1,490 research outputs found

    International White Book on DER Protection : Review and Testing Procedures

    Get PDF
    This white book provides an insight into the issues surrounding the impact of increasing levels of DER on the generator and network protection and the resulting necessary improvements in protection testing practices. Particular focus is placed on ever increasing inverter-interfaced DER installations and the challenges of utility network integration. This white book should also serve as a starting point for specifying DER protection testing requirements and procedures. A comprehensive review of international DER protection practices, standards and recommendations is presented. This is accompanied by the identifi cation of the main performance challenges related to these protection schemes under varied network operational conditions and the nature of DER generator and interface technologies. Emphasis is placed on the importance of dynamic testing that can only be delivered through laboratory-based platforms such as real-time simulators, integrated substation automation infrastructure and fl exible, inverter-equipped testing microgrids. To this end, the combination of fl exible network operation and new DER technologies underlines the importance of utilising the laboratory testing facilities available within the DERlab Network of Excellence. This not only informs the shaping of new protection testing and network integration practices by end users but also enables the process of de-risking new DER protection technologies. In order to support the issues discussed in the white paper, a comparative case study between UK and German DER protection and scheme testing practices is presented. This also highlights the level of complexity associated with standardisation and approval mechanisms adopted by different countries

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Distribution system simulator

    Get PDF
    In a series of tests performed under the Department of Energy auspices, power line carrier propagation was observed to be anomalous under certain circumstances. To investigate the cause, a distribution system simulator was constructed. The simulator was a physical simulator that accurately represented the distribution system from below power frequency to above 50 kHz. Effects such as phase-to-phase coupling and skin effect were modeled. Construction details of the simulator, and experimental results from its use are presented

    The role of intelligent systems in delivering the smart grid

    Get PDF
    The development of "smart" or "intelligent" energy networks has been proposed by both EPRI's IntelliGrid initiative and the European SmartGrids Technology Platform as a key step in meeting our future energy needs. A central challenge in delivering the energy networks of the future is the judicious selection and development of an appropriate set of technologies and techniques which will form "a toolbox of proven technical solutions". This paper considers functionality required to deliver key parts of the Smart Grid vision of future energy networks. The role of intelligent systems in providing these networks with the requisite decision-making functionality is discussed. In addition to that functionality, the paper considers the role of intelligent systems, in particular multi-agent systems, in providing flexible and extensible architectures for deploying intelligence within the Smart Grid. Beyond exploiting intelligent systems as architectural elements of the Smart Grid, with the purpose of meeting a set of engineering requirements, the role of intelligent systems as a tool for understanding what those requirements are in the first instance, is also briefly discussed

    A test facility for assessing the performance of IEC61850 substation automation designs

    Get PDF
    Substation Automation Systems have undergone dramatic changes since the introduction of powerful micro-processing and digital communications devices over Ethernet based networks within the substation. Smart, multifunctional relays, known as Intelligent Electronic Devices, or IEDs, have replaced the traditional panels which contained multiple protection relays, control equipment, metering and status indicators. ActewAGL Distribution, a power utility company servicing Canberra, Australia, has recently decided to undertake a review of its substation automation systems throughout its electrical network. As a result, ActewAGL Distribution has decided to investigate the IEC 61850 – Communication Networks and Systems in Substations standard, by constructing a test facility to assess its performance and capability with the view of implementing the standard into its 132/11kV zone substations network in the near future. This report details the literature review, design, construction, and performance evaluation that was undertaken on the IEC 61850 substation automation designs developed with the use of the test facility. The major achievement of this research project has been the successful development and evaluation of a substation automation system that utilised the IEC 61850 standard incorporated with multiple vendor devices

    Advanced Communication and Control Methods for Future Smart Grid

    Get PDF
    The reliability of intelligent electronic device (IED) function that ensures a particular disturbance will disconnect as fast enough from the healthy network to mitigate the effect of the fault is directly related to the reliability of the electrical system. This work aims to test the performance and comparison between the developed Light weight IED and different commercial IEDs from different vendor. The developed light weight IEDs are implemented on a microcontroller as well as on an FPGA. The test set-up is implemented by the Hardware-In-the-Loop platform. The simulation platform is OPAL-RT’s eMEGASIM. The results shows the performance of the FPGA to be better than microcontroller and other commercial IEDs when comparing results.© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.fi=vertaisarvioitu|en=peerReviewed

    ICT Technologies, Standards and Protocols for Active Distribution Network Automation and Management

    Get PDF
    The concept of active distribution network (ADN) is evolved to address the high penetration of renewables in the distribution network. To leverage the benefits of ADN, effective communication and information technology is required. Various communication standards to facilitate standard-based communication in distribution network have been proposed in literature. This chapter presents various communication standards and technologies that can be employed in ADN. Among various communication standards, IEC 61850 standard has emerged as the de facto standard for power utility automation. IEC 61850-based information modeling for ADN entities has also been presented in this chapter. To evaluate the performance of ADN communication architecture, performance metrics and performance evaluation tools have also been presented in this chapter
    corecore