194,008 research outputs found

    A foundation for machine learning in design

    Get PDF
    This paper presents a formalism for considering the issues of learning in design. A foundation for machine learning in design (MLinD) is defined so as to provide answers to basic questions on learning in design, such as, "What types of knowledge can be learnt?", "How does learning occur?", and "When does learning occur?". Five main elements of MLinD are presented as the input knowledge, knowledge transformers, output knowledge, goals/reasons for learning, and learning triggers. Using this foundation, published systems in MLinD were reviewed. The systematic review presents a basis for validating the presented foundation. The paper concludes that there is considerable work to be carried out in order to fully formalize the foundation of MLinD

    Parameters for apple quality - 2 - and the development of the ‘inner quality concept’ 2001-2003

    Get PDF
    We found clear correlations between management measures, tree characteristics and fruit characteristics. This means that growers can regulate apple quality during the growing season. On the basis of the two apple experiments, we can distinguish respective sets of growth and differentiation parameters and evaluate them in the light of conventional fruit cultivation science. Our results have little new value for fruit growing in practice, however. The value of our research lies in the approach developed to draw up a quality concept and the way in which we can apply this concept to crops about which little knowledge exists regarding the relationship between management measures, crop characteristics and product quality characteristics. Our research also offers a method to validate experimental parameters

    Information decomposition of symbolic sequences

    Full text link
    We developed a non-parametric method of Information Decomposition (ID) of a content of any symbolical sequence. The method is based on the calculation of Shannon mutual information between analyzed and artificial symbolical sequences, and allows the revealing of latent periodicity in any symbolical sequence. We show the stability of the ID method in the case of a large number of random letter changes in an analyzed symbolic sequence. We demonstrate the possibilities of the method, analyzing both poems, and DNA and protein sequences. In DNA and protein sequences we show the existence of many DNA and amino acid sequences with different types and lengths of latent periodicity. The possible origin of latent periodicity for different symbolical sequences is discussed.Comment: 18 pages, 8 figure

    Variational Characterisations of Separability and Entanglement of Formation

    Get PDF
    In this paper we develop a mathematical framework for the characterisation of separability and entanglement of formation (EoF) of general bipartite states. These characterisations are of the variational kind, meaning that separability and EoF are given in terms of a function which is to be minimized over the manifold of unitary matrices. A major benefit of such a characterisation is that it directly leads to a numerical procedure for calculating EoF. We present an efficient minimisation algorithm and an apply it to the bound entangled 3X3 Horodecki states; we show that their EoF is very low and that their distance to the set of separable states is also very low. Within the same variational framework we rephrase the results by Wootters (W. Wootters, Phys. Rev. Lett. 80, 2245 (1998)) on EoF for 2X2 states and present progress in generalising these results to higher dimensional systems.Comment: 11 pages RevTeX, 4 figure
    • 

    corecore