8,694 research outputs found

    Garbage Collection for General Graphs

    Get PDF
    Garbage collection is moving from being a utility to a requirement of every modern programming language. With multi-core and distributed systems, most programs written recently are heavily multi-threaded and distributed. Distributed and multi-threaded programs are called concurrent programs. Manual memory management is cumbersome and difficult in concurrent programs. Concurrent programming is characterized by multiple independent processes/threads, communication between processes/threads, and uncertainty in the order of concurrent operations. The uncertainty in the order of operations makes manual memory management of concurrent programs difficult. A popular alternative to garbage collection in concurrent programs is to use smart pointers. Smart pointers can collect all garbage only if developer identifies cycles being created in the reference graph. Smart pointer usage does not guarantee protection from memory leaks unless cycle can be detected as process/thread create them. General garbage collectors, on the other hand, can avoid memory leaks, dangling pointers, and double deletion problems in any programming environment without help from the programmer. Concurrent programming is used in shared memory and distributed memory systems. State of the art shared memory systems use a single concurrent garbage collector thread that processes the reference graph. Distributed memory systems have very few complete garbage collection algorithms and those that exist use global barriers, are centralized and do not scale well. This thesis focuses on designing garbage collection algorithms for shared memory and distributed memory systems that satisfy the following properties: concurrent, parallel, scalable, localized (decentralized), low pause time, high promptness, no global synchronization, safe, complete, and operates in linear time

    Garbage collection auto-tuning for Java MapReduce on Multi-Cores

    Get PDF
    MapReduce has been widely accepted as a simple programming pattern that can form the basis for efficient, large-scale, distributed data processing. The success of the MapReduce pattern has led to a variety of implementations for different computational scenarios. In this paper we present MRJ, a MapReduce Java framework for multi-core architectures. We evaluate its scalability on a four-core, hyperthreaded Intel Core i7 processor, using a set of standard MapReduce benchmarks. We investigate the significant impact that Java runtime garbage collection has on the performance and scalability of MRJ. We propose the use of memory management auto-tuning techniques based on machine learning. With our auto-tuning approach, we are able to achieve MRJ performance within 10% of optimal on 75% of our benchmark tests

    Modelling Garbage Collection Algorithms --- Extend abstract

    Get PDF
    We show how abstract requirements of garbage collection can be captured using temporal logic. The temporal logic specification can then be used as a basis for process algebra specifications which can involve varying amounts of parallelism. We present two simple CCS specifications as an example, followed by a more complex specification of the cyclic reference counting algorithm. The verification of such algorithms is then briefly discussed

    Automated Verification of Practical Garbage Collectors

    Full text link
    Garbage collectors are notoriously hard to verify, due to their low-level interaction with the underlying system and the general difficulty in reasoning about reachability in graphs. Several papers have presented verified collectors, but either the proofs were hand-written or the collectors were too simplistic to use on practical applications. In this work, we present two mechanically verified garbage collectors, both practical enough to use for real-world C# benchmarks. The collectors and their associated allocators consist of x86 assembly language instructions and macro instructions, annotated with preconditions, postconditions, invariants, and assertions. We used the Boogie verification generator and the Z3 automated theorem prover to verify this assembly language code mechanically. We provide measurements comparing the performance of the verified collector with that of the standard Bartok collectors on off-the-shelf C# benchmarks, demonstrating their competitiveness

    Uniqueness Typing for Resource Management in Message-Passing Concurrency

    Get PDF
    We view channels as the main form of resources in a message-passing programming paradigm. These channels need to be carefully managed in settings where resources are scarce. To study this problem, we extend the pi-calculus with primitives for channel allocation and deallocation and allow channels to be reused to communicate values of different types. Inevitably, the added expressiveness increases the possibilities for runtime errors. We define a substructural type system which combines uniqueness typing and affine typing to reject these ill-behaved programs

    The Lock-free kk-LSM Relaxed Priority Queue

    Full text link
    Priority queues are data structures which store keys in an ordered fashion to allow efficient access to the minimal (maximal) key. Priority queues are essential for many applications, e.g., Dijkstra's single-source shortest path algorithm, branch-and-bound algorithms, and prioritized schedulers. Efficient multiprocessor computing requires implementations of basic data structures that can be used concurrently and scale to large numbers of threads and cores. Lock-free data structures promise superior scalability by avoiding blocking synchronization primitives, but the \emph{delete-min} operation is an inherent scalability bottleneck in concurrent priority queues. Recent work has focused on alleviating this obstacle either by batching operations, or by relaxing the requirements to the \emph{delete-min} operation. We present a new, lock-free priority queue that relaxes the \emph{delete-min} operation so that it is allowed to delete \emph{any} of the Ļ+1\rho+1 smallest keys, where Ļ\rho is a runtime configurable parameter. Additionally, the behavior is identical to a non-relaxed priority queue for items added and removed by the same thread. The priority queue is built from a logarithmic number of sorted arrays in a way similar to log-structured merge-trees. We experimentally compare our priority queue to recent state-of-the-art lock-free priority queues, both with relaxed and non-relaxed semantics, showing high performance and good scalability of our approach.Comment: Short version as ACM PPoPP'15 poste
    • ā€¦
    corecore