84 research outputs found

    Design of Large Diameter Mine Countermeasure Hybrid Power Unmanned Underwater Vehicle

    Get PDF
    Mines are one of the most cost-effective and moderated weapon systems that are easy to deploy, but difficult to clear. Not only has the development of the mine countermeasure (MCM) underwater unmanned vehicle (UUV) improved cost- and time-effectiveness in operation, but also it has avoided unnecessary human casualties

    IMPROVING THE INDONESIAN’S MINE COUNTERMEASURE SMART MINE CAPABILITY BY ANALYTIC HIERARCHY PROCESS AND MEASUREMENT OF EFFECTIVENESS METHODS

    Get PDF
    Mine warfare is still developing in line with technological developments. Technological developments in the field of mines have produced smart mines that can select targets as desired precisely and accurately. Currently, minehunting vessels are owned by the Indonesian Navy. In this study, an analysis of the capability of minehunting vessels class will be carried out including the capability of the sensor weapon command system, the professionalism of the crew, and Explosive Ordnance Disposal (EOD) divers as well as ship degaussing systems. This study aims to analyze the ability of the class mine-hunting ships of the Indonesian Navy to deal with modern mine warfare, especially to deal with mines that can choose their targets or often called Smart Mines. This study uses quantitative research methods, namely data analysis with Measures Of Effectiveness (MOE) and Analytical Hierarchy Process (AHP) methods. This study found that the increase in Sewaco's ability to deal with modern mine warfare will also have to be followed by improvements or changes in tactics and strategies that are adapted to the increase in the ship's capabilities. This increase in the professionalism of soldiers is carried out at all levels of rank, starting from officers through Mine Warfare Officer (MWO) education either organized by the Navy or abroad, then at the non-commissioned and enlisted levels to improve their skills carried out through regular and scheduled training. Mine ships with a good degaussing system function will be very supportive in carrying out mine operations, stating that modern sea mines are equipped with sensors or magnetic sonar that are placed on the sea surface or below sea level. For this reason, the function of the degaussing system must be able to operate properly in the face of these modern mines.

    Development and validation of a conceptual design program for unmanned underwater vehicles

    Get PDF
    Thesis (S.M. in Naval Architecture and Marine Engineering)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M. in Ocean Engineering)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 74-76).With a renewed focus on the Asia-Pacific region, the United States Navy will increasingly rely on high-endurance unmanned underwater vehicles (UUVs) to support successful operations in a challenging threat environment. Undoubtedly, this naval strategy will necessitate versatile UUV systems that fulfill a broad spectrum of customer-generated requirements. This thesis presents a unique approach to the conceptual design process for UUVs, thereby allowing strategic decision-makers to rapidly explore a given design space. The proposed MATLAB-based conceptual design program features five primary modules: a mission module, a hull module, a resistance module, a battery module, and a pressure vessel module. The final concept design results from an iterative process that considers the displacement, interior volume, and exterior volume of the total UUV system. To validate the proposed design algorithm, the author applied the best practices of modern naval architecture, marine engineering, ocean engineering, systems engineering, and submersible design. Model test data and computational fluid dynamics (CFD) software were used to validate the empirical equations selected for the resistance module. The pressure vessel module, including a genetic algorithm to generate viable scantlings, was validated by a consideration of manually optimized pressure vessel designs. Ultimately, this thesis demonstrates the sufficiency, reliability, and versatility of the proposed conceptual design program for UUVs.by Alexander Walter Laun.S.M.in Ocean EngineeringS.M.in Naval Architecture and Marine Engineerin

    Next generation mine countermeasures for the very shallow water zone in support of amphibious operations

    Get PDF
    This report describes system engineering efforts exploring next generation mine countermeasure (MCM) systems to satisfy high priority capability gaps in the Very Shallow Water (VSW) zone in support of amphibious operations. A thorough exploration of the problem space was conducted, including stakeholder analysis, MCM threat analysis, and current and future MCM capability research. Solution-neutral requirements and functions were developed for a bounded next generation system. Several alternative architecture solutions were developed that included a critical evaluation that compared performance and cost. The resulting MCM system effectively removes the man from the minefield through employment of autonomous capability, reduces operator burden with sensor data fusion and processing, and provides a real-time communication for command and control (C2) support to reduce or eliminate post mission analysis.http://archive.org/details/nextgenerationmi109456968N

    Unmanned Vehicle Systems & Operations on Air, Sea, Land

    Get PDF
    Unmanned Vehicle Systems & Operations On Air, Sea, Land is our fourth textbook in a series covering the world of Unmanned Aircraft Systems (UAS) and Counter Unmanned Aircraft Systems (CUAS). (Nichols R. K., 2018) (Nichols R. K., et al., 2019) (Nichols R. , et al., 2020)The authors have expanded their purview beyond UAS / CUAS systems. Our title shows our concern for growth and unique cyber security unmanned vehicle technology and operations for unmanned vehicles in all theaters: Air, Sea and Land – especially maritime cybersecurity and China proliferation issues. Topics include: Information Advances, Remote ID, and Extreme Persistence ISR; Unmanned Aerial Vehicles & How They Can Augment Mesonet Weather Tower Data Collection; Tour de Drones for the Discerning Palate; Underwater Autonomous Navigation & other UUV Advances; Autonomous Maritime Asymmetric Systems; UUV Integrated Autonomous Missions & Drone Management; Principles of Naval Architecture Applied to UUV’s; Unmanned Logistics Operating Safely and Efficiently Across Multiple Domains; Chinese Advances in Stealth UAV Penetration Path Planning in Combat Environment; UAS, the Fourth Amendment and Privacy; UV & Disinformation / Misinformation Channels; Chinese UAS Proliferation along New Silk Road Sea / Land Routes; Automaton, AI, Law, Ethics, Crossing the Machine – Human Barrier and Maritime Cybersecurity.Unmanned Vehicle Systems are an integral part of the US national critical infrastructure The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. Unmanned Vehicle (UV) Systems & Operations On Air, Sea, Land discusses state-of-the-art technology / issues facing U.S. UV system researchers / designers / manufacturers / testers. We trust our newest look at Unmanned Vehicles in Air, Sea, and Land will enrich our students and readers understanding of the purview of this wonderful technology we call UV.https://newprairiepress.org/ebooks/1035/thumbnail.jp

    Marine Robots for Underwater Surveillance

    Get PDF
    Abstract Purpose of Review The paper reviews the role of marine robots, in particular unmanned vehicles, in underwater surveillance, i.e. the control and monitoring of an area of competence aimed at identifying potential threats in support of homeland defence, antiterrorism, force protection and Explosive Ordnance Disposal (EOD). Recent Findings The paper explores separately robotic missions for identification and classification of threats lying on the seabed (e.g. EOD) and anti-intrusion robotic systems. The current main scientific challenge is identified in terms of enhancing autonomy and team/swarm mission capabilities by improving interoperability among robotic vehicles and providing communication networking capabilities, a non-trivial task, giving the severe limitations in bandwidth and latency of acoustic underwater messaging. Summary The work is intended to be a critical guide to the recent prolific bibliography on the topic, providing pointers to the main recent advancements in the field, and to give also a set of references in terms of mission and stakeholders' requirements (port authorities, coastal guards, navies)

    Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) 2019 Annual Report

    Get PDF
    Prepared for: Dr. Brian Bingham, CRUSER DirectorThe Naval Postgraduate School (NPS) Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) provides a collaborative environment and community of interest for the advancement of unmanned systems (UxS) education and research endeavors across the Navy (USN), Marine Corps (USMC) and Department of Defense (DoD). CRUSER is a Secretary of the Navy (SECNAV) initiative to build an inclusive community of interest on the application of unmanned systems (UxS) in military and naval operations. This 2019 annual report summarizes CRUSER activities in its eighth year of operations and highlights future plans.Deputy Undersecretary of the Navy PPOIOffice of Naval Research (ONR)Approved for public release; distribution is unlimited

    Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) 2019 Annual Report

    Get PDF
    Prepared for: Dr. Brian Bingham, CRUSER DirectorThe Naval Postgraduate School (NPS) Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) provides a collaborative environment and community of interest for the advancement of unmanned systems (UxS) education and research endeavors across the Navy (USN), Marine Corps (USMC) and Department of Defense (DoD). CRUSER is a Secretary of the Navy (SECNAV) initiative to build an inclusive community of interest on the application of unmanned systems (UxS) in military and naval operations. This 2019 annual report summarizes CRUSER activities in its eighth year of operations and highlights future plans.Deputy Undersecretary of the Navy PPOIOffice of Naval Research (ONR)Approved for public release; distribution is unlimited

    ECONOMIC TRADEOFF ANALYSIS OF A PRODUCT LINE ARCHITECTURE APPROACH THROUGH MODEL-BASED SYSTEMS ENGINEERING: A CASE STUDY OF FUTURE MINE COUNTERMEASURES UNMANNED UNDERWATER VEHICLES

    Get PDF
    The defense sector often develops systems to operate for at least 15 years, which can reach 40 or even 50 years. Those systems tend to be cheaper, more rapidly developed, and reliable when developed on product lines (PL). Product line architecture surges with potential to improve the acquisition process, resulting in a more rapid insertion of cost-effective warfighting capabilities. This thesis investigates the impact of the PL approach by analyzing the future generation of mine countermeasure (MCM) unmanned underwater vehicle (UUV) architecture alternatives, employing a detailed reuse model based on the COPLIMO framework. The research integrates parametric cost modeling with model-based systems engineering (MBSE), feeding the existing baseline knowledge regarding PL architecture. Furthermore, this can improve systems acquisition processes, deliver more agile capability, and reduce total life cycle costs (LCC). The integration of models highlights significant differences among the architectural variations considered early in the acquisition process before substantial financial commitments. Early decisions determine most of the total LCC and establish a baseline for long-term system performance. Hence, the choice of favorable design alternatives is crucial to program success. The results demonstrate that up-front investments in product lines generate a significant return on investment (ROI).Capitao-Tenente, Brazilian NavyApproved for public release. Distribution is unlimited

    ANALYSIS OF THE CAPABILITIES OF PORTABLE MINE-HUNTING EQUIPMENT OF THE AUXILIARY MINE COUNTERMEASURE DIVISION TO SUPPORT THE SUCCESS OF AMPHIBIOUS ASSAULTS

    Get PDF
    Revolution in Military Affair (RMA) has encouraged technological developments in the field of mine warfare. Technological developments in the field of mine warfare have produced smart littoral mines, in which a threat that can thwart the implementation of amphibious assaults. This study tries to analyze the Auxiliary Mine Counter Measure (MCM) Division portable mine-hunting equipment capabilities to support the success of amphibious assaults. This study uses the Measurement of Effectiveness (MoE) and the Analytical Hierarchy Process (AHP) methods to measure capabilities and determine priorities for increasing the capability of portable mine-hunting equipment to support amphibious attack support. As a result, the equipment that rushes portable mines is an increase in support for amphibious assaults because it is incompatible with existing technological developments. To be able to support the spirit of the invasion, it is necessary to procure new equipment designed by following latest developments in mine warfare technology
    • …
    corecore