611 research outputs found

    Entropy of Operator-valued Random Variables: A Variational Principle for Large N Matrix Models

    Get PDF
    We show that, in 't Hooft's large N limit, matrix models can be formulated as a classical theory whose equations of motion are the factorized Schwinger--Dyson equations. We discover an action principle for this classical theory. This action contains a universal term describing the entropy of the non-commutative probability distributions. We show that this entropy is a nontrivial 1-cocycle of the non-commutative analogue of the diffeomorphism group and derive an explicit formula for it. The action principle allows us to solve matrix models using novel variational approximation methods; in the simple cases where comparisons with other methods are possible, we get reasonable agreement.Comment: 45 pages with 1 figure, added reference

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    Quasi-symmetric functions and the KP hierarchy

    Full text link
    Quasi-symmetric functions show up in an approach to solve the Kadomtsev-Petviashvili (KP) hierarchy. This moreover features a new nonassociative product of quasi-symmetric functions that satisfies simple relations with the ordinary product and the outer coproduct. In particular, supplied with this new product and the outer coproduct, the algebra of quasi-symmetric functions becomes an infinitesimal bialgebra. Using these results we derive a sequence of identities in the algebra of quasi-symmetric functions that are in formal correspondence with the equations of the KP hierarchy.Comment: 16 page

    Algebraic Structures and Stochastic Differential Equations driven by Levy processes

    Full text link
    We construct an efficient integrator for stochastic differential systems driven by Levy processes. An efficient integrator is a strong approximation that is more accurate than the corresponding stochastic Taylor approximation, to all orders and independent of the governing vector fields. This holds provided the driving processes possess moments of all orders and the vector fields are sufficiently smooth. Moreover the efficient integrator in question is optimal within a broad class of perturbations for half-integer global root mean-square orders of convergence. We obtain these results using the quasi-shuffle algebra of multiple iterated integrals of independent Levy processes.Comment: 41 pages, 11 figure

    From m-clusters to m-noncrossing partitions via exceptional sequences

    Get PDF
    Let W be a finite crystallographic reflection group. The generalized Catalan number of W coincides both with the number of clusters in the cluster algebra associated to W, and with the number of noncrossing partitions for W. Natural bijections between these two sets are known. For any positive integer m, both m-clusters and m-noncrossing partitions have been defined, and the cardinality of both these sets is the Fuss-Catalan number. We give a natural bijection between these two sets by first establishing a bijection between two particular sets of exceptional sequences in the bounded derived category for any finite-dimensional hereditary algebra.Comment: 25 pages: v2: added new section (section 8

    Algebraic structures in stochastic differential equations

    Get PDF
    We define a new numerical integration scheme for stochastic differential equations driven by Levy processes with uniformly lower mean square remainder than that of the scheme of the same strong order of convergence obtained by truncating the stochastic Taylor series. In doing so we generalize recent results concerning stochastic differential equations driven by Wiener processes. The aforementioned works studied integration schemes obtained by applying an invertible mapping to the stochastic Taylor series, truncating the resulting series and applying the inverse of the original mapping. The shuffle Hopf algebra and its associated convolution algebra play important roles in the their analysis, arising from the combinatorial structure of iterated Stratonovich integrals. It was recently shown that the algebra generated by iterated It^o integrals of independent Levy processes is isomorphic to a quasi-shuffle algebra. We utilise this to consider map-truncate-invert schemes for Levy processes. To facilitate this, we derive a new form of stochastic Taylor expansion from those of Wagner & Platen, enabling us to extend existing algebraic encodings of integration schemes. We then derive an alternative method of computing map-truncate-invert schemes using a single step, resolving diffculties encountered at the inversion step in previous methods
    corecore