear
error F∗ instead of F∗∗, at some moment F(ηn) − F∗
becomes negative. However in the second case (Fig. 4),
averaging predictions is not superior to averaging param-
eters. Moreover, by looking at the final differences be-
tween performances with different values of γ, we can
see the dependency of the final performance in γ for aver-
aging predictions, instead of γ2 for averaging parameters
(as suggested by our theoretical results in Section 5). In
particular in Fig. 3, we can observe the surprising behav-
ior of a larger step-size leading to a better performance
(note that we cannot increase too much otherwise the al-
gorithm would diverge).
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Figure 5: Synthetic data for Laplacian kernel for
η∗∗(x) = 5

5+x>x
. Excess prediction performance vs.

number of iterations (both in log-scale).

Infinite-dimensional models Here we consider the
kernel setup described in Section 6. We consider Lapla-
cian kernels k(s, t) = exp

(‖s−t‖1
σ

)
with σ = 50, di-

mension d = 5 and generating log odds ratio η∗∗(x) =
5

5+x>x
. We also use a squared norm regularization with

several values of λ and column sampling with m = 100
points. We use the exact value of F∗∗ which we can com-
pute directly for synthetic data. The results are shown in
Fig. 5, where averaging predictions leads to a better per-
formance than averaging estimators.

7.2 REAL DATA

Note, that in the case of real data, one does not have ac-
cess to unknown µ∗∗(x) and computing the performance
measure in Eq. (8) is inapplicable. Instead of it we use
its sampled version on held out data:

F̂(η) = −
∑
i:yi=1

log
(
µ(xi)

)
−
∑
j:yj=0

log
(
1− µ(xi)

)
.

We use two datasets, with d not too large, and n large,
from (Lichman, 2013): the “MiniBooNE particle identi-
fication” dataset (d = 50, n = 130 064), the “Covertype”
dataset (d = 54, n = 581 012).

We use two different approaches for each of them: a
linear model ηθ(x) = θ>x and a kernel approach with
Laplacian kernel k(s, t) = exp

(‖s−t‖1
σ

)
, where σ = d.

The results are shown in Figures 6 to 9. Note, that for
linear models we use F̂∗–the estimator of the best per-
formance among linear models (learned on the test set,
and hence not reachable from learning on the training
data), and for kernels we use F̂∗∗ (same definition as F̂∗
but with the kernelized model), that is why graphs are
not comparable (but, as shown below, the value of F̂∗∗ is
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Figure 6: MiniBooNE dataset, dimension d = 50, linear
model. Excess prediction performance vs. number of
iterations (both in log-scale).
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Figure 7: MiniBooNE dataset, dimension d = 50, kernel
approach, column sampling m = 200. Excess prediction
performance vs. number of iterations (both in log-scale).

lower than the value of F̂∗ because using kernels corre-
spond to a larger feature space).

For the “MiniBooNE particle identification” dataset
F̂∗ = 0.35 and F̂∗∗ = 0.21; for the“Covertype” dataset
F̂∗ = 0.46 and F̂∗∗ = 0.39. We can see from the four
plots that, especially in the kernel setting, averaging pre-
dictions also shows better performance than averaging
parameters.

8 CONCLUSION

In this paper, we have explored how averaging proce-
dures in stochastic gradient descent, which are crucial for
fast convergence, could be improved by looking at the
specifics of probabilistic modeling. Namely, averaging
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Figure 8: CoverType dataset, dimension d = 54, linear
model. Excess prediction performance vs. number of
iterations (both in log-scale).

in the moment parameterization can have better proper-
ties than averaging in the natural parameterization.

While we have provided some theoretical arguments
(asymptotic expansion in the finite-dimensional case,
convergence to optimal predictions in the infinite-
dimensional case), a detailed theoretical analysis with
explicit convergence rates would provide a better under-
standing of the benefits of averaging predictions.
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