1,136 research outputs found

    Deployment and control of adaptive building facades for energy generation, thermal insulation, ventilation and daylighting: A review

    Get PDF
    A major objective in the design and operation of buildings is to maintain occupant comfort without incurring significant energy use. Particularly in narrower-plan buildings, the thermophysical properties and behaviour of their façades are often an important determinant of internal conditions. Building facades have been, and are being, developed to adapt their heat and mass transfer characteristics to changes in weather conditions, number of occupants and occupant’s requirements and preferences. Both the wall and window elements of a facade can be engineered to (i) harness solar energy for photovoltaic electricity generation, heating, inducing ventilation and daylighting (ii) provide varying levels of thermal insulation and (iii) store energy. As an adaptive façade may need to provide each attribute to differing extents at particular times, achieving their optimal performance requires effective control. This paper reviews key aspects of current and emerging adaptive façade technologies. These include (i) mechanisms and technologies used to regulate heat and mass transfer flows, daylight, electricity and heat generation (ii) effectiveness and responsiveness of adaptive façades, (iii) appropriate control algorithms for adaptive facades and (iv) sensor information required for façade adaptations to maintain desired occupants’ comfort levels while minimising the energy use

    Towards a generic optimal co-design of hardware architecture and control configuration for interacting subsystems

    Get PDF
    In plants consisting of multiple interacting subsystems, the decision on how to optimally select and place actuators and sensors and the accompanying question on how to control the overall plant is a challenging task. Since there is no theoretical framework describing the impact of sensor and actuator placement on performance, an optimization method exploring the possible configurations is introduced in this paper to find a trade-off between implementation cost and achievable performance. Moreover, a novel model-based procedure is presented to simultaneously co-design the optimal number, type and location of actuators and sensors and to determine the corresponding optimal control architecture and accompanying control parameters. This paper adds the optimization of the control architecture to the current state-of-the-art. As an optimization output, a Pareto front is presented, providing insights on the optimal total plant performance related to the hardware and control design implementation cost. The proposed algorithm is not focused on one particular application or a specific optimization problem, but is instead a generally applicable method and can be applied to a wide range of applications (e.g., mechatronic, electrical, thermal). In this paper, the co-design approach is validated on a mechanical setup

    Vibration Isolation Technology (VIT) ATD Project

    Get PDF
    A fundamental advantage for performing material processing and fluid physics experiments in an orbital environment is the reduction in gravity driven phenomena. However, experience with manned spacecraft such as the Space Transportation System (STS) has demonstrated a dynamic acceleration environment far from being characterized as a 'microgravity' platform. Vibrations and transient disturbances from crew motions, thruster firings, rotating machinery etc. can have detrimental effects on many proposed microgravity science experiments. These same disturbances are also to be expected on the future space station. The Microgravity Science and Applications Division (MSAD) of the Office of Life and Microgravity Sciences and Applications (OLMSA), NASA Headquarters recognized the need for addressing this fundamental issue. As a result an Advanced Technology Development (ATD) project was initiated in the area of Vibration Isolation Technology (VIT) to develop methodologies for meeting future microgravity science needs. The objective of the Vibration Isolation Technology ATD project was to provide technology for the isolation of microgravity science experiments by developing methods to maintain a predictable, well defined, well characterized, and reproducible low-gravity environment, consistent with the needs of the microgravity science community. Included implicitly in this objective was the goal of advising the science community and hardware developers of the fundamental need to address the importance of maintaining, and how to maintain, a microgravity environment. This document will summarize the accomplishments of the VIT ATD which is now completed. There were three specific thrusts involved in the ATD effort. An analytical effort was performed at the Marshall Space Flight Center to define the sensitivity of selected experiments to residual and dynamic accelerations. This effort was redirected about half way through the ATD focusing specifically on the sensitivity of protein crystals to a realistic orbital environment. The other two thrusts of the ATD were performed at the Lewis Research Center. The first was to develop technology in the area of reactionless mechanisms and robotics to support the eventual development of robotics for servicing microgravity science experiments. This activity was completed in 1990. The second was to develop vibration isolation and damping technology providing protection for sensitive science experiments. In conjunction with the this activity, two workshops were held. The results of these were summarized and are included in this report

    The Palomar Testbed Interferometer

    Get PDF
    The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in July 1995. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40-cm apertures can be combined pair-wise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 um and active delay lines with a range of +/- 38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.Comment: ApJ in Press (Jan 99) Fig 1 available from http://huey.jpl.nasa.gov/~bode/ptiPicture.html, revised duging copy edi

    application of artificial neural networks to the simulation of a dedicated outdoor air system doas

    Get PDF
    Abstract Tables of performance of installed HVAC (Heating, Ventilation and Air Conditioning) devices are important in the development of consistent building energy audits and appropriate control strategies. However, given the possible complexity of HVAC devices and the need for the deployment to computational environments, tables of performance should be passed in a more complete and flexible format, compared with the current practices in the HVAC sector. In such a context, this paper describes the phases of development and application of Artificial Neural Networks (ANNs) aimed at the assessment of the performance of a Dedicated Outdoor Air System (DOAS). ANNs are well renowned because of their applications in many important fields such as autonomous driving systems, speech recognition, etc. However, they may be used also to calculate the output of complex phenomena (like the ones involved in HVAC components) and are characterized by a very flexible and comprehensive formulation which would be able to adapt to any HVAC component or system. In the frame of this study, three ANNs have been developed and tested, for the full description of the performance of a DOAS. The developed ANNs were trained by means of data coming from a proprietary software. The achieved ANNs showed robust and reliable behavior and ensure high accuracy (mean absolute errors usually below 0.1 K on temperatures and 0.3% on capacity and power) and flexibility. Moreover, in some cases, they may be used also for the identification of anomalous data present among the sets of training and validation data

    Development of Motion Control Systems for Hydraulically Actuated Cranes with Hanging Loads

    Get PDF
    Automation has been used in industrial processes for several decades to increase efficiency and safety. Tasks that are either dull, dangerous, or dirty can often be performed by machines in a reliable manner. This may provide a reduced risk to human life, and will typically give a lower economic cost. Industrial robots are a prime example of this, and have seen extensive use in the automotive industry and manufacturing plants. While these machines have been employed in a wide variety of industries, heavy duty lifting and handling equipment such as hydraulic cranes have typically been manually operated. This provides an opportunity to investigate and develop control systems to push lifting equipment towards the same level of automation found in the aforementioned industries. The use of winches and hanging loads on cranes give a set of challenges not typically found on robots, which requires careful consideration of both the safety aspect and precision of the pendulum-like motion. Another difference from industrial robots is the type of actuation systems used. While robots use electric motors, the cranes discussed in this thesis use hydraulic cylinders. As such, the dynamics of the machines and the control system designmay differ significantly. In addition, hydraulic cranes may experience significant deflection when lifting heavy loads, arising from both structural flexibility and the compressibility of the hydraulic fluid. The work presented in this thesis focuses on motion control of hydraulically actuated cranes. Motion control is an important topic when developing automation systems, as moving from one position to another is a common requirement for automated lifting operations. A novel path controller operating in actuator space is developed, which takes advantage of the load-independent flow control valves typically found on hydraulically actuated cranes. By operating in actuator space the motion of each cylinder is inherently minimized. To counteract the pendulum-like motion of the hanging payload, a novel anti-swing controller is developed and experimentally verified. The anti-swing controller is able to suppress the motion from the hanging load to increase safety and precision. To tackle the challenges associated with the flexibility of the crane, a deflection compensator is developed and experimentally verified. The deflection compensator is able to counteract both the static deflection due to gravity and dynamic de ection due to motion. Further, the topic of adaptive feedforward control of pressure compensated cylinders has been investigated. A novel adaptive differential controller has been developed and experimentally verified, which adapts to system uncertainties in both directions of motion. Finally, the use of electro-hydrostatic actuators for motion control of cranes has been investigated using numerical time domain simulations. A novel concept is proposed and investigated using simulations.publishedVersio

    Model reference control for ultra-high precision positioning systems

    Get PDF
    Due to the increasing demands of high-density semiconductors, molecular biology, optoelectronics, and MEMS/NEMS in the past decades, control of ultra-high precision positioning using piezoelectricity has become an important area because of its high displacement resolution, wide bandwidth, low power consumption, and potential low cost. However, the relatively small displacement range limits its application. This work proposed a practical ultra-high precision piezoelectric positioning system with a complementary high displacement range actuation technology. Solenoids are low cost, high speed electromagnetic actuators which are commonly used in on-off mode only because of the inherent high nonlinear force-stroke characteristics and unipolar forces (push/pull) generated by the magnetic fields. In this work, an integrated positioning system based on a monolithic piezoelectric positioner and a set of push-pull dual solenoid actuators is designed for high speed and high precision positioning applications. The overall resolution can be sub-nanometer while the moving range is in millimeters, a three order of magnitude increase from using piezoelectric positioner alone. The dynamic models of the dual solenoid actuator and piezoelectric nanopositioner are derived. The main challenge of designing such positioning systems is to maintain the accuracy and stability in the presence of un-modeled dynamics, plant variations, and parasitic nonlinearities, specifically in this work, the friction and forcestroke nonlinearities of the dual solenoid actuator, and the friction, hysteresis and coupling effects of piezoelectric actuator, which are impossible to be modeled accurately and even time-varying. A model reference design approach is presented to attenuate linear as well as nonlinear uncertainties, with a fixed order controller augmenting a reference model that embeds the nominal dynamics of the plant. To improve transient characteristics, a Variable Model Reference Zero Vibration (VMRZV) control is also proposed to stabilize the system and attenuate the adverse effect of parasitic nonlinearities of micro-/nano- positioning actuators and command-induced vibrations. The speed of the ultra-high precision system with VMRZV control can also be quantitatively adjusted by systematically varying the reference model. This novel control method improves the robustness and performance significantly. Preliminary experimental data on dual solenoid system confirm the feasibility of the proposed method
    • …
    corecore