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Abstract

We define a new numerical integration scheme for stochastic differential equations
driven by Lévy processes with uniformly lower mean square remainder than that
of the scheme of the same strong order of convergence obtained by truncating the
stochastic Taylor series. In doing so we generalize recent results concerning stochas-
tic differential equations driven by Wiener processes. The aforementioned works
studied integration schemes obtained by applying an invertible mapping to the
stochastic Taylor series, truncating the resulting series and applying the inverse
of the original mapping. The shuffle Hopf algebra and its associated convolution
algebra play important roles in the their analysis, arising from the combinatorial
structure of iterated Stratonovich integrals. It was recently shown that the algebra
generated by iterated Itô integrals of independent Lévy processes is isomorphic to
a quasi-shuffle algebra. We utilise this to consider map-truncate-invert schemes for
Lévy processes. To facilitate this, we derive a new form of stochastic Taylor expan-
sion from those of Wagner & Platen, enabling us to extend existing algebraic en-
codings of integration schemes. We then derive an alternative method of computing
map-truncate-invert schemes using a single step, resolving difficulties encountered
at the inversion step in previous methods.
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Chapter 1

Introduction

The main result of this thesis is the description of a new integration scheme for

stochastic differential equations of the form

dYt = V0(Yt)dt+
d∑
i=1

Vi(Yt)dZ
i
t , (1.1)

where V0, V1, . . . Vi are sufficiently smooth vector fields on RN and (Z1
t , . . . , Z

d
t ) is a

vector of independent Lévy processes possessing moments of all orders. The result-

ing integration scheme is best applied in the following situations. The first comprises

the situation where the equation is a jump diffusion, that is where the Lévy pro-

cesses are either Wiener processes or standard Poisson processes. The second main

application is to linear equations, that is those for which the driving vector fields

Vi(Yt) = AiYt, where Ai are constant N ×N matrices. Lévy processes are a class of

stochastic processes, comprising processes continuous in probability and possessing

stationary increments, independent of the past. Particularly, they are examples of

stochastic processes with a well understood structure that nonetheless may incorpo-

rate jump discontinuities. Stochastic differential equations of the above form have

many applications, notably in mathematical finance for the construction of models

going beyond the celebrated the Black-Scholes-Merton model

dYt = aYtdt+ bYtdWt, (1.2)
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Chapter 1: Introduction

where Wt are Wiener processes, in incorporating the discontinuities in stock prices

that are a financial reality. Mandelbrot (1963) used Lévy processes to model cotton

prices, see McCulloch (1996) for a discussion. Merton (1976) proposed an alterna-

tive model utilizing Lévy processes. More recently models driven by Lévy processes

have been studied by, among others, Bates (1996), Kou (2002), Madan, Carr &

Chang (1998), Rydberg (1997), Boyarchenko & Levendorskii (2002, 2010). There

are also applications to physical sciences, see for instance Bardou et al. (2002).

Explicit solutions for stochastic differential equations are rare, especially those with

discontinuities and multiple driving noise processes. We accordingly focus on numer-

ical integration schemes. The derivation of our integration scheme utilizes methods

of algebraic combinatorics. Particularly, Hopf algebras play an important part in

our analysis. Hopf algebras, modules possessing simultaneously unital associative

algebra and counital coassciative coalgebra structures obeying certain compatibil-

ity relations, first arose in the works of Hopf on algebraic topology. They have

since found applications in areas such as geometric integration schemes (see Gross-

man & Larson 1989, Murua 2006, Munthe-Kaas & Wright 2007), efficient stochastic

integrators, (Malham & Wiese 2009, Ebrahimi–Fard et al. 2012), control theory

(Kawski 2001, Gray & Duffaut Espinosa 2011, Gray, Duffaut Espinosa & Ebrahimi–

Fard 2014), stochastic partial differential equations (Hairer, 2014) and perturbative

quantum field theory (Connes & Kreimer 2000, Manchon 2008).

For certain classes of stochastic differential equation, Platen (1980, 1982) and Wag-

ner & Platen (1982) have shown that the solution may be expressed as an infinite

series of iterated integrals. For instance, the solution of the autonomous Stratonovich

equation

dYt = V0(Yt)dt+
d∑
i=1

Vi(Yt) ◦ dW t
t , (1.3)

2



Chapter 1: Introduction

where the ◦ indicates that the integrals are interpreted in the Stratonovich sense,

may be written in the form

Yt =
∑
w

Jw(t)Vw ◦ id(Y0). (1.4)

The sum is over all words w = a1 . . . an ∈ A∗, where A∗ is the free monoid over

the alphabet A = {0, 1, . . . , d}, the letter 0 corresponds to the deterministic process

t and {1, . . . , d} to the d independent Wiener processes driving the system. The

Vw = Va1 ◦ . . . ◦ Van are partial differential operators arising from the composition

of vector fields, where Vi acts on the space of smooth functions f : Rn → Rn as the

Lie derivative f 7→ ∇Vi(f). The Jw are multiple stochastic integrals

Jw(t) =

∫
0<τn−1<...<τ1<t

◦dW a1
τn . . . ◦ dW

an
τ1
. (1.5)

This is derived by expanding the vector fields V (Ys) iteratively in terms of their

evaluation at the initial data using Itô’s formula, we have

V (Yt) = V (Y0) +

∫ t

0

∇V0(V (Ys))ds+
∑
i

∫ t

0

∇Vi(V (Ys))dW
i
s , (1.6)

which we may then substitute into the defining equation. It is at this level that the

algebraic structures we study enter, as iterated path integrals have a rich algebraic

pedigree. For a given path of bounded variation γ = (γ1(t), . . . γm(t)), t ∈ [a, b] in

RN , K.–T. Chen (1957) considered the iterated path integrals indexed by words in

{1, . . . ,m}∗, defined inductively by

Iγa1...an =

∫ b

a

I
γ|[a,t]
a1...an−1dγan(t). (1.7)

In doing so, he extended the celebrated Baker-Campbell-Hausdorff formula that

log(exey) is a Lie element when x and y are non-commuting indeterminates (see

Reutenauer 1993, Chapter 3.1). He showed that the formal power series

θ(γ) := log

(
1 +

∞∑
p=1

∑
Iγa1...anxa1 . . . xan

)
(1.8)
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Chapter 1: Introduction

in non-commuting indeterminates x1, . . . xm is a Lie element; that is it consists of a

series of polynomials arising from linear combinations of commutators of elements.

Strichartz (1987) gave the explicit combinatorial expression for the above series,

θ(γ) =
∞∑
n=1

∑
σ∈Gn

(−1)d(σ)

n2
(
n−1
d(σ)

) Iγσ−1(a1...an)[xa1 , [xa2 , . . . [xan−1 , xan ] . . .], (1.9)

where Gn is the symmetric group on n elements, and d(σ) is the number of descents of

the permutation σ, defined to be the cardinality of the set {i : σ(i+1) < σ(i)}. Note

that we have here adopted the standard version of the Chen-Strichartz formula using

the left-to-right Lie bracketing [xa1 , . . . , [xan−1 , xan ] . . .], Strichartz originally used

the right-to-left bracketing [. . . [xa1 , xa2 ], . . . , xan ]; see Castell (1993). Ree (1958)

showed that Chen’s results were best understood in the following algebraic aspect.

For any path γ = (γ1, . . . , γm), the mapping from the space of polynomials in the

noncommuting indeterminates a1 . . . , am to iterated path integrals

ϕ : xa1 . . . xan 7→ Iγa1...an (1.10)

is a homomorphism for a certain product defined on the space of non-commuting

polynomials called the shuffle product; the name derives from earlier similar products

considered by Eilenberg and Mac Lane (1953) in the context of algebraic topology.

This ultimately expresses an extension of the integration-by-parts rule for integration

operators

I(x)I(y) = I(I(x)y) + I(xI(y)). (1.11)

The shuffle algebra was subsequently studied extensively by Schützenberger (1958),

Chen (1968) and others. Chen’s iterated integrals and their algebraic properties

have since appeared in a variety of contexts; the Chen-Fliess approach to control

theory resolves inputs and outputs as series of iterated integrals (see Fliess 1981,

1983, Kawski 2001, Gray & Duffaut Espinosa 2008) and Lyons’ theory of rough

paths (Lyons 1998, Lyons et al. 2007) considers differential equations driven by an

extended notion of a continuous path, effectively incorporating the higher iterated

integrals. There iterated integrals are interpreted as functionals in the tensor algebra

4



Chapter 1: Introduction

T (V ); differential equations may be solved using approximations to the extended

paths in a certain topology.

Gaines (1994) and Castell & Gaines (1995, 1996) applied the results of Chen, Ree

and Strichartz to autonomous stochastic differential equations driven by Wiener pro-

cesses: the sample paths are almost surely not of bounded variation, but where the

integrals are expressed in Stratonovich form, Wagner & Platen’s iterated integrals

obey the same algebraic relations as Chen’s iterated integrals; the formula of Chen-

Strichartz still applies. Castell & Gaines demonstrated the power of the numerical

scheme resulting from using a finite truncation of the Chen-Strichartz series; the

solution Y may be computed from this truncated series using a standard numerical

scheme for ordinary differential equations.

Castell & Gaines (1996) integration scheme was examined further by Lord, Malham

& Wiese (2008) and Malham & Wiese (2008); they showed that it did not always

improve upon schemes derived from simple truncation of the stochastic Taylor series,

as proposed by Wagner & Platen. Malham & Wiese (2009) took the perspective

that further integration schemes with desirable properties could be studied using

the properties of the shuffle algebra. We define the flowmap for a given stochastic

differential equation to be the map ϕ(t, ω) : Y0 7→ Yt sending arbitrary initial data

to the solution at time t for a given ω, see eg Azencott (1982), Ben Arous (1989).

We can go further and consider the flowmap as acting on smooth functions through

the pullback ϕ∗(F )(Y0) := F (ϕ)(Y0), we can then generalize (1.4) as follows, see

Baudoin (2004):

ϕ∗(F ) =
∑
w

JwVw ◦ F. (1.12)

A numerical integration scheme is defined by the truncation of the above series.

Malham & Wiese (2009) considered a class of integration schemes indexed by in-

vertible maps f : Diff(RN) → Diff(RN); for such a mapping they construct an

integration scheme by truncating the series f(ϕt) and then applying f−1. The in-

tegration scheme of Castell & Gaines corresponds to taking the mapping f = log.

5



Chapter 1: Introduction

The series f(ϕt) is then given by the Chen-Strichartz formula and the inversion

may be computed readily by solving an ordinary differential equation using a stan-

dard deterministic numerical method, such as an appropriate Runge-Kutta scheme.

Malham & Wiese (2009) showed that the integration scheme corresponding to the

series f = sinhlog possesses desirable asymptotic efficiency results; such integrators

always possess a smaller coefficient of leading order remainder than schemes com-

prising truncations of the stochastic Taylor series. These results were obtained in

the absence of a drift term, and extended to incorporate drift in Ebrahimi–Fard

et al. (2012). We generalize these results to stochastic differential equations driven

by Lévy processes. To achieve this, we will have to account for the fact that the

integration-by-parts relation (1.11) does not hold for stochastic integrals with re-

spect to discontinuous semimartingale integrators. We will therefore need to look

beyond the shuffle algebra. Such considerations are in a sense natural, consider the

finite difference operator:

δh : f 7→ f(x+ h)− f(x)

h
. (1.13)

It does not obey the Leibniz rule, but instead a deformed Leibniz relation

δh(fg) = δh(f)g + fδh(g) + h(fg). (1.14)

Furthermore, if f(x) → 0 sufficiently quickly as x → ∞, the operator δh possesses

an inverse, the summation operator Ih : g 7→ −
∑∞

n=0 hg(x + nh). This operator

obeys a deformed version of the integration-by-parts rule:

I(f)I(g) = I(I(f)g) + I(fI(g)) + hI(fg). (1.15)

This identity, the Rota-Baxter relation with weight h (see, eg Ebrahimi–Fard & Pa-

tras, 2013) is similar to the stochastic integration-by-parts formula. Cartier (1972)

gave a presentation of the free commutative Rota-Baxter algebra incorporating a

product which is a deformed version of the shuffle product. Hoffman (1999) later

formalized this as the quasi-shuffle product and showed it possessed many of the

6



Chapter 1: Introduction

same properties of the shuffle algebra shown by Schützenberger and Chen; he showed

it possesses a Hopf algebra structure isomorphic to the shuffle Hopf algebra. Quasi-

shuffle algebras have been subsequently studied from an operad theory perspective

(see Loday 2007) and found applications in the study of multiple zeta values (Zudilin,

2003) and non-geometric rough paths (Hairer & Kelly 2014).

Recently, Curry et al. (2014) demonstrated an isomorphism between the algebra

generated by iterated integrals of independent Lévy processes possessing moments

of all orders and a certain quasi-shuffle algebra. We utilise this result to extend

formalisms of Malham & Wiese (2009) and Ebrahimi–Fard et al. (2012) to nu-

merical schemes for stochastic differential equations driven by Lévy processes. In

accomplishing this, we show how the algebraic structures allow Malham & Wiese’s

map-truncate-invert schemes to be computed in a single step. We then define a

new integration scheme using this single-step method which may be seen as the cor-

rect generalization of the sinhlog integrator to discontinuous stochastic differential

equations. We will also clarify an issue concerning methods of truncating stochastic

Taylor series.

The thesis is structured as follows. We begin with a review of stochastic differ-

ential equations. The reader familiar with theory of stochastic calculus and stochas-

tic differential equations may omit this chapter. We will discuss the motivations of

stochastic differential equations driven by Wiener processes. We then define stochas-

tic integrals with respect to semimartingales. We proceed to review the Itô calculus

for semimartingales, and discuss stochastic differential equations with respect to

semimartingales. We then introduce Lévy processes and review their properties,

giving the Lévy decomposition of a Lévy processes as the sum of a scalar multiple

of time, a Wiener process and an integral with respect to a Poisson random mea-

sure. To facilitate this, we conclude with a discussion of integration with respect to

random measures.

7



Chapter 1: Introduction

We have already highlighted the importance of shuffle and quasi-shuffle Hopf al-

gebras to our work. We therefore follow with a chapter discussing shuffle and quasi-

shuffle algebras. We begin with definitions and illustrative examples. We then define

bialgebras and Hopf algebras and discuss the Hopf algebraic structures associated

to shuffle and quasi-shuffle algebras, in particular giving Hoffman’s isomorphisms

of shuffle and quasi-shuffle Hopf algebras. We proceed to discuss the Lie theoretic

aspects of the shuffle algebra, culminating in Radford’s theorem that the Lyndon

words form a basis for the shuffle algebra, and Hoffman’s demonstration that they

likewise form a basis of the quasi-shuffle algebra. We close the chapter with a pre-

sentation of the results published in Curry et al. (2014) that the algebra generated

by iterated integrals of Lévy processes with moments of all orders is isomorphic to

a certain quasi-shuffle algebra.

In the following chapter, ‘Numerical methods for stochastic differential equations’,

we will examine the map-truncate-invert schemes of Malham & Wiese (2009), and

show how they may be generalized to stochastic differential equations driven by Lévy

processes. We begin by examining Wagner & Platen’s stochastic Taylor expansion,

an analogue of the deterministic Taylor expansion from which we may derive integra-

tion schemes of arbitrary order under the assumption that the coefficient functions

of the equation are sufficiently smooth (see Wagner & Platen 1982, Platen 1982).

For instance, it is sufficient that the coefficient functions are uniformly bounded and

have uniformly bounded derivatives of all orders. The stochastic Taylor expansion is

derived in the context of equations driven by Wiener processes and Poisson random

measures; we will show how these may be adapted to Lévy-driven equations using the

Lévy decomposition given above. Furthermore, following work of Malham & Wiese

(2009), we will discuss how a large class of integration schemes may be induced from

the resulting solution series by applying an invertible mapping, truncating the series

and then inverting. We require further results to utilize the resulting expansions.

Particularly, the algebraic study of integration schemes requires the separation of

stochastic and geometric information in the stochastic Taylor expansion. This prop-

8



Chapter 1: Introduction

erty is present naturally in Wagner-Platen expansions of stochastic systems with

continuous driving processes (see Baudoin 2004), but not generally for discontinu-

ous equations. The derivation from the Wagner-Platen expansion of solution series

with the desired separation presented here is new. Having accomplished this, we

show how we can encode algebraically the class of map-truncate-invert schemes intro-

duced by Malham & Wiese (2009). Here the convolution algebra associated with the

shuffle and quasi-shuffle bialgebras takes centre stage. This work is new, although

it is a natural generalization of the encoding given in Ebrahimi–Fard et al. (2012)

for integration schemes in the context of continuous systems. We conclude with a

new examination of different ways of truncating the derived expansions, giving an

important optimality result.

Having finished our presentation of the role of algebra in deriving and compar-

ing integration schemes, we proceed to consider the implications of this perspective.

We begin in chapter 5, entitled ‘Map-truncate-invert schemes’, by summarizing the

results obtained through these methods by Malham & Wiese (2009) and Ebrahimi–

Fard et al. (2012). We conclude with a counterexample showing that the sinhlog in-

tegrator they derived for continuous systems does not necessarily retain its desirable

properties when immediately generalized to discontinuous, Lévy-driven systems. In

the following chapter, we give a detailed explicit derivation of the relative errors of

a general power-series integrator and the integrators of Wagner & Platen. This is

presented for drift-diffusion equations with autonomous driving vector fields satis-

fying the smoothness hypotheses necessary for convergence of integration schemes

deriving from truncated stochastic Taylor series. In doing so, we show the necessity

of expanding the space of maps considered in map-truncate-invert schemes beyond

those given by power series. This material is new, as is all the material of the

following chapter, ‘One-step schemes and sign-reverse integrator’, where we give a

new method for implementing map-truncate-invert schemes in a single step. This

removes the difficulties inherent in the inversion steps of such schemes, and as such is

an important refinement of the sinhlog integration scheme. Furthermore, it permits

9



Chapter 1: Introduction

us to look beyond the power-series integrators previously considered. This allows

us to give a new integration scheme for autonomous Lévy-driven equations with

coefficient functions satisfying the smoothness hypotheses for the convergence of the

stochastic Taylor series. The resulting scheme may be seen as a generalization of

Malham & Wiese’s sinhlog integrator for continuous systems, and show it possesses

the same desirable efficiency properties.

The final full chapter, ‘Practical implementation’, includes a discussion of prac-

tical issues inherent in the implementation of integration schemes for Lévy-driven

integrators. The opening section is a review; much of the material may be found in

Cont & Tankov (2004), note however the important recent results of Fournier (2009)

and their application. The chapter concludes with some numerical experiments. In

the conclusion, we discuss the applicability the integration schemes derived here and

possible generalizations.

The material presented in Section 3.2 has been published in Curry et al. (2014).

The material presented in Chapter 4, sections 3–7 and Chapters 6–8 is new. In

summary, the new results presented are as follows. From Chapter 4:

• The existence of expansions for Lévy-driven equations derived from Wagner &

Platen’s stochastic Taylor expansions displaying separation of stochastic and

geometric information.

• A comparison of truncation methods using the word order grading and the

mean-square grading of Wagner & Platen.

• The construction of a class of numerical integration schemes for Lévy-driven

equations we call map-truncate-invert schemes, and and algebraic framework

for encoding and comparing such schemes. These results are a natural gener-

alization of results presented in Malham & Wiese (2009) and Ebrahimi–Fard

et al. (2012).

From Chapter 6:

10



Chapter 1: Introduction

• An explicit derivation comparing errors for truncated stochastic Taylor schemes

and more general power series schemes for strong order 0.5 and strong order

1.0 integrators of Itô drift-diffusion equations.

From Chapter 7:

• A method of resolving the map-truncate-invert schemes, first introduced in

Malham & Wiese (2009) and generalized here, to a single step scheme.

• The derivation of a new single-step integration scheme for stochastic differ-

ential equations driven by Lévy processes that is efficient in the sense that it

minimizes the coefficient of leading order in the mean-square remainder com-

pared to the truncated stochastic Taylor scheme, for all Lévy-driven equations

with sufficiently smooth coefficients.

The results of Chapters 4 and 7 will be presented in the forthcoming paper Curry

et al. (2014b), currently under preparation.

11



Chapter 2

Review of Stochastic Integration

and Differential Equations

Here we review the theory of stochastic calculus and stochastic differential equations.

We first consider the prototypical examples arising from the Wiener process and

discuss the motivations behind these examples. We then give a more technical

account of stochastic integration with respect to semimartingales. We discuss the

implications of this theory in the following section, entitled ‘Stochastic Calculus’. We

then give an account of stochastic differential equations driven by semimartingales.

There follows an introduction to Lévy processes, the stochastic processes at the

heart of this thesis. Motivated by the Lévy decomposition, we will then study

integration with respect to random measures. We conclude with a brief account

of numerical methods for stochastic differential equations. For a more detailed

treatment of white noise and stochastic processes in general, see Doob (1953) or

Parzen (1962). For a full account of stochastic integration and stochastic differential

equations, see Ikeda & Watanabe (1989) and Protter (2003). For a standalone

account of Lévy processes, see Bertoin (1996) or Sato (2013). For a comprehensive

account of stochastic integration and stochastic differential equations with respect

to Lévy processes, see Appelbaum (2009). Detailed accounts of numerical methods

for stochastic differential equations driven by Wiener processes may be found in

Milstein (1995), Kloeden & Platen (1999) and Milstein & Tretyakov (2004). For a

full treatment of numerical methods for equations with jumps, see Bruti–Liberati &

12
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Platen (2010).

2.1 White Noise and Wiener Processes

The construction of mathematical models often requires a rationalization of random

forces. Consider the motion of a small particle on a water surface, a speck of dust

or perhaps a grain of pollen. According to Langevin, the motion may be described

by an equation of the form

dXt

dt
= −aXt + bξt, (2.1)

with the term −aXt arising from friction, and ξt modelling the ‘noisy’ influence of

molecular force (see Langevin, 1908). The latter is to be understood in a proba-

bilistic sense. Indeed, we require the notion of a stochastic process, defined to be

a parametrized set of random variables {Xt}t∈[0,T ]. The importance of the central

limit theorem suggests we consider those stochastic processes for which all of the

joint distribution functions are Gaussian; we call such a process a Gaussian process.

In many applications, the practical homogeneity of space or time suggests consid-

ering noise processes obeying certain stationarity properties (see Neyman & Scott,

1959). Precisely, we consider processes for which the means E(Xt) are constant and

the covariances obey Cov(Xs, Xt) = c(t − s), where c is a real function. Note the

identity Var(Xt) = c(0), as Var(Xt) = Cov(Xt, Xt). Processes with such proper-

ties are said to be stationary in the wide sense (see Doob, 1953). In equations like

Langevin’s arising from physical considerations, the noise ξt is often modelled as a

Gaussian process, stationary in the wide sense (see Papoulis, 1991). In studying

wide sense stationary processes, it is often helpful to consider the spectral density

function, defined as the Fourier transform of the autocorrelation of the process:

S(ν) =

∫ ∞
−∞

E{Xt+sXt}e−iνsds. (2.2)

13
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Ornstein & Uhlenbeck (1930) suggested from physical considerations that the noise

process ξt in Langevin’s equation should be modelled as a wide-sense stationary

process with covariance function c(s) = S0δ(s). Such processes would have constant

spectral density, and hence by analogy with optics are called white noise processes

(see Parzen, 1962). Whilst desirable from a physical perspective, the delta function

in the defining law requires some further interpretation. For this purpose, we define

a standard Wiener process Wt to be a Gaussian process with mean zero at all times,

and independent increments ∆s,t = Wt −Ws obeying Var(∆t,s) = |t− s|. These are

also known as Brownian motions. Doob (1942) showed that Langenvin’s equation,

driven by Gaussian white noise, could be written rigorously in the form

dXt = −aXtdt+ bdWt, (2.3)

a so-called stochastic differential equation. In reality, this is to be interpreted as an

integral equation of the form

Xt = X0 −
∫ t

0

aXsds+

∫ t

0

bdWt. (2.4)

To illustrate Doob’s perspective, consider the process defined by

Xh(t) =
1

h
∆t,t+h =

Wt+h −Wt

h
, (2.5)

it may be shown to be zero mean Gaussian process, stationary in the wide sense

with spectral density Sh(ν) =
(

sin(πνh)
πνh

)2

, see Doob (1953, p.525). We see that

Sh(ν) → 1 as h → 0, and hence the Gaussian white noise may be considered as

a derivative of the Wiener process, in a suitably weak sense. However, the sample

paths t 7→ W (t, ω) are almost surely nowhere differentiable (see Hida, 1980). In

applications, the noisy forcing terms often depend on the state of the system. The

simplest nontrivial dependency is often termed ‘multiplicative noise’ and corresponds

to an equation of the form

dXt = aXtdt+ bXtdWt. (2.6)

14
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This is sometimes called a Geometric Brownian motion. The celebrated Black-

Scholes-Merton model assumes that stock prices follow such an equation (see Black

& Scholes 1973 and Merton 1973). Again, this is to be interpreted as an integral

equation, but we require considerable care in defining terms of the form
∫
XsdWs.

The intention is to consider this integral as a random variable, defined pathwise as

an integral. We may define the Riemann-Stieltjes integral
∫ b
a
fdg as the limit of

sums

Sn =
∑

tk,tk+1∈πn

f(tk)(g(tk+1)− g(tk)), (2.7)

where πn = {a = t0 < t1 < . . . < tl = b} is a sequence of partitions with mesh size

tending to zero. It is however a standard result of calculus (see Protter 2003, p.

43) that a necessary and sufficient condition for the above sums to converge for all

continuous functions f is that g be of finite variation on bounded intervals; in other

words for all finite intervals I

sup
π

∑
tk,tk+1∈π

|g(tk+1)− g(tk)| <∞, (2.8)

where the supremum is over all partitions π of I. The sample paths of Wiener

process almost surely are of unbounded variation on any interval (Protter 2003, p.

19), so we may not define integrals
∫
XsdWs as pathwise Riemann-Stieltjes integrals.

Nonetheless, Itô (1944) was able to show that we may define a ‘stochastic integral’

as a limit of sums

X0W0 +
∑
σn

XTi(W
Ti+1 −W Ti), (2.9)

where σn = {T0 ≤ T1 ≤ . . . ≤ Tl} is a sequence of random partitions with mesh size

tending to zero, and W Ti := WTi∧t denotes the process stopped at the random time

Ti. The convergence is uniform on compacts in probability, defined as follows.

Definition 2.1.1 A sequence of processes Xn converges to X uniformly on compacts

in probability if, for any given t > 0 and ε > 0,

P

(
sup

0≤s≤t
|Xn(s)−X(s)| ≥ ε

)
→ 0. (2.10)
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2.2 Stochastic Integration and Semimartingales

More generally, our theoretical setting is a complete probability space (Ω,F , P )

equipped with a filtration (Ft)0≤t≤∞, an increasing family of σ-algebras that in-

tuitively represents the time evolution of the information known concerning the

system. For example, in stochastic differential systems driven by noise process,

such as Langevin’s equation, all the stochastic information is contained in the

state of the noise process(es) up to the given time, we therefore use the filtration

Ft = σ(Ws, s < t). It is assumed that the filtration satisfies the ‘usual hypotheses’:

that F0 contains all P -null sets of F and the filtration is right continuous, mean-

ing Ft = ∩u>tFu for all t < ∞. We will restrict ourselves to considering adapted

processes.

Definition 2.2.1 A stochastic process X is said to be adapted to a given filtration

(Ft) if the random variables Xt are Ft-measurable for all t.

Roughly speaking this means the state of the process at a given time does not depend

on the future state of the system. We further require the notion of a stopping time.

Definition 2.2.2 A random time T (ω) on a filtered probability space is a stopping

time if, for every t ≥ 0, the event {T ≤ t} is Ft-measurable.

Definition 2.2.3 For a given stopping time T , we define the stopping time σ-

algebra FT to be the sub-σ-algebra of F given by

{A ∈ F : A ∩ {T ≤ t} ∈ Ft, ∀t ≥ 0} (2.11)

Intuitively, the stopping time σ-algebra FT is the smallest σ-algebra containing

all right-continuous adapted processes with left limits, sampled at T , see Protter

(2003, Theorem I.6). The stochastic integral may then be constructed for adapted

integrands and integrators as follows: firstly, on the space of simple predictable
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processes X, that is adapted stochastic processes with a representation of the form

Xt = X010(t) +
n∑
i=1

χi1(Ti,Ti+1) (2.12)

where (Ti) is a finite, non-decreasing sequence of stopping times and (χi) a set of

almost surely finite, FTi-measurable random variables; we take

∫
XdY = X0Y0 +

n∑
i=1

χi(YTi+1
− YTi). (2.13)

The topology of uniform convergence on compacts is metrizable (see Protter 2003 or

Ikeda & Watanabe 1989); moreover the space of left-continuous, adapted processes

with right limits is complete with respect to this metric, and contains the simple

predictable processes as a dense subset. We may then extend the above integral

map to all left-continuous, adapted integrands with right limits by continuity. The

question arises, for which integrators Yt is the integral map X 7→
∫
XdY continuous

with respect to uniform convergence on compacts in probability? Finite variation

processes are included, as the stochastic integral then corresponds to the pathwise

Riemann-Stieltjes integral (see Protter 2003, Theorem II.17). Moreover Itô showed

that Wiener processes also possess this continuity property (see Protter 2003, Theo-

rem II.8). A deeper result is that continuity of the integral map is a ‘local’ property:

a process X possesses a property locally if there exists a sequence of stopping times

(Tn) increasing to ∞ almost surely, for which all the stopped processes XTn pos-

sess the property (see Protter 2003, Theorem II.6). Resolution of the question of

continuity of the integral map requires Doob’s theory of martingales.

Definition 2.2.4 A process Mt is a martingale with respect to the filtration Ft if

each Mt is an L1 random variable such that

E{Mt|Fs} = Ms (a.s), (2.14)

for all s ≤ t. Processes obeying the above properties but with the respective inequali-

ties ≤,≥ replacing the equality in the above relation are called supermartingales and
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submartingales respectively.

Due to the aforementioned local property of the continuity of the integral map, we

also require the notion of a local martingale.

Definition 2.2.5 A process Mt is a local martingale if there exists a sequence of

increasing stopping times Tn obeying limn→∞ = ∞ a.s., such that XTn1{Tn>0} is a

martingale for each n.

Doob highlighted the importance of martingales to Itô’s treatment of stochastic in-

tegration; a Wiener process is a martingale with respect to the filtration it generates,

and it is from this property that ‘Itô’s isometry’

E

{(∫ t

0

XsdWs

)2
}

= E

{∫ t

0

X2
sds

}
, (2.15)

arises (see Ikeda & Watanabe 1989, p.49). The importance of this identity in Itô’s

first papers on stochastic integration suggested an integral might be defined for

more general martingales; this was achieved in successively more general terms by

Courrège (1962), Kunita & Watanabe (1967) and Doleans-Dadé & Meyer (1970). A

full treatment of these results requires the beautiful but technical theory of Doob

and Meyer relating (sub- and super-) martingales to (sub- and super-) harmonic

functions, see Doob (1980) for a comprehensive study. The conclusion, reached

independently by Bitcheler and Dellacherie in the 1970s (see Protter 2003, Theorem

III.47) is that the integral map X 7→
∫
XdY is continuous if and only if Y is a

semimartingale, defined in the following sense.

Definition 2.2.6 An adapted, right-continuous process with left limits Y is a semi-

martingale if it may be written as a sum Yt = Y0 + Mt + At, where M is a local

martingale and A a finite variation process, obeying M0 = A0 = 0.

We conclude our treatment by noting that the stochastic integral with respect to

a semimartingale admits a wider class of integrands than left-continuous processes.

Specifically, the allowable integrands consist of predictable processes.
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Definition 2.2.7 The predictable σ-algebra is defined to be the smallest σ-algebra

on R+×Ω for which all left-continuous adapted processes with right limits are mea-

surable.

Definition 2.2.8 A stochastic process is said to be predictable if it is measurable

with respect to the predictable σ-algebra.

See, eg Protter (2003, Chapter IV) for a discussion of stochastic integration with

respect to predictable integrands.

2.3 Stochastic Calculus

It is important to note that the definition of the stochastic integral
∫
XdY adopted

above possesses properties different from those of deterministic integrals. Particu-

larly, the analogue of the deterministic integration-by-parts rule fg =
∫
fdg+

∫
gdf

does not hold. Indeed, for given semimartingales X, Y , Meyer’s quadratic covaria-

tion bracket, defined by

[X, Y ] = XY −
∫
X−dY −

∫
Y−dX (2.16)

is in general non-zero. Note the use of the left-hand limits Xt− := lims↑tXs in the

above, this is as we require the integrands to be predictable. The bracket is evidently

bilinear and symmetric and thus obeys a polarization identity

[X, Y ] =
1

2
([X + Y ]− [X]− [Y ]), (2.17)

where [X] := [X,X] is called the quadratic variation. The quadratic variation may

be shown to be an increasing process; the quadratic covariation of two semimartin-

gales may be then written as a difference of increasing processes. This property

characterizes finite variation processes, hence [X, Y ] is a finite variation process and

therefore semimartingale for any semimartingales X, Y (see Protter 2003, Chapter

II.6). The quadratic covariation bracket therefore endows the vector space of semi-

martingales with a commutative algebra structure. We may represent the quadratic
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covariation as a limit of Riemann sums of the form

[X, Y ] = X0Y0 + lim
n→∞

∑
i

(XTn
i+1 −XTn

i )(Y Tn
i+1 − Y Tn

i ), (2.18)

see Protter (2003, p.68). This has further consequences for the transformation prop-

erties of the stochastic integral. Particularly, let σn = {0 = T n0 ≤ . . . ≤ T nkn} be a se-

quence of random partitions tending to the identity, meaning limn supk T
n
k =∞ a.s.,

and supk |T nk+1−T nk | → 0 a.s., see Protter (2003, p.64). For a continuous semimartin-

gale Xt, we may then derive a change-of-variables rule by writing f(Xt)− f(X0) as

a limit of telescoping sums,

f(Xt)− f(X0) =
kn∑
i=0

f(XTn
i+1

)− f(XTn
i

). (2.19)

Assuming f is sufficiently smooth, we may expand each summand using Taylor’s

formula, we obtain

f(Xt)− f(X0) =
∑
i

f
′
(XTn

i
)(XTn

i+1
−XTn

i
) +

1

2

∑
i

f
′′
(XTn

i
)(XTn

i+1
−XTn

i
)2 + . . . ,

(2.20)

see Protter (2003). In conventional calculus, we would expect the second term to

tend to zero. Instead, examining the Riemann-sum properties of the quadratic

variation, it may be seen to converge uniformly on compacts in probability to

1
2

∫ t
0
f
′′
(Xs)d[X]s. In particular, the following change-of-variables rule, called Itô’s

formula applies:

f(Xt)− f(X0) =

∫ t

0

f
′
(Xs)dXs +

1

2

∫ t

0

f
′′
(Xs)d[X]s. (2.21)

The change-of-variables is further complicated by the presence of jumps. For twice

differentiable functions f , the most general form of Itô’s formula is as follows. For

a vector of semimartingales, (X1, . . . , Xd), we have

f(Xt)− f(X0) =
∑
i

∫ t

0+

∂f

∂xi
(Xs−)dY i

s +
1

2

∑
i,j

∫ t

0+

∂2f

∂xi∂xj
(Xs−)d[X i, Xj]cs (2.22)
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+
∑
s≤t

{
f(Ys)− f(Ys−)−

∑
i

∂f

∂xi
(Ys−)∆Y i

s

}
, (2.23)

see Protter (2003, Chapter II.7). In modelling applications where a stochastic dif-

ferential equation arises as an idealized limit of differential equations obeying the

usual laws of calculus, these transformation properties are undesirable. For instance,

in Langevin-type equations where the noise results from an external force, such as

electromagenetic wave propagation in a turbulent atmosphere, the noise will not be

truly white, but modelled by a stationary process with an autocorrelation function

supported on an interval an order of magnitude smaller than the time scale of the

system. In this case, the resulting equation is well-defined and transforms according

to the usual rules of calculus. Accordingly, the behaviour of the system is not accu-

rately reproduced by the white noise idealization when the equation is interpreted in

the Doob sense using Itô’s integral, see van Kampen (1981). In addition, stochastic

differential equations using the above definition of the integral are not in general

invariant under coordinate changes, for physical applications this presents difficul-

ties. These considerations suggest the desirability of developing a stochastic integral

which obeys the usual laws of calculus. This was accomplished independently for

continuous integrators in unpublished work of D.L. Fisk, 1963 (see Jarrow & Protter

2004 for a discussion) and by Stratonovich (1966), and further extended by Meyer

(1977). Following Meyer, we define the Stratonovich integral by

∫ t

0

Ys := dXs =

∫ t

0

YsdXs +
1

2
[Y,X]ct , (2.24)

where [Y,X]c denotes the continuous part of the quadratic covariation bracket, and

the ◦ indicates that the integral is interpreted in the Stratonovich sense. We re-

quire that the covariation process [Y,X] is defined, as is the case for instance for

semimartingale integrators Y . For a continuous semimartingale X, we see that the

usual integration-by-parts rule holds, and in addition we obtain the usual change-

of-variables rule

f(Xt)− f(X0) =

∫ t

0

f
′
(Xs) ◦ dXs. (2.25)
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Again assuming the continuity of Xt, the Stratonovich integral may then be written

as a limit of Riemann sums of the form

∫ t

0

Ys− ◦ dXs = lim
n→∞

∑
i

1

2
(YTn

i
+ YTn

i+1
)(XTn

i+1 −XTn
i ). (2.26)

This was Stratonovich’s original approach, see Stratonovich (1966) or Protter (2003).

For discontinuous integrators there are methods of representing the Stratonovich

integral as a limit of Riemann sums but they are somewhat complicated and we will

not reproduce them here, see Protter (2003, pp. 291–295). The Stratonovich integral

is sometimes defined for Wiener processes as a limit of time averaged Riemann sums

of the form

∫
f(Ws) ◦ dWs = lim

∑
i

f(W 1
2

(ti+ti+1))(Wti+1
−Wti), (2.27)

this representation does not hold for general semimartingale integrators, even un-

der the assumption of continuity, see Yor (1977). We must also note that the

Stratonovich integral does not obey the usual laws of calculus where the integrators

have jumps, we obtain change-of-variables formulae such as

f(Xt)− f(X0) =

∫ t

0

f
′
(Xs) ◦ dXs +

∑
s≤t

(f(Xs)− f(Xs−)− f ′(Xs−)∆Xs) , (2.28)

see Protter (2003).

2.4 Stochastic Differential Equations

Langevin’s equation is then a very specific case of the following stochastic differential

equation for an RN -valued process Y , driven by a set of real-valued semimartingales

Z = (Z1, . . . , Zd) and maps Vi : T ×RN → RN

dYt = V0(t, Yt)dt+
d∑
i=1

Vi(t, Yt)dZ
i
t . (2.29)
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As we have discussed, this is to be interpreted as an integral equation:

Yt = Y0 +

∫ t

0

V0(s, Ys)ds+
d∑
i=1

∫ t

0

Vi(s, Ys)dZ
i
s (2.30)

We must pause to reflect on the meaning of this equation. Suppose we are free

to prescribe a particular evolution of the driving processes, {Z1
t , . . . Z

d
t , t ≥ 0}; a

pairing (Y, Z) satisfying the above equation is called a weak solution. If, however,

we require the solution Y as a functional of a general process Z, this is termed

a strong solution. In this thesis we will focus exclusively on strong solutions. It

remains to consider the existence and uniqueness of strong solutions to the above

equations. As in the case of ordinary differential equations, the relevant conditions

on the driving fields Vi include Lipschitz conditions:

||Vi(t, x)− Vi(t, y)|| ≤ αi||x− y|| (2.31)

for some constants αi and all t, x, y, and linear growth conditions:

||Vi(t, x)|| ≤ βi(1 + ||x||), (2.32)

where βi are constants. In some cases the latter conditions may be deducible from

the former. For a full treatment of existence and uniqueness results, see Protter

(2003, Chapter 5.3), and for more specific results pertaining to equations driven by

Lévy processes see Appelbaum (2004, chapter 6.2). For results specific to equations

driven by Wiener processes, see (Milstein 1995 or Kloeden & Platen, 1998). We will

always assume the driving fields Vi are sufficiently regular to ensure the existence

and uniqueness of strong solutions.

2.5 Lévy processes

Whilst the Wiener process is an important model of driving noise, it is not suitable

for all purposes. For instance, sample paths of Wiener processes and solutions to

equations driven by Wiener noise almost surely possess a continuous modification,
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see Protter (2003, p.17). In many circumstances this is a desirable property, but we

may wish to incorporate jumps into our model, for example in modelling financial

markets, where sudden movements of prices are a reality. The Wiener process is also

scale invariant, in the sense that it possess similar statistical properties across all

time scales; again, this may not reflect the properties of the noise we wish to model.

See for instance the introductory chapter of Cont & Tankov (2004) for a detailed dis-

cussion of the shortcomings of modelling financial markets using Wiener processes,

and the desirability of incorporating jump discontinuities in the driving noise. Ana-

lytically, we know that we can define a stochastic integral for semimartingales, and

that stochastic differential equations driven by semimartingales admit solutions if

certain criteria are satisfied. Semimartingales are a very broad class of process and

we will restrict ourselves to a subclass of driving semimartingales called Lévy pro-

cesses. This includes a wide variety of driving noise, including Wiener processes as

a special case but permitting also discontinuous processes, and is analytically more

tractable than the general semimartingale.

Definition 2.5.1 An adapted process (Xt)t∈[0,∞) is defined to be a Lévy process if

it satisfies the following conditions: (assuming s < t ∈ [0,∞))

1. X0 = 0 (a.s.)

2. Continuous in probability: we have limh→0 P (|Xt+h − Xt| ≥ ε) = 0 for all

ε > 0, t <∞.

3. Increments independent of past: for all t > s, Xt −Xs is independent of Fs,

where (Ft)0≤t≤∞ is the filtration generated by X.

4. Stationary increments: for all t > s, we have Xt −Xs ∼ Xt−s.

Lévy processes may be considered the continuous time generalizations of random

walks, defined to be discrete time stochastic processes consisting of sums of indepen-

dent identically distributed random variables. The justification of this observation

is as follows: consider the discrete time process Sn(h) resulting from sampling a

given Lévy process Xt at times t = nh. We then have Sn(h) =
∑n−1

k=0 ∆k, where
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∆k = X(k+1)h − Xkh are independent, identically distributed random variables by

the definition of Lévy processes. We observe that for any value of t, the distribution

of Xt may be represented as a sum of n independent identically distributed random

variables for all positive integers n (see Bertoin 1996, p.11). Probability distributions

possessing this property are called infinitely divisible. Indeed, infinitely divisible dis-

tributions are in one-to-one correspondence with Lévy processes, as for any infinitely

divisible distribution F we may define a Lévy process X such that F is the law of

X1 (see Protter 2003, Chapter I.4). Recall that the law of a RN -valued random vari-

able X is characterized by its characteristic function Φ(z) = E{exp(iz.X)}, where

z.X denotes the Euclidean inner product. The stationary, independent increments

possessed by a Lévy process ensure its characteristic process Φt(z) = E{exp(iz.Xt)}

is multiplicative in the sense that Φt+s(z) = Φt(z)Φs(z). The stochastic continuity

then shows that t 7→ Φt(z) must be an exponential function: for any RN -valued

Lévy process Xt we have

E{exp(iz.Xt)} = exp(tφ(z)), (2.33)

where φ(z) : RN → R is a continuous function (see Bertoin, 1996). Observe that the

characteristic function of an infinitely divisible distribution is then of the form eφ(z).

In fact, we can also characterize the form of φ, but we first require a definition:

Definition 2.5.2 (Lévy measure) Let X be an RN -valued Lévy process. Define

a measure on RN by

ν(A) = E(|{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}|) (2.34)

where A is a Borel-measurable set and ∆Xt is the jump process defined by ∆Xt =

Xt − lims↑tXs.

Intuitively, ν(A) measures the expected number per unit time of jumps the process

Xt accrues taking values in the set A. Suppose further that (Xt) is real-valued. We

obtain the following:

E{exp(iz.Xt)} = exp(tφ(z)), (2.35)
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where we have, for some γ, σ > 0

φ(z) = iγz − 1

2
σz2 +

∫ ∞
−∞

(eizx − 1− izx1|x|≤1)ν(dx), (2.36)

where the measure ν satisfies
∫
R(1 ∧ |x|2)dx < ∞. The above identity is the Lévy-

Khintchine formula (see Protter, 2003). A similar expression may be derived for

RN -valued processes, see Jacod & Shiryaev (1987) or Bertoin (1996) for details.

Related is Lévy’s decomposition of a Lévy process: suppose that (Xt) is a real-

valued Lévy process. We may then write

Xt = αt+ σWt +

∫ t

0

∫
R
x(Q(ds, dx)− dsν(dx)), (2.37)

where α, σ are real numbers, Wt is a standard Wiener process (see Appelbaum

2004, Theorem 2.4.16). The integral is with respect to the compensated random

measure Q(ds, dx) − dsν(dx), where ν is the Lévy measure and Q is defined such

that Q([a, b], A) counts the number of jumps of the process Xt taking values in the

set A in the time [a, b]. In the following section we will explore the meaning of this.

2.6 Integration and Point Processes

The treatment in this section largely follows Ikeda & Watanabe (1989). Let (E ,BE)

be a measurable space, where BE is the Borel σ-algebra on E . We call a function

p : Dp → E such that Dp ⊂ (0,∞) a point function with marks in E . The intention

is to encode the occurence at certain times of an event, or ‘mark’. For our purposes,

this will always be a real number, intended to represent the magnitude of a jump in

the value of some process. To any point function p we associate a counting measure

Qp(dt, dx) on (0,∞)× E with the product Borel σ-algebra B((0,∞))× BE , defined

such that

Qp((0, t]× U) = |{s ∈ Dp ∩ (0, t] : p(s) ∈ U}|. (2.38)

In words, Qp((0, t] × U) counts the number of times s ≤ t for which there is a

corresponding mark p(s) taking values in U . Let πE be the space of point functions
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with marks in E , and define B(πE) to be the smallest σ-algebra for which all mappings

p 7→ Qp((0, t] × U), t > 0, U ∈ BE are measurable. We then define a point process

on E to be a (πE ,B(πE))-valued random variable. We say a point process p(ω)

is Poisson if the associated random counting measure Qp(ω) is a Poisson random

measure, meaning for all B ∈ B((0,∞))× BE we have

P (Qp(B) = n) =
λ(B)ne−λ(B)

n!
, (2.39)

where λ is a non-random measure on (0,∞) × E called the intensity. It is further-

more required that Qp(B1), . . . , Qp(Bn) be mutually independent for any disjoint,

measurable B1, . . . Bn. A point process is said to be stationary if the random vari-

ables p(ω) and θtp(ω) are equal in law for all t, where θt is the shift operator acting

on point functions by θtp(s) = p(s+ t). A Poisson point process is stationary if and

only if its intensity measure may be written as

λ(dt, dx) = dtν(dx), (2.40)

for some measure ν defined on E (See Ikeda & Watanabe 1989, p. 43). Suppose

once more we have a filtration structure (Ft) on the underlying probability space.

If each Qp(t, U) is Ft-measurable, then we say the point process p(ω) is adapted to

the filtration. Where it exists we then define, for a point process p with associated

counting measure Qp, a stochastic integral

∫ t

0

∫
E
f(s, x, ω)Qp(ds, dx) =

∑
s≤t

f(s, p(s), ω). (2.41)

To discuss the properties further, we require the notion of the compensator of pro-

cess. Rao’s theorem (see Rao 1969 or Protter 2003, p. 119) implies that for any

process X of locally integrable variation there is a unique predictable, finite varia-

tion process X̂ such that X − X̂ is a local martingale. As the process t 7→ Qp(t, U)

is of locally integrable variation, it possesses a compensator, which we define to be

Q̂p(t, U). Under mild conditions on E , we may define an associated measure Q̂p
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giving rise to the compensator. For a stationary Poisson point process with count-

ing measure Qp and intensity λ(dt, dx) = dtν(dx), we have Q̂p(t, U) = tν(dx), see

Ikeda & Watanabe (1989, p. 60). We may then define a compensated measure Q̃p

by Q̃p = Qp − Q̂p. The key point is that we may be able to define an integral with

respect to the compensated measure when the integral with respect to the original

measure does not exist. For instance, suppose Xt is a real-valued Lévy process with

zero Wiener component in its Lévy decomposition and jump measure Q. If Xt is of

infinite variation on a given interval [0, t], the sum of jumps
∑

s≤t ∆Xs is undefined.

The integral
∫ t

0

∫
R xQ(dx, ds) is therefore similarly undefined. Nonetheless, the Lévy

decomposition Xt = αt +
∫ t

0

∫
R x(Q(dx, ds) − dsν(dx)) will still hold. We begin by

defining ∫ t

0

∫
E
f(s, x, ω)Q̃p(ds, dx) (2.42)

=

∫ t

0

∫
E
f(s, x, ω)Qp(ds, dx)−

∫ t

0

∫
E
f(s, x, ω)Q̂p(ds, dx), (2.43)

for an appropriate class of functions f for which the integrals on the right ex-

ist, see Ikeda & Watanabe (1989). The process t 7→
∫ t

0

∫
E f(s, x, ω)Q̃p(ds, dx) is

then a martingale. We endow the space of square-integrable martingales with a

metric topologizing uniform convergence on compacts in probability. The integral∫ t
0

∫
E f(s, x, ω)Q̃p(ds, dx) may then be extended to a wider class of functions by us-

ing a sequence of truncated versions of f for which the uncompensated integral is

defined and appealing to convergence in the metric space (see Ikeda & Watanabe

2009). Important is the following result, recalling Itô’s isometry. For a process

X, we define the conditional quadratic variation 〈X〉 to be the compensator of the

quadratic variation [X], where this exists. The following identity holds:

〈
∫ t

0

∫
E
f(s, x, ω)Q̃p(ds, dx)〉 =

∫ t

0

∫
E
f 2(s, x, ω)Q̂p(ds, dx). (2.44)
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2.7 Numerical Methods

Explicit strong solutions for stochastic differential equations are rare, especially

those involving multiple or discontinuous driving processes. We shall therefore re-

strict our focus to numerical simulation of solutions. Indeed, we consider approxima-

tions which are functionals of the driving processes, or more generally their multiple

iterated integrals; in practice these processes will be simulated using a pseudoran-

dom number generator and the approximate solution computed from the simulation

by a recursive algorithm. The approximate solutions we generate over a time interval

[0, T ] are time discrete processes defined at a discretization grid of stopping times

0 = τ0 < τ1 < . . . < τN = T . We shall restrict ourselves throughout to equidistant,

deterministic grids τn = nh, where h is a given stepsize. We wish to minimize the

root mean square error of an approximation Ŷt to the solution Yt

ε := sup
t<T
||Ŷt − Yt||L2 . (2.45)

More precisely, consider a family of approximations Ŷ (h) parametrized by their

stepsize h. The basic requirement is that the scheme should converge, that is to say

ε(h)→ 0 as h→ 0. We say that the scheme Ŷ (h) converges with strong order γ at

time T if there exist constants C and h0, such that for all h < h0 we have

ε(h) := sup
0≤t≤T

||Ŷt(h)− Yt||L2 ≤ Chγ. (2.46)

The strong order of convergence of a numerical scheme based on truncation of the

stochastic Taylor series, or modifications thereof, is limited by the set of multiple

iterated integrals included. By Radford’s theorem and its extension to quasi-shuffle

algebras (see Chapter 3.1.4 of this thesis), the iterated integrals have a basis compris-

ing those indexed by Lyndon words. Our methods therefore cannot improve upon

the strong order of convergence (see Ebrahimi–Fard et al. 2012). Indeed, Clark &

Cameron (1980) showed that any numerical approximation of a drift-diffusion equa-

tion that is measurable with respect to the σ-algebra generated by a set of Wiener

increments of fixed stepsize possesses a maximum generic order of convergence of one
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half. Order one convergence may be obtained when there is only one driving Wiener

process, or certain commutativity conditions are satisfied by the driving vector fields,

see Clark & Cameron (1980). Clark (1982) and Newton (1986, 1991) accordingly

derived numerical integration schemes for one-dimensional drift-diffusion equations,

depending on the driving Wiener process only through its values at discretization

points, that minimize the mean square error among the class of such schemes in the

following sense.

Definition 2.7.1 A numerical scheme Ŷ 0 for an equation of the form stochastic

differential equation driven by a one-dimensional Wiener process Wt is said to be

asymptotically efficient if for all such schemes Ŷ with N steps, and any given non-

zero vector y,

lim inf
N

E{(yT (YT − ŶN))2|Wh, . . . ,WNh}
E{(yT (YT − Ŷ 0

N))2|Wh, . . . ,WNh}
≥ 1. (2.47)

This characterizes the requirement that the leading order coefficient of the error εh,

expressed as a power series in h, is minimal among all such schemes. Castell & Gaines

(1996) showed that their integration scheme, based on the truncated exponential

Lie series, is asymptotically efficient in the above sense. The requirement that

the approximation be measurable with respect to the σ-algebra generated by the

increments of the driving processes is too strong for our purposes. Indeed, it is only

satisfied for schemes based on truncated Taylor expansions if the Lyndon basis for

the set of iterated integrals included contains no words of length greater than one.

Particularly, the integration schemes of Milstein (1974) and Wagner & Platen (1982)

of higher order of convergence are excluded. Lord, Malham & Wiese (2008) and

Malham & Wiese (2008) examined whether higher order Castell & Gaines schemes

could be shown to satisfy the following weaker error optimality result.

Definition 2.7.2 A numerical scheme for a stochastic differential equation driven

by Lévy processes is said to be efficient if the local mean square error accrued at each

timestep is less than the mean square error of the integration scheme of the same

order of convergence arising from truncation of the stochastic Taylor series, for all
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driving vector fields in a prescribed class.

A justification for minimising the local flow remainder to obtain optimality at the

global level for stochastic integration scheme may be found in Malham & Wiese

(2009). Malham & Wiese (2008) showed that the order 3
2

Castell & Gaines scheme

is efficient for all drift-diffusion equations driven by a single Wiener process, with

smooth, autonomous vector fields. Lord, Malham & Wiese (2008) provided a coun-

terexample showing that, in the absence of commutativity conditions, the order one

Castell & Gaines scheme is not efficient for equations with multiple driving Wiener

processes. Malham & Wiese (2009) derived an integration scheme for such equations

and proved an efficiency result for their scheme. The main result of this thesis will

be the derivation of an integration scheme obeying an efficiency result for a certain

class of equations driven by Lévy processes.
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Integration Algebras

We now consider the properties of shuffle and quasi-shuffle algebras, recalling that

they arise in the study of multiple iterated integrals. We begin with definitions

and illustrative examples. We then define bialgebras and Hopf algebras and discuss

the Hopf algebraic structures associated to shuffle and quasi-shuffle algebras, in

particular giving Hoffman’s isomorphisms of shuffle and quasi-shuffle Hopf algebras.

We proceed to discuss the Lie theoretic aspects of the shuffle algebra, culminating

in Radford’s theorem that the Lyndon words form a basis for the shuffle algebra,

and Hoffman’s demonstration that they likewise form a basis of the quasi-shuffle

algebra. For a fuller treatment of the above topics in relation to the shuffle algebra,

see Reutenauer (1993). For further insights into the quasi-shuffle algebra, see the

original papers Hoffman (2000) and Hoffman & Ihara (2012). The quasi-shuffle

algebra is treated from a more abstract perspective in Loday (2007). There are

several good textbooks treating Hopf algebras in general, see Sweedler (1969) and

Abe (1980). For a more general discussion of the combinatorics of the free monoid

and related structures, see Lothaire (1983). We close the chapter with a presentation

of the results published in Curry et al. (2014) that the algebra generated by iterated

integrals of Lévy processes with moments of all orders is isomorphic to a certain

quasi-shuffle algebra.
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3.1 Shuffle and Quasi-shuffle Algebras

We begin by giving the definitions of the shuffle and quasi-shuffle algebras. We

follow by discussing how the duality between these products and the standard con-

catenation product x × y = xy of non-commuting indeterminates gives rise to rich

algebraic structures known as Hopf algebras. The isomorphism between the shuffle

and quasi-shuffle algebras is an isomorphisms of Hopf algebras; we give this isomor-

phism explicit, along with an isomorphism of the graded dual Hopf algebras. In

the following section, we show that both shuffle and quasi-shuffle algebras possess

a basis in terms of Lyndon words, this follows from a consideration of the Lie-

theoretic properties of the shuffle algebra and we will give an illustrative sketch of

the reasoning behind this.

3.1.1 Definitions

Let A∗ be the free monoid on the set or ‘alphabet’ A, comprising all words w =

a1 . . . an with letters ai ∈ A. The product is concatentation of words: a1 . . . an ×

a′1 . . . a
′
m = a1 . . . ana

′
1 . . . a

′
m. The identity for the concatenation product is the

empty word, denoted by 1. For a given field K, we may extend this product K-

linearly to the space K〈A〉 of noncommuting polynomials in elements of A, with

coefficients in K. The resulting algebra is the free associative K-algebra on A.

Definition 3.1.1 The shuffle product on K〈A〉 is defined inductively on words as

follows.

w xxy1 = 1 xxyw = w, (3.1)

where w ∈ A∗, and for letters a, b ∈ A and words u, v ∈ A∗,

au xxy bv = a(u xxy bv) + b(au xxy v). (3.2)

The K-module K〈A〉 then acquires a commutative algebra structure with the shuffle

product, we will write K〈A〉 xxy for this algebra. An alternative characterization of the

shuffle product is as follows. Let w = a1 . . . an be a word of length n. To each subset
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I = {i1 < . . . < ik} ⊂ [n] := {1, . . . , n} we associate a subword w|I := ai1 . . . aik .

We then define, for words u1, u2 ∈ A∗ of lengths m and n respectively,

u1 xxyu2 =
∑

I1∪I2=[m+n]
|I1|=m, |I2|=n

w(I1, I2), (3.3)

where w(I1, I2) is the word of length m + n uniquely determined by w|Ij = uj, for

j = 1, 2. Indeed, for any k ≤ m + n, either k ∈ I1 or k ∈ I2. Let j be the index

of the subset to which k belongs, and suppose that k is the lth element in Ij. The

kth letter of the constructed word w(I1, I2) is then the lth letter of uj. This is

sufficient to determine the word, as the above argument holds for all k ≤ m+n, and

hence determines each letter of w(I1, I2).This characterization of the shuffle product

corresponds to the intuitive idea of summing over all words made up of the totality

of letters of u1 and u2, preserving the order of the letters of each word ui in the

larger word individually.

Example 3.1.2 Let A = {a, b, c}. We then have

ab xxy cb = a(b xxy cb) + c(ab xxy b)

= a(b(1 xxy cb) + c(b xxy b)) + c(a(b xxy b) + b(ab xxy1))

= a(bcb+ c(b(1 xxy b) + b(b xxy1))) + c(ab(b xxy1) + ab(1 xxy b) + bab)

= abcb+ 2acbb+ 2cabb+ cbab. (3.4)

Alternatively, the decompositions of {1, 2, 3, 4} as an intersection of two subsets

containing two elements are

(1, 2)∪ (3, 4), (1, 3)∪ (2, 4), (1, 4)∪ (2, 3), (2, 3)∪ (1, 4), (2, 4)∪ (1, 3), (3, 4)∪ (1, 2).

For each of the above decompositions {1, 2, 3, 4} = I1 ∪ I2, the words w(I1, I2) are

given respectively by

abcb, acbb, acbb, cabb, cabb, cbab.

Summing over the above, we obtain again ab xxy cb = abcb+ 2acbb+ 2cabb+ cbab.
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Now let KA be the free K-module over A, and suppose that KA possesses of itself

a commutative K-algebra structure, with product denoted M .

Definition 3.1.3 The quasi-shuffle product on K〈A〉 induced by the commutative

product M on KA is a deformation of the shuffle product, defined inductively as

follows.

w ∗ 1 = 1 ∗ w = w, (3.5)

for all w ∈ A∗, and for letters a, b ∈ A and words u, v ∈ A∗,

au ∗ bv = a(u ∗ bv) + b(au ∗ v) +M(a, b)(u ∗ v). (3.6)

We may adapt the characterization of the shuffle product using partitions of [n] to

give an alternative, equivalent definition of the quasi-shuffle product if we remove the

requirement that the partitions are non-intersecting. Precisely, we have for words

u = u1 . . . um, v = v1 . . . vn,

u ∗ v =
m+n∑
l=m∨n

∑
I∪J=[l]

|I|=m, |J |=n

w̃(I, J), (3.7)

where m∨n denotes the maximum of m and n, and w̃(I, J) is determined as follows.

w̃(I, J)|{k} =


uik k ∈ I /∈ J

vjk k ∈ J, /∈ I

M(uik , vjk) k ∈ I,∈ J.

(3.8)

Note that the quasi-shuffle definition recovers the shuffle product in the case where

M is the trivial product M(a, b) = 0 for all a, b.

Example 3.1.4 Let A = {a0, . . . , an, . . . , } ∼= Z+, the group of non-negative inte-

gers under multiplication, and endow RA with the commutative algebra structure

induced by the group operation, ie. ai.aj = ai+j. The induced quasi-shuffle algebra

on A is sometimes known as the stuffle algebra. It arises, for instance in the study
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of multiple zeta values. Given a word w = ai1 . . . ail, we define a map ζ : U → R by

ζ(w) =
∑

n1>n2>...nl≥1

1

ni11 n
i2
2 . . . n

il
l

, (3.9)

where U is the subset of A∗ comprising words of non-zero length where the first letter

a1 ≥ 2. The images ζ(ai1 . . . ail), sometimes written ζ(i1, . . . , il) are called multiple

zeta values. The map ζ is a homomorphism for the above quasi-shuffle product (see

Zudilin, 2003). For instance, the relation

a2 ∗ a2 = 2a2a2 + a4 (3.10)

holds, from which we derive the following non-trivial identity concerning multiple

zeta values

ζ(2)2 = 2ζ(2, 2) + ζ(4). (3.11)

3.1.2 Shuffle Hopf Algebras

We have defined two products on words: the concatenation conc(u, v) = uv and the

shuffle sh(u, v) = u xxy v. These products are compatible in a sense through duality.

We will ultimately show that this compatibility may be understood in the framework

of Hopf algebras. First, we must discuss the meaning of duality in this context.

Definition 3.1.5 For a given polynomial P ∈ K〈A〉, write (P,w) for the coefficient

of the word w in P . This bracketing extends as follows to give an inner product on

K〈A〉.

(P,Q) :=
∑
w∈A∗

(P,w)(Q,w). (3.12)

Definition 3.1.6 For a field K and alphabet A, we then define K〈〈A〉〉 to be the

space of all formal series

S =
∑
w∈A∗

(S,w)w. (3.13)

We then define a product on K〈〈A〉〉 by

(ST,w) =
∑
w=uv

(S, u)(T, v), (3.14)
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this extends the concatenation product on K〈A〉.

The inner product on K〈A〉 then extends to a pairing K〈〈A〉〉×K〈A〉 → K defined

by

(S, P ) =
∑
w∈A∗

(S,w)(P,w), (3.15)

as the sum on the right is finite. Indeed, this pairing identifies K〈〈A〉〉 with the dual

space of K〈A〉. Note then that the elements of A∗ form an orthonormal basis for

this inner product. We then further identify K〈A〉 ⊗ K〈A〉 with a subspace of its

dual using the unique inner product for which A∗ ⊗ A∗ is an orthonormal basis.

The space K〈A〉 has a natural graded algebra structure K〈A〉 =
⊕

nKAn, where

KAn consist of the homogenous polynomials of degree n. A graded vector space

V =
⊕

n Vn admits a graded dual space defined by V o =
⊕

V ∗n , where V ∗n are

the dual spaces of the graded components. The graded dual space is in general a

subspace of the dual space. Considering the pairing defined above, we see that each

of the graded components KAn of K〈A〉 are self-dual; it follows that K〈A〉 is the

graded dual of itself. To further explore the compatibility of shuffle and concatenate,

we require the definition of a coalgebra, dual to the definition of an algebra. Let A be

an unitary associative K-algebra with product µ : A⊗A→ A and unit η : K → A.

The associative and unitary properties may be characterized by the commutativity

of the following diagrams.

A⊗ A⊗ A
µ⊗ 1

- A⊗ A K ⊗ A
η ⊗ 1
- A⊗ A �

1⊗ η
A⊗K

A⊗ A

1⊗ µ

? µ
- A

µ

?
A

µ

?�

∼=
∼=

-

Following a standard procedure of category theory, we define the dual notion of a

coalgebra by inverting the arrows in the diagrams above. Specifically, a K-module

C equipped with coproduct ∆ : C → C ⊗ C and counit ε : A → K is said to be a

counital coassociative K-coalgebra if the following diagrams commute.
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C ⊗ C ⊗ C �
∆⊗ 1

C ⊗ C K ⊗ C �
ε⊗ 1

C ⊗ C
1⊗ ε
- C ⊗K

C ⊗ C

1⊗∆

6

�
∆

C

∆

6

C

∆

6

∼=

-
�

∼=

In what follows, we will show both the concatenation and shuffle algebras admit

dual coalgebras. Moreover, for each of these algebra structures, we observe a com-

patibility relation between itself and the coalgebra dual to the other algebra.

Definition 3.1.7 Define δ : K〈A〉 → K〈A〉 ⊗K〈A〉 to be the unique concatenation

homomorphism determined by δ : a 7→ a⊗ 1 + 1⊗ a for all a ∈ A.

We now compute the action of δ on a general word:

δ(a1 . . . an) = δ(a1) . . . δ(an) (3.16)

= (a1 ⊗ 1 + 1⊗ a1) . . . (an ⊗ 1 + 1⊗ an). (3.17)

Now note that the above product is a sum over tensor products of words u⊗v, where

each ai appears either in u or v, and u or v each comprise a subword of a1 . . . an. In

other words, we have

δ(w = a1 . . . an) =
∑

I1∪I2=[n]
I1∩I2=∅

w|I1 ⊗ w|I2. (3.18)

Recalling the definition of the inner product on K〈A〉, we then interpret our previous

characterization of δ as follows:

δ(w) =
∑
u,v∈A∗

(w, u xxy v)u⊗ v. (3.19)

Any linear map µ : V → W induces a transpose µ∗ : W ∗ → V ∗ defined by µ∗(f) =

f ◦ µ. It follows that the shuffle product sh : K〈A〉 ⊗ K〈A〉 → K〈A〉 induces a

transpose

sh∗ : K〈A〉∗ → (K〈A〉 ⊗K〈A〉)∗. (3.20)
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Furthermore, the restriction of sh∗ to K〈A〉 ⊂ K〈A〉∗ under the inner product

above is mapped K〈A〉 ⊗K〈A〉, the identification of the latter with a subset of the

dual space performed as indicated above. The resulting restriction ∆ : K〈A〉 7→

K〈A〉 ⊗K〈A〉 obeys the duality relation

(sh(u⊗ v), w) = (u⊗ v,∆(w)). (3.21)

Comparing this relation to the characterization (3.19) of the map δ, we see that the

two maps δ and ∆ are the same. We may hence regard δ as a coproduct dual to the

shuffle product and will henceforth refer to it as the de-shuffle coproduct.

Definition 3.1.8 The de-concatenation coproduct δ′ on K〈A〉 is defined by

δ′(w) =
∑
u,v∈A∗

(w, uv)u⊗ v. (3.22)

It may be shown (see Chen 1968, Theorem 1.8 or Reutenauer 1993, Proposition 1.9)

that δ′ is the unique shuffle homomorphism sending a 7→ a ⊗ 1 + 1 ⊗ a for letters

a ∈ A.

Definition 3.1.9 (Bialgebra) A K-module possessing simultaneoulsy an algebra

structure with product µ and unit η, and a coalgebra structure with coproduct δ and

counit η is defined to be a bialgebra if either of the following equivalent conditions

hold:

1. µ and η are coalgebra morphisms,

2. ∆ and ε are algebra morphisms.

Define unit and counit maps on K〈A〉 by

η :

 K → K〈A〉

k 7→ k.1
, ε :

 K〈A〉 → K

P 7→ (P,1)
. (3.23)

The above duality results relating the concatenation and shuffle products and their

dual coproducts δ, δ′ ultimately imply the following, see Reutenauer (1993, Propo-

sition 1.9).
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Theorem 3.1.10 The space of non-commuting polynomials K〈A〉 possesses two

bialgebra structures: the first with concatenation as product, δ as coproduct; for the

second we have shuffle as product and δ′ as coproduct. In both cases, η is the unit

and ε the co-unit.

Definition 3.1.11 Given a k-algebra (A, µ) and k-coalgebra (C,∆), we may define

a convolution algebra on the space of k-module morphisms C → A by

f ? g := µ ◦ (f ⊗ g) ◦∆. (3.24)

For any product µ and coproduct ∆ on the space K〈A〉, the space End(K〈A〉) of

K-module endomorphisms thus inherits a convolution algebra structure.

Define the product algebra A := K〈A〉⊗̄K〈A〉 xxy , where the product is concatenation

on the left and shuffle on the right, and ⊗̄ denotes the completion with respect to

the inner product previously defined on K〈A〉⊗̄K〈A〉. The following result plays an

important role in the algebraic encoding of integration schemes.

Lemma 3.1.12 We may canonically embed the space End(K〈A〉) → A under the

mapping ψ : f 7→
∑

w w ⊗ f(w). Furthermore this embedding is a homomorphism

when we endow the space End(K〈A)〉 with the convolution product induced by sh

and δ′.

Proof: This result is given in Reutenauer (1993, p. 29) for the other convolution

structure with concatenation product and de-shuffle coproduct. The proof given

here shows that both results are special cases of a more general theorem valid for a

general convolution algebra. For a given product µ on K〈A〉, if its dual coproduct

µ∗ may be restricted to a mapping K〈A〉 → K〈A〉 ⊗K〈A〉, we obtain the duality

relation

(µ(p⊗ q), r) = (p⊗ q, µ∗(r)). (3.25)

Let µ be such a product, and ν a coproduct defined on K〈A〉. It follows that, for

given f, g ∈ End(K〈A〉) and associated
∑
u ⊗ f(u),

∑
v ⊗ g(v) ∈ K〈A〉µ⊗̄K〈A〉ν ,
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the product of the above series is given by

∑
u,v

µ(u⊗ v)⊗ ν(f ⊗ g)(u⊗ v) =
∑
u,v,w

(µ(u⊗ v), w)w ⊗ ν(f ⊗ g)(u⊗ v) (3.26)

=
∑
u,v,w

w ⊗ (u⊗ v, µ∗(w))ν(f ⊗ g)(u⊗ v) (3.27)

=
∑
w

w ⊗ v ◦ (f ⊗ g) ◦ µ∗(w). (3.28)

The result as stated follows a fortiori.

We conclude the section by stating the main theorem concerning the Hopf algebraic

properties of the shuffle algebra and related structures.

Definition 3.1.13 (Hopf algebra) A bialgebra is defined to be a Hopf algebra if

the identity mapping of its convolution algebra admits a convolution inverse.

The following result is due to Chen (1968), see also Reutenauer (1993).

Theorem 3.1.14 There exist two bialgebra structures on K〈A〉, one with concate-

nation as product and δ as coproduct, the other with shuffle as product and δ′ as

coproduct. In both cases the unit is η : k 7→ k.1 and the counit ε : P 7→ (P,1).

The mapping S : a1 . . . an 7→ (−1)nan . . . a1 is the inverse of the identity mapping

id = η ◦ ε in both associated convolution algebras. In particularly, both bialgebra

structures are Hopf algebras with antipode S.

3.1.3 Quasi-shuffle Hopf Algebras

Let K〈A〉∗ be the quasi-shuffle algebra induced by the commutative binary operation

M , defined on the K-linear span of A. It may be shown that this too possesses a

Hopf algebraic structure when equipped with the de-concatenation coproduct δ′.

The proof is by construction of a Hopf algebra isomorphism to the shuffle Hopf

algebra with deconcatenation coproduct. First, we require a description of a class of

endomorphisms of noncommuting polynomials introduced by Hoffman (2000). For
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a word w = a1 . . . an, we write

[w] = M(a1,M(a2, . . . ,M(an−1, an) . . .). (3.29)

Definition 3.1.15 To a given formal power series with zero constant term f =

c1t + c2t
2 + . . . we associate a map f̃ : w 7→ c|w|[w]. We then define a mapping Ψ

from the space of formal series to endomorphisms of noncommuting polynomials by

Ψ(f)(w) =

|w|∑
k=1

f̃�k(w), (3.30)

where � is the convolution product of Hoffman & Ihara (2012, Section 4) defined by

(f�g)(w) =
∑

w=uv f(u)g(v), that is the convolution arising from the concatenation

product and de-concatenation coproduct.

This construction is equivalent to that introduced in Hoffman (2000) and hence Ψ

is an homomorphism for the composition structures of the space of formal power

series and End(K〈A〉) by Hoffman & Ihara (2012, Theorem 3.1).

Definition 3.1.16 The Hoffman exponential and logarithm maps are defined to be

the endomorphisms

expH = Ψ(et − 1) and logH = Ψ(log(1 + t)). (3.31)

Example 3.1.17 As an illustration, we compute a Hoffman mapping in the stuffle

algebra defined in Example 3.1.4. For any word w = ai1 . . . ail, we have [w] = ak,

where k =
∑

j ij. We compute

logH(a1a2a5) = f̃(a1a2a5) + f̃(a1)f̃(a2a5) + f̃(a1a2)f̃(a5) + f̃(a1)f̃(a2)f̃(a5). (3.32)

From the series log(1 + t) = t − 1
2
t2 + 1

3
t3 − . . . we obtain the coefficients c(1) =

1, c(2) = −1
2
, c(3) = 1

3
. It follows that

logH(a1a2a5) =
1

3
a8 −

1

2
(a1a7 + a3a5) + a1a2a5. (3.33)
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We are in a position to state the following, obtained in the setting of graded Hopf

algebras in Hoffman (2000), and in the non-graded case in Hoffman & Ihara (2012).

Theorem 3.1.18 Let K〈A〉∗ be the quasi-shuffle algebra induced by the commuta-

tive binary operation M , defined on the K-linear span of A. When equipped with the

deconcatenation product δ, unit η : k 7→ k.1 and counit ε : P 7→ (P,1), K〈A〉∗ inher-

its a Hopf algebra structure. Furthermore, the Hoffman map logH is a Hopf algebra

isomorphism from this Hopf algebra to the shuffle Hopf algebra with deconcatenation

coproduct. Its inverse is given by expH .

The K-module K〈A〉 possesses two Hopf algebraic structures relating to the shuffle

product: one with shuffle as product and de-concatenate as coproduct, the other

with concatenate as product and de-shuffle as coproduct. These are related by

duality: precisely, when A is a finite set, the latter Hopf algebra is the graded dual

of the first, when K〈A〉 is equipped with the natural grading structure arising from

the degree of homogenous polynomials, see Hoffman (2000). If the quasi-shuffle

algebra K〈A〉∗ possesses a graded algebra structure, the Hoffman isomorphisms are

isomorphisms of graded Hopf algebras. The graded dual of K〈A〉∗ therefore exists

and is a Hopf algebra isomorphic to the concatenation Hopf algebra with shuffle

coproduct. We now give this structure explicitly.

Definition 3.1.19 For a quasi-shuffle algebra K〈A〉 over a finite alphabet A, define

the de-quasi-shuffle coproduct to be the unique concatenation homomorphism acting

on letters as

δ
′′

: a 7→ a⊗ 1 + 1⊗ a+
∑
u,v∈A

M(u,v)=a

u⊗ v. (3.34)

The restriction to finite alphabets ensures that the sum appearing in the above

definition is finite. We obtain the following, see Hoffman (2000).

Theorem 3.1.20 Suppose K〈A〉 =
⊕

K〈A〉n possesses a grading structure, that

A is a finite alphabet and that KA possesses a commutative algebra structure with

grade-preserving product M . Then K〈A〉 possesses a Hopf algebra structure with
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concatenation as product, de-quasi-shuffle as coproduct, unit η : k 7→ k.1 and counit

ε : P 7→ (P,1). Moreover, there is a graded Hopf algebra isomorphism from this

space to the concatenation Hopf algebra with de-shuffle coproduct, graded by word

length.

This is a direct consequence of the existence of the Hoffman maps as graded Hopf

algebra isomorphisms and the relationship of the shuffle and concatenate Hopf al-

gebras as graded duals of each other. The resulting dual isomorphisms are given by

exp∗H(a) =
∑
n≥1

1

n!

∑
M(a1,M(...,M(an)...)=a

a1 . . . an, (3.35)

log∗H(a) =
∑
n≥1

(−1)n−1

n

∑
M(a1,M(...,M(an)...)=a

a1 . . . an. (3.36)

Note that, as expH : K〈A〉 xxy → K〈A〉∗, we have exp∗H : (K〈A〉∗)∗ → (K〈A〉 xxy )∗, and

similarly log∗H : (K〈A〉 xxy )∗ → (K〈A〉∗)∗.

We conclude our discussions of the Hopf algebraic properties of quasi-shuffle al-

gebras by considering the form of the antipode, that is the inverse of the identity

in the associated convolution algebra. We require this as the convolution alge-

bra takes an important role in our analysis. There are two convolution algebras

to consider; we here discuss that arising from the quasi-shuffle product and de-

concatenation coproduct. We begin by defining two maps: the reversing endomor-

phism R : a1 . . . an 7→ anan−1 . . . a1, and the sign map T = Ψ(−t) : w 7→ (−1)|w|w.

The antipode given previously for the shuffle Hopf algebra and its graded dual then

decompose as S = TR. It was noted in Hoffman & Ihara (2012) that the reversing

map R is an algebra automorphism for both the shuffle and quasi-shuffle algebras.

We can say more:

Lemma 3.1.21 Let K〈A〉∗ be a quasi-shuffle algebra. The reversing map R com-

mutes with all maps Ψ(f), where f is a power series.

This follows from the commutativity of [, ]. Note particularly that R then commutes

with both expH and logH . Now define the map Σ = Ψ
(

t
1−t

)
, noting that t

1−t =
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t+t2+t3+. . .. The homomorphism property of Ψ implies that Σ = expH ◦T ◦logH ◦T

(see Hoffman & Ihara 2012, Corollary 3.2). Let Ŝ denote the antipode for the

convolution algebra with quasi-shuffle product and de-concatenate coproduct. Note

the identity Ŝ = expH ◦S ◦ logH = expH T logH R. As R and logH commute, we

obtain the following result of Hoffman (2000), noting that T 2 = id.

Lemma 3.1.22 Let K〈A〉∗ be a quasi-shuffle algebra. The Hopf algebraic properties

guarantee the existence of an antipode for the convolution algebra with quasi-shuffle

product and de-concatenate coproduct. The antipode Ŝ then takes the form

Ŝ = ΣTR. (3.37)

When the convolution algebra with concatenate as product and de-quasi-shuffle as

coproduct may be defined and possesses an antipode, it does not take the form given

above. We will not use this antipode, its form may be found in Hoffman (1999, p. 9).

Note the contrast with the shuffle case, where the antipodes for the two convolution

algebra structures considered are the same.

3.1.4 Lie Theoretic Aspects and Bases

We now examine the relation of the shuffle algebra to the free Lie algebra. In doing

so, we will show that the shuffle algebra and quasi-shuffle algebra both admit a basis

of Lyndon words.

Definition 3.1.23 To any polynomials P,Q ∈ K〈A〉, we may define a correspond-

ing Lie bracket [P,Q] = PQ−QP , where PQ is the concatenation of P and Q. We

say a given polynomial is a Lie polynomial if it is an element of L(A), the submodule

of K〈A〉 generated from A by the bracket [, ].

It has been shown (see Lothaire, 1981) that L(A) is the free Lie algebra on the set

A. The following results are foundational in the theory of free Lie algebras (see

Lothaire, 1981 or Reutenauer, 1993).

Lemma 3.1.24 (Friedrichs’ criterion) A polynomial P ∈ K〈A〉 is a Lie polyno-

mial if and only if it is a primitive element for the de-shuffle coproduct δ, that is
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δ(P ) = P ⊗ 1 + 1⊗ P. (3.38)

In defining the Lyndon words, we will require two important notions from the theory

of free monoids. A word w ∈ A∗ is said to be primitive if it is not a concatenation

power of another word. Two words x, y ∈ A∗ are called conjugate if there exist

u, v ∈ A∗ such that x = uv and y = vu. We now define the lexicographical order, a

means of extending an order on a set A to the free monoid A∗.

Definition 3.1.25 Given an existing total order < on an alphabet A, the lexico-

graphical order on A∗ extends this to give an order of A∗ such that given u, v ∈ A∗,

1. u < v if v ∈ uA+,

2. u < v if (for some a < b ∈ A; l, p, q ∈ A∗)

 u = lap

v = lbq

,

where A+ is the subset of A∗ comprising non-empty words, and uA+ is the left-coset

by u of A+, that is the space of all words of length two or greater with first letter u.

We are now in a position to give the following definition:

Definition 3.1.26 (Lyndon words) Given an ordered alphabet A, a word w ∈ A∗

is a Lyndon word if it is primitive and minimal with respect to its conjugacy class,

where the minimality is with respect to the lexicographical order on A∗.

The Lyndon words are a particular case of Hall words (see Reutenauer 1993, Chapter

4), and thus form a basis of the free Lie algebra. Furthermore, any word w has a

non-increasing factorization into Lyndon words w = l1 . . . lm (see Reutenauer 1993).

For any Lyndon word l we may define an associated polynomial Pl. Explicitly, the

Lyndon words of length greater than one are characterized by the possession of a

factorization l = uv, where u, v are both Lyndon words, and u < v. If we take v to

be the maximal Lyndon word for this construction, this factorization is called the

standard factorization, and coincides with the notion of standard factorization of

Hall words (see Reutenauer, Chapter 5.1).
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Definition 3.1.27 To a given Lyndon word l with standard factorization l = uv,

we then define inductively the associated Hall polynomials

Pl = [Pu, Pv]. (3.39)

For a general word with non-increasing Lyndon factorization w = l1 . . . lm, we define

Pw = Pl1 . . . Plm.

The following is a corollary of a more general result concerning Hall polynomials

(see Reutenauer 1993, Theorem 4.9):

Lemma 3.1.28 The polynomials Pw, indexed by w ∈ A∗, defined above form a basis

for the free associative K-algebra K〈A〉.

To any basis (Pw)w∈A∗ of the algebra K〈A〉 is associated a dual basis (Sw)w∈A∗ of

the space of formal series K〈〈A〉〉, canonically isomorphic to the dual space K〈A〉∗,

this is defined such that, for any word u ∈ A∗, we have

u =
∑
w∈A∗

(Sw, u)Pw. (3.40)

The following result is a corollary of a theorem of Schützenberger (see Schützenberger

1958, Reutenauer 1993, Theorem 5.3) pertaining to the dual basis associated to

Hall polynomials, first noted in the context of Lyndon words by Melancon and

Reutenauer (1989).

Lemma 3.1.29 Let (Sw)w∈A∗ be the basis of K〈〈A〉〉 dual to the basis (Pw)w∈A∗ of

Hall polynomials associated to the Lyndon words. The following results provide an

inductive method of computing the series Sw.

1. S1 = 1.

2. Let l by a Lyndon word with first letter a, ie l = aw, where w ∈ A∗. Then

Sl = aSw.

3. Let w = li11 . . . l
ik
k be a decreasing product of powers of distinct Lyndon words.
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We then have

Sw =
1

i1! . . . ik!
S xxy i1
l1

xxy . . . xxyS xxy lk
lk

. (3.41)

We do not give a complete proof, the second part of the above lemma particu-

larly is rather technical. Instead, we show how the third part arises naturally from

Friedrichs’ criterion, hence the focus on Lie theoretic elements. Write w = w1 . . . wi,

where the wj are non-increasing, not necessarily distinct Lyndon words. By duality,

we have

(Sw1 xxy . . . xxySwi
, Pu) = (Sw1 ⊗ . . .⊗ Swi

, δi(Pu)), (3.42)

where δi is the i-fold de-shuffle, the unique concatenation homomorphism K〈〈A〉〉 →

K〈A〉⊗̄i sending a letter a ∈ A 7→ a⊗1⊗ . . .⊗1+1⊗a⊗1⊗ . . .⊗1+1⊗ . . .⊗1⊗a

(see Reutenauer, p. 25). A mild extension of Friedrichs’ criterion shows that Lie

polynomials are primitive elements for the i-fold de-shuffle, i.e.

δi(P ) = (P ⊗ 1⊗ . . .⊗ 1)(1⊗ P ⊗ 1⊗ . . .⊗ 1) . . . (1⊗ . . .⊗ 1⊗ P ). (3.43)

Writing u = u1 . . . un as a non-increasing product of Lyndon words, we have Pu =

Pu1 . . . Pun , where each Puj is a Lie polynomial. It follows that

δi(Pu) =
n∏
k=1

(Puk ⊗ 1⊗ . . .⊗ 1) . . . (1⊗ . . .⊗ 1⊗ Puk). (3.44)

As we have (Sw, Pu) = δw,u, the required result follows shortly. The distinguishing

property of Lyndon words amongst the various Hall sets is the following triangularity

property (see Reutenauer, Theorem 5.1):

Lemma 3.1.30 Let w be factored as a non-increasing product of Lyndon words,

with (Pw) the associated basis of Hall polynomials, and (Sw) the dual basis. We

have

1. Pw = w+ greater words,

2. Sw = w+ smaller words.
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Theorem 3.1.31 (Radford) For any given total order on the alphabet A, the set

of associated Lyndon words form a basis for the shuffle algebra K〈A〉 xxy .

Combining Lemmas 3.1.29 and 3.1.30, we have for words with decreasing Lyndon

factorization w = li11 . . . l
ik
k ,

1

i1! . . . ik!
l xxy i11 xxy . . . xxy l xxy ikk = w +

∑
u<w

αuu. (3.45)

The result then follows immediately.

Corollary 3.1.32 (Hoffman) For any given total order on the alphabet A, the set

of associated Lyndon words form a basis for the quasi-shuffle algebra K〈A〉∗ induced

by a given commutative product M .

This was already noted by Li & Liu (1997) for a specific case of quasi-shuffle product;

it follows by an inductive rewriting of the basis {expH(l)}, where l are Lyndon words.

The key point is that the quasi-shuffle product has a ‘triangularity property’ of its

own,

u ∗ v = u xxy v +
∑

words of smaller length. (3.46)

3.2 Quasi-shuffle algebra of iterated Lévy inte-

grals

The shuffle algebra arises naturally from the consideration of iterated path integrals

(see Ree, 1958), this was shown to extend to the case of iterated Stratonovich

integrals of Brownian paths in Gaines (1994). In Curry et al (2014), it was shown

that the iterated integrals of independent Lévy processes {Z0(t) = t, Z1, . . . Zd}

possessing moments of all orders,

Ia1...an =

∫
0<τn−1<...<τ1<t

dZa1
τn . . . dZ

an
τ1

(3.47)

generate a quasi-shuffle algebra where the underlying commutative algebra struc-

ture corresponds to the quadratic covariation algebra. More precisely, there ex-
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ists a quasi-shuffle algebra K〈Ã〉∗ generated by an alphabet Ã containing the set

A = {0, 1, . . . , d} and commutative product [, ] defined on the free K-module KÃ ;

furthermore, there exists a word-to-integral map w 7→ Iw which is an algebra iso-

morphism from the quasi-shuffle algebra K〈Ã〉∗ to the algebra of iterated integrals

generated by the Lévy processes {Z0, . . . , Zd}. The Itô integration-by-parts rule

∫ t

0

dXs

∫ t

0

dYs =

∫ t

0

∫ τ

0

dXτdYs +

∫ t

0

∫ τ

0

dYτdXs +

∫ t

0

d[X, Y ]s (3.48)

implies that the commutative product [, ] on KÃ must correspond to the quadratic

covariation bracket. The Lévy processes {Z0, . . . , Zn} are not in general closed

under the quadratic covariation bracket, we must therefore augment the alphabet

A and extend the word-to-integral map to obtain a quasi-shuffle isomorphism. All

the results in this section are from Curry et al. (2014), although in the concluding

comments we will present the additional observation that the compensated power

bracket processes may be taken to replace the power bracket processes in the quasi-

shuffle algebra. Following Nualart & Schoutens (2000) and Jamshidian (2005), we

accordingly consider the iterated quadratic covariation brackets of a semimartingale.

Definition 3.2.1 (Power bracket) To any semimartingale X, we associate the

power bracket processes [X](n) defined inductively by [X](1) = X and [X](n) =

[X(n−1), X].

Important and related are the Teugels martingales defined by Nualart & Schoutens

(2000).

Definition 3.2.2 (Teugels martingale) For a given Lévy process Z possessing

moments of all orders and Lévy decomposition

Zt = αt+ σWt +

∫ t

0

∫
R
x(Q(ds, dx)− dsν(dx)), (3.49)

we define the associated Teugels martingales by

Y (n) =

∫ t

0

∫
R
xn(Q(ds, dx)− sν(dx)). (3.50)
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Note that the Lévy decomposition incorporates an integral with respect to the com-

pensated random measure Q(ds, dx)−dsν(dx), see Section 2.5 for the random mea-

sures appearing in the Lévy decomposition and Section 2.6 for integration with

respect to compensated random measures. The definition of the Teugels martin-

gales given above differs slightly from that of Nualart & Schoutens (2000), they

are equivalent by the following lemma. Also note that Nualart & Schoutens as-

sume the stronger condition that the Lévy process possess an exponential moment.

This is to ensure the density of polynomials of the Lévy increments in the space of

square-integrable random variables, measurable with respect to the completion of

the filtration generated by the Lévy processes. This result is required only for the

results of Nualart & Schoutens (2000) concerning martingale representation. We

accordingly require only the weaker assumption that the Lévy process possess mo-

ments of all orders. The relation between the power bracket processes and Teugels

martingales of a Lévy process as defined above is given in Curry et al. (2014).

Lemma 3.2.3 For a given real-valued Lévy process Zt possessing moments of all

orders, the power bracket processes [Z](n) with n ≥ 2 are given by

[Z]
(n)
t = 1{n=2}σ

2t+

∫ t

0

∫
R
xnQ(ds, dx). (3.51)

In particular, the power brackets and Teugels martingales associated to Z are related

by

[Z]
(n)
t = (1{n=2}σ

2 + λn)t+ Y
(n)
t , (3.52)

where λn :=
∫
R x

nν(dx).

Proof: For general semimartingales X, Y with continuous part Xc, Y c, we have

[X, Y ]t = 〈Xc, Y c〉t +
∑
s≤t

(∆Xs)(∆Ys), (3.53)

this is Theorem 1.4.52 of Jacod & Shiryaev (1987). Using the Lévy decomposition,

we obtain

[Z]
(2)
t = 〈σW, σW 〉t +

∑
s≤t

(∆Zs)
2. (3.54)
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It is standard result that 〈W,W 〉t = t, see eg Ikeda & Watanabe (1989, Theorem

II.6.1). Furthermore, for all measurable sets Λ and functions f such that the integral

is defined, we have

∫
Λ

f(x)Q(dx, ds) =
∑
s≤t

f(∆Zs)1Λ(∆Zs), (3.55)

see Protter (2003). As by hypothesis X possesses moments of all orders, the above

integral is defined for all f(x) = xm where m ≥ 2 is an integer; the first part of

the result then follows for the case n = 2. The first part of the result follows by

induction using the relation

[[Z](n−1), Z] =
∑
s≤t

(∆Zs)
n−1(∆Zs), (3.56)

again derived from Theorem 1.4.52 of Jacod & Shiryaev. The second part follows

from the relation

∫ t

0

∫
R
xn(Q(ds, dx)− dsν(dx)) =

∫ t

0

∫
R
xnQ(ds, dx)− t

∫
R
xnν(dx), (3.57)

which holds by definition when the integrals on the right hand side above exist (see

the discussion of integration with respect to point processes in Section 2.7 of this

thesis, or Chapter II. 3 of Ikeda & Watanabe, 1989). This is guaranteed by the

hypothesis that Z possesses moments of all orders.

The idea is to extend the alphabet Ã by incorporating new letters corresponding

to each power bracket process that is not a linear combination of processes with

corresponding letters already in the alphabet. To obtain an algebra isomorphism

to a quasi-shuffle algebra, we will require that such processes are not linear com-

binations of multiple iterated integrals with respect to processes corresponding to

letters in the alphabet. The following analysis, taken from Curry et al. (2014) shows

that such relations do not exist. In doing so, we will require the notion of strong

orthogonality of locally square integrable martingales. Recall that, for a locally

square integrable martingale M , we may define the angle bracket 〈M〉 to be the
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unique predictable increasing process such that M2−〈M〉 is a local martingale; this

extends by polarization: 〈M,N〉 := 1
4
(〈M +N〉 − 〈M −N〉), see Davis (2005).

Definition 3.2.4 Two locally square integrable martingales M,N are said to be

strongly orthogonal if 〈M,N〉 = 0.

Note that an equivalent characterization is that M and N are strongly orthogonal

if and only if their product MtNt is a local martingale, see Davis (2005). The angle

brackets of the Teugels martingales of a Lévy processes are given by

〈Y (i), Y (j)〉 = (λi+j + 1{n=2}σ
2)t, (3.58)

see Davis (2005, Equation 1.7), and hence induce an inner product �,� on the

linear space generated by all Teugels martingales Y (i) of Z obeying

� Y (i), Y (j) � = (λi+j + 1{n=2}σ
2). (3.59)

If we define an inner product �,� on the space R〈x〉 of real polynomials over the

single indeterminate x by

� P,Q� = σ2P (0)Q(0) +

∫
R
P (x)Q(x)x2ν(dx), (3.60)

then � xi−1, xj−1 � = λi+j + 1{i=j=1}σ
2, and the mapping xi−1 7→ Y (i) is an

isometry of the two inner product spaces, see Nualart & Schoutens (2000). The

following result is due to Nualart & Schoutens (2000).

Lemma 3.2.5 Let {Y (i)} be the Teugels martingales of a Lévy process Z. There

exist pairwise strongly orthogonal square-integrable martingales {H(i)} and constants

cn,i with cn,n = 1 such that

Y (n) = cn,1H
(1) + cn,2H

(2) + . . .+ cn,nH
(n). (3.61)

The proof of Nualart & Schoutens (2000) is constructive. Indeed, any orthogonal-

ization of the set {1, x, x2, . . .} with respect to the inner product �,� induces an
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orthogonalization of the set {Y (1), Y (2), . . .} with respect to the inner product�,�.

As orthogonality in the inner product space of Teugels martingales implies strong

orthogonality, we obtain the result, see Nualart & Schoutens (2000). For the remain-

der of this section, we let H(i) be the orthogonalization of the Teugels martingales

of the above form, defined inductively by

H(1) := Y (1), (3.62)

H(n) := Y (n) −
n−1∑
k=1

∫
d〈Y (n), H(k)〉
d〈H(k)〉

dH(k), (3.63)

this is the orthogonalization utilized in Jamshidian (2005) and is equivalent to defin-

ing H i as the orthogonal projection onto the orthogonal complement of the direct

sum of the stable spaces S(Y j) with j < n − 1, see Protter (2003, Chapter IV.3)

and Jamshidian (2005) for the definition of stable spaces and further details. We

will not require this interpretation. The following result is from Curry et al. (2014,

Remark 1).

Lemma 3.2.6 Suppose that H(1), . . . , H(n) 6= 0. The angle brackets 〈H(k)〉t are

scalar multiples of t and for any square-integrable, predictable process ϕs

||
∫ t

0

ϕsdH
(n)
s ||L2 = 0 (3.64)

if and only if ϕs = 0 for all s. Moreover, if {ϕi}, i = 1, . . . , n are left-continuous

processes obeying
n∑
i=1

∫
ϕisdH

(i)
s = 0, (3.65)

then ϕis = 0 for all i, s.

Proof: Each H(n) is in the linear span of {Y (1), . . . , Y (n)}, hence the characteriza-

tion of the angle brackets of Y (i) gives the first result. The second statement follows

from the extended form of Itô’s isometry

||
∫ t

0

ϕsdH
(n)
s ||2L2 = E

(∫ t

0

(ϕs)
2d〈H(n)〉

)
, (3.66)
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see Ikeda & Watanabe (1989, Proposition II.2.4). Indeed, writing 〈H(n)〉 = cnt by

the first statement, we obtain

||
∫ t

0

ϕsdH
(n)
s ||2L2 = cn

∫ t

0

||ϕs||2L2ds. (3.67)

Note that cn is necessarily positive as 〈H(n)〉 is an increasing process by definition.

The result follows from the positive definitiness of the L2 norm. Furthermore, we

have

||
n∑
i=1

∫ t

0

ϕsdH
(n)
s ||2L2 =

∑
i,j

E

{(∫ t

0

ϕisdH
(i)
s

)(∫ t

0

ϕjsdH
(j)
s

)}
. (3.68)

Stochastic integrals of strongly orthogonal martingales are strongly orthogonal, see

Protter (2003, Chapter IV.3) and Nualart & Schoutens (2000, p. 116). The pairwise

strong orthogonality of the H(i) then extends to give pairwise strong orthogonality

of the integrals
∫
ϕisdH

(i)
s , and the above identity reduces to

||
n∑
i=1

∫ t

0

ϕsdH
(n)
s ||2L2 =

n∑
i=1

||
∫ t

0

ϕisdH
(i)
s ||2L2 . (3.69)

Under the hypothesis of the third statement, we have

||
∫ t

0

ϕisdH
(i)
s ||2L2 = 0 (3.70)

for all i = 1 . . . n. The result then follows from the second statement.

The following result from Curry et al. (2014, Lemma 3.1) is a direct consequence

of the definition of the orthogonalization {H(i)} and the relationship between power

brackets and Teugels martingales of a Lévy process.

Lemma 3.2.7 Let k ≥ 1. The following properties are equivalent:

1. H(k) = 0.

2. H(n) = 0 for all n ≥ k.

3. [Z](k) is in the linear span of {t, [Z](1), . . . , [Z](k−1)}.
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4. [Z](n) is in the linear span of {t, [Z](1), . . . , [Z](k−1)} for all n ≥ k.

5. [Y ](k) is in the linear span of {t, [Y ](1), . . . , [Y ](k−1)}.

6. [Y ](n) is in the linear span of {t, [Y ](1), . . . , [Y ](k−1)} for all n ≥ k.

Proof: We begin by showing that the first result is equivalent to the fifth. This

follows from the definition of the H(i) as we have

Y (n) = cn,1H
(1) + cn,2H

(2) + . . .+ cn,nH
(n) (3.71)

for some constants cn,i. The third result is also equivalent to the fifth by Lemma 3.2.3.

By the same arguments we obtain the equivalence of the second, fourth and sixth

statements. The second statement is clearly stronger than the first. To obtain the

full result it is then sufficient to show that the third statement implies the fourth.

Writing

[Z](k+1) = [Z(k), Z] =

[
k−1∑
i=1

ciZ
(i), Z

]
=

k−1∑
i=1

ciZ
(i+1), (3.72)

we see that [Z](k+1) is in the span of {t, [Z](1), . . . , [Z](k)} and hence also in the span

of {t, [Z](1), . . . , [Z](k−1)}. The result follows by induction.

The next important result from Curry et al. (2014, Theorem 3.2) is derived from

the above lemmas, and is critical in ensuring the absence of relations between power

bracket processes and linear combinations of multiple stochastic integrals with re-

spect to power bracket processes.

Lemma 3.2.8 Let Z be a Lévy process possessing moments of all orders, and n ≥ 1.

Let {ϕi}, i = 0, . . . , n− 1 be left-continuous processes such that

[Z]
(n)
t =

n−1∑
i=1

∫ t

0

ϕisd[Z](k)
s +

∫ t

0

ϕ0
sds. (3.73)

Then the ϕi are constant for all i = 0, . . . n− 1.

Proof: By Lemma 3.2.7, we may assume that H(1), . . . , H(n−1) 6= 0 without loss of

generality. If a semimartingale admits a decomposition as the sum of a predictable
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finite variation process and a local martingale, it does so uniquely (see Protter,

2003). Note that the relation between power brackets and Teugels martingales

is such a decomposition. Rewritten in terms of Teugels martingales, the above

equation then yields separate equations for the predictable, finite variation part and

local martingale part; we have

λn = ϕ1
tα + ϕ0

t +
n−1∑
k=2

ϕkt (αk + σ21{k=2}), (3.74)

and

Y
(n)
t =

n−1∑
i=1

∫ t

0

ϕisdY
(i)
s , (3.75)

The latter equation may be rewritten in the form

H(n) −
n−1∑
j=1

∫ t

0

n−1∑
i=1

ϕiscij − cnjdH(j)
s = 0. (3.76)

It follows from Lemma 3.2.6 that such an identity holds only if H(n) = 0 and∑n−1
i=1 ϕ

i
scij − cnj = 0, hence the ϕi are constant for all i = 0, . . . , n− 1.

We are now in a position to construct the quasi-shuffle algebra R〈Ã〉∗. We aug-

ment the alphabet A := {0, 1, . . . , d} as follows. For each Zi, suppose there exists a

least integer k(i) such that the power bracket process [Zi](k) is in the linear span of

{t, [Zi](1), . . . , [Zi](k(i)−1)}. Then by Lemma 3.2.7, all [Zi](n) are in the linear span

of {t, [Zi](1), . . . , [Zi](k(i)−1)}. Accordingly, we augment the alphabet A to include

the letters {i(2), . . . , i(k(i))}. If there is no such integer k, we must include the count-

able set {i(2), . . . , i(n), . . .}. Repeating this procedure, we obtain a possibly infinite

extended alphabet Ã.

Definition 3.2.9 Given a set of independent Lévy processes {Z0(t) = t, Z1, . . . Zd}

possessing moments of all orders, the Lévy alphabet extension Ã is defined to be the

alphabet constructed from A := {0, 1, . . . , d} by the process above.

The main result of Curry et al. (2014) is the following.

Theorem 3.2.10 Let {Z0(t) = t, Z1, . . . Zd} be independent Lévy processes possess-

ing moments of all orders, and let Ã be the associated Lévy alphabet extension of
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{0, 1, . . . , d}. The word-to-integral map µ sending i(n) 7→ Ii(n) := [Zi](n), and acting

on words by

µ : w 7→ Iw :=

∫
0<τn−1<...<τ1<t

dIa1(τn) . . . dIan(τ1) (3.77)

is an algebra isomorphism from the quasi-shuffle algebra R〈Ã〉∗ to the algebra of

iterated integrals of Lévy proceses and their power brackets. The commutative alge-

bra structure on RÃ underlying the quasi-shuffle algebra R〈Ã〉∗ is defined to be the

pullback under the word-to-integral map of the quadratic covariation bracket,

[a, b] := µ−1([µ(a), µ(b)]). (3.78)

Proof: If this pullback may be defined, the isomorphism property follows from

the Itô integration-by-parts formula. It remains to show the injectivity of µ. For

this, we require that no [Zi](n), n = 1, 2, . . . may be written as a linear combination

of multiple iterated integrals (with multiplicity greater than one). Now, the inde-

pendence of Zi and Zj for i 6= j ensures that such a relation could only exist using

multiple iterated integrals with respect to Z(i) and the power brackets [Zi](k). This

is not possible by Lemma 3.2.8.

Note that, by the proof of Lemma 3.2.8, if we modify the above word-to-integral

map so that letters in the extended alphabet are sent to the associated Teugels

martingale rather than power bracket process, ie. i(n) 7→ (Y i)(n), the injectivity

remains. Indeed, we have the following.

Corollary 3.2.11 Let {Z0(t) = t, Z1, . . . Zd} be independent Lévy processes pos-

sessing moments of all orders, and let Ã be the associated Lévy alphabet extension

of {0, 1, . . . , d}. The word-to-integral map µ̃ sending i(n) 7→ Ii(n) := (Y i)(n), and

acting on words by

µ̃ : w 7→ Iw :=

∫
0<τn−1<...<τ1<t

dIa1(τn) . . . dIan(τ1) (3.79)

is an algebra isomorphism from the quasi-shuffle algebra R〈Ã〉∗ to the algebra of

58



Chapter 3: Integration Algebras

iterated integrals of Lévy proceses and their power brackets. The commutative alge-

bra structure on RÃ underlying the quasi-shuffle algebra R〈Ã〉∗ is defined to be the

pullback under the word-to-integral map of the quadratic covariation bracket,

[a, b] := µ̃−1([µ̃(a), µ̃(b)]). (3.80)

Proof: Recall that for each Zi, we defined k(i) to be the least integer such that

the power bracket process [Zi](k) is in the linear span of {t, [Zi](1), . . . , [Zi](k−1)}.

By Lemma 3.2.7, all of the Teugels martingales (Y (i))(n) are in the linear span of

{t, (Y i)(1), . . . , (Y i)(k(i)−1)}. We note further that Lemma 3.2.8 concerning the non-

existence of certain relations amongst power bracket processes was obtained from the

analogous result for relations amongst Teugels martingales, using the uniqeness of

decomposition of special semimartingales. It follows that the mapping µ̃ is injective,

and the result follows as per that of theorem above.

We have now demonstrated the existence of two quasi-shuffle algebra structures

isomorphic to the algebra generated by the multiple iterated integrals of a finite set

of independent Lévy processes with moments of all orders. We are now in a position

to use the properties of quasi-shuffle algebras reviewed in the first part of this thesis

in the forthcoming derivation and analysis of numerical integration schemes.
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Numerical methods

In this chapter we generalize the map-truncate-invert integration schemes of Mal-

ham & Wiese (2009) to stochastic differential equations driven by Lévy processes.

We will then show how we may encode these schemes algebraically and compare

different schemes within this class at an algebraic level. These methods are natural

generalizations of those expounded in Malham & Wiese (2009) and Ebrahimi–Fard

et al. (2012), and feature in the forthcoming paper Curry et al. (2014b).

We recall that the starting point for map-truncate-invert schemes is the stochas-

tic Taylor expansion for a Stratonovich drift-diffusion equation, giving rise to the

expression of the pulled-back flowmap in the form

ϕ∗(f) =
∑
w

JwVw ◦ f, (4.1)

where Jw are the multiple iterated Stratonovich integrals and Vw the compositions of

vector fields. Here the geometric information encoded in the composition of vector

fields is deterministic, and the randomness enters only through the scalar random

variables Jw(ω). There is a complete separation of geometric and stochastic infor-

mation, see Baudoin (2004) for a discussion of this perspective.

To study map-truncate-invert schemes for stochastic differential equations driven

by Lévy processes, we require a more general form of stochastic Taylor expansion.
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This has been derived by Platen (1982) for stochastic differential equations driven

by independent Wiener processes and Poisson point processes. We begin by giv-

ing this expansion, and in the following section discuss the conditions under which

truncations of the expansion yield integration schemes of a given order. We follow

with a discussion of the application of these results to equations driven by Lévy

processes. We note that the resulting expansions do not possess the aforementioned

separation of geometric and stochastic information except in certain special cases.

We discuss these cases separately, before detailing a new stochastic Taylor expansion

derived from the Wagner-Platen expansion that exhibits the desired separation. We

accordingly derive a number of expansions for the pulled-back flowmap of similar

form to that given above in the continuous case.

We then proceed with the construction of an algebraic framework for the comparison

of map-truncate-invert schemes. We begin by showing that the expansions of the

flowmap we have derived may be understood in the context of certain formal prod-

uct algebras; this is accomplished by giving a formal description of the expanded

flowmap in the various forms given previously and constructing homomorphisms to

product algebras R〈A〉 ⊗ R〈A〉. Here R〈A〉 is the space of non-commuting polyno-

mials constructed from a given set A, and the product on the left will be the free

associative product, corresponding to the convolution of words, whilst that on the

right will be a quasi-shuffle product. Using the previous results, we then discuss the

class of map-truncate-invert schemes, introduced using the embedding of convolu-

tion algebra structures in product algebras discussed in section 3.1. We justify these

schemes with convergence results. We then construct a framework for comparing

such schemes as follows. For a given integration scheme, we define an associated

algebraic remainder endomorphism and an inner product structure on the convo-

lution algebra; this inner product is designed to encode the L2 inner product of

the associated approximate flows. Our goal in the following chapters will be to ob-

tain an integration scheme minimizing the norm of the associated remainder. To this

end, we present an important theorem ensuring that convergent map-truncate-invert
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schemes obeying certain properties have an associated remainder endomorphism that

is smaller in the L2 sense than that of the truncated stochastic Taylor expansion, for

all Lévy-driven equations with sufficiently smooth coefficients and integrators with

moments of all orders. We also comment on the accumulation of local errors in the

global error of an integration scheme, following Malham & Wiese (2009).

We conclude by discussing the appropriate manner for truncating stochastic Taylor

series appearing in integration schemes, according to the various goals of minimiz-

ing computational cost, maximizing the order of convergence and minimizing the

leading order remainder.

4.1 Stochastic expansions

Recall that the stochastic Taylor expansion for drift-diffusion equations given in the

introduction to this thesis (see also Kloeden & Platen, 1999) is derived by expanding

the driving vector fields using Itô’s formula,

V (Yt) = V (Y0) +

∫ t

0

∇V0(V (Ys))ds+
∑
i

∫ t

0

∇Vi(V (Ys))dW
i
s . (4.2)

The most general forms of Itô’s formula, in particular all those applying to dis-

continuous semimartingales feature terms containing non-integral sums of the form∑
s≤t f(Ys) − f(Ys−) − ∂xf(Ys−)∆Y i

s , for instance for a twice differentiable scalar

function f we have

f(Yt)− f(Y0) =
∑
i

∫ t

0+

∂f

∂xi
(Ys−)dY i

s +
1

2

∑
i,j

∫ t

0+

∂2f

∂xi∂xj
(Ys−)d[Y i, Y j]cs

+
∑
s≤t

{
f(Ys)− f(Ys−)−

∑
i

∂f

∂xi
(Ys−)∆Y i

s

}
, (4.3)

see Protter (2003). Attempts to generalize the construction of stochastic Taylor

expansions to discontinuous systems must reflect this. Platen (1982) showed that the

natural setting to accommodate this were the jump stochastic differential equations
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first considered in Itô (1951), of the form:

YT = Yt0 +

∫ T

t0

V0(s, Ys−)ds+
d∑
i=1

∫ T

t0

Vi(s, Ys−)dW i
s

+

∫ T

t0

∫
R
V−1(s, Ys−, v)[Qi(ds, dv)− νi(dv)ds], (4.4)

whereQi are stationary Poisson random measures on the space R+×R, with compen-

sators mi(ds, dv) = ds × νi(dv). Here V0, . . . , V−i, . . . , Vi are vectors of real-valued,

Borel-measurable functions. When the stochastic integrals with respect to the un-

compensated measure exist, the above equation is equivalent to

YT = Yt0 +

∫ T

t0

Ṽ0(s, Ys−)ds+
∑
i

∫ T

t0

Vi(s, Ys−)dW i
s

+
∑
i

∫ T

t0

∫
R
V−i(s, Ys−, v)Qi(ds, dv), (4.5)

where Ṽ0 and V0 are related by

V0(t, x) = Ṽ0(t, x) +
∑
i

∫
R
V−i(t, x, v)νi(dv). (4.6)

The following result is standard, see eg. Ikeda & Watanabe (1989, p.245).

Theorem 4.1.1 Suppose each Vi, i ∈ {0, . . . , d} obey global Lipschitz and linear

growth conditions. Suppose moreover that, for all t ∈ [0, T ] and x, y ∈ RN , each

V−j, j ∈ {1, . . . , n} obeys the following jump versions of the Lipschitz and linear

growth conditions.

∫
R
|V−j(t, x, v)− V−j(t, y, v)|2νj(dv) ≤ C1|x− y|2, (4.7)

∫
R
|V−j(t, x, v)|2νj(dv) ≤ C2(1 + |x|2). (4.8)

Then the jump equation (4.4) admits a unique strong solution.

We must adapt our approach to iterated integrals to accommodate the mark de-

pendence of the system. For a given word w ∈ {−n, . . . ,−1, 0, 1, . . . , d}∗, let s(w)
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be the number of negative letters, that is those that correspond to integrals with

respect to a jump measure.

Definition 4.1.2 The iterated integrals are defined for a given integrand

g(t, ω, v1, . . . , vs(w)) : R× Ω× Rs(w) → R (4.9)

inductively by

I−i[g(·)](t0; t) =

∫ t

t0

∫
R
g(s, ω, v)[Qi(ds, dv)− νi(dv)ds], (4.10)

Ia[g(·)](t0; t) =

∫ t

t0

g(s, ω)dW a
s , (4.11)

where a ∈ {0, . . . , n}, and we employ the convention W 0
t = t, and

Ia1...an [g(·)](t0; t) = Ian [Ia1...an−1 [g(·)](t0; ·)](t0; t). (4.12)

We may omit the t0 dependency on occasion, in which case it should be assumed

that t0 = 0. We require for each iterated integral Iw a space of allowable integrals.

Definition 4.1.3 For a given set of n stationary Poisson random measures Qi with

compensators ds× νi, we define spaces Hw of adapted stochastic processes, indexed

by words w ∈ {−n, . . . ,−1, 0, 1, . . . , d}∗, as follows. Let

H1 = {g : supE(g(t, ω)) <∞}, (4.13)

H0 = {g : E

(∫ T

0

|g(s, ω)|ds
)
<∞}. (4.14)

For any positive letter i ∈ {1, . . . , d}, define

Hi = {g : E

(∫ T

0

(g(s, ω))2ds

)
<∞}. (4.15)

64



Chapter 4: Numerical methods

For any negative letter −j : {−1, . . . ,−n}, define

H−j = {g : E

(∫ T

0

∫
R
|g(s, ω, v)|2νj(dv)ds

)
<∞}. (4.16)

For any given word w = a1 . . . am of length greater than one, we define inductively

Hw = {g : Ia1...am−1 [g(·)] ∈ Ham}. (4.17)

Recall that the stochastic Taylor expansion was derived from iterative expansions

of the driving vector fields in terms of their initial data. In this case, we must

utilize a more general form of Itô’s formula (see eg Protter, p.81), writing Vi(x) =∑
j V

j
i (x)∂xj we obtain the following expansion of the vector fields

V (Yt) = V (Y0) +
∑
i

∫ t

0

∇Vi(V (Ys−))dW i
s (4.18)

+

∫ t

0

(
∂V

∂t
(Ys) +∇V0(V (Ys)) +

1

2

∑
i

V j
i (Ys)V

k
i (Ys)

∂2V

∂xj∂xk
(Ys)

+
∑
i

∫
R

(
V (Ys + V−i(s, Ys, v))− V (Ys)−∇V−i

(V (Ys))
)
νi(dv)

)
ds

+
∑
i

∫ t

0

∫
R
(V (Ys− + V−i(s−, Ys−, v))− V (Ys−)[Qi(ds, dv)− νi(dv)ds].

We are thus led to define the composition of operators Ṽw = Ṽa1 ◦ . . . ◦ Ṽan , where

the Ṽi act on functions as the usual Lie derivative f 7→ ∇Vi(f), but Ṽ−i(v) is the

shift operator

Ṽ−i(v) : f(x) 7→ f(x+ V−i(x, v))− f(x) (4.19)

and Ṽ0 is the second order differential operator

Ṽ0 : f(x, t) 7→ ∂f(x, t)

∂t
+∇V0(f(x, t)) +

1

2

∑
i

V j
i (x)V k

i (x)
∂2f

∂xj∂xk
(x, t) (4.20)

+
∑
i

∫
R

(
Ṽ−i(v) ◦ f(x, t)−∇V−i(v)(f(x, t))

)
ν(dv). (4.21)
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We have introduced the tildes to stress that the action for non-positive letters differs

from the usual action of vector fields on functions. Note that each application of

Ṽ−i introduces a dependency on v ∈ R. In practice, this will always be integrated

out, but it is for this reason that we may not immediately separate the vector

fields and integrals as per the continuous case. Before giving the full Wagner-Platen

expansions, we must pause to consider more closely the possible truncated forms

and remainders. The recursive derivation of an expansion of the form

ϕ =
∑
w

Iw(Vw) (4.22)

requires that if we include a word w we must also include w−. The negative sign fol-

lowing the word indicates the removal of the final letter, so (a1 . . . an)− = a1 . . . an−1.

A subset A ⊂ A∗ of the free monoid is said to be hierarchical (see Kloeden & Platen,

p. 180) if it is non-empty, uniformly bounded in length, meaning supw |w| < ∞,

and for each word w ∈ A we have in addition w− ∈ A. Given a hierarchical set A,

we define its associated remainder set Rem(A) ⊂ A∗ to be the set of words w /∈ A

such that w− ∈ A.

Definition 4.1.4 (Wagner-Platen expansion) Let Yt be the unique strong solu-

tion process of an equation of the form (4.4), with driving vector fields

V−i, . . . , V−1, V0, V1, . . . Vd. (4.23)

For a given hierarchical set A ⊂ {−n, . . . ,−1, 0, 1, . . . , d}∗, stopping times ρ, τ obey-

ing 0 ≤ ρ ≤ τ and function f : R × Rn → Rn, the associated Wagner-Platen

expansion is given by

f(τ, Yτ ) =
∑
w∈A

Iw[Ṽw ◦ f(·, Y·)](ρ, τ) +
∑

w∈Rem(A)

Iw[Ṽw ◦ f(·, Y·)](ρ, τ), (4.24)

assuming the function f and the driving vector fields are sufficiently smooth that all

the integrands Vw ◦ f ∈ Hw.
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4.2 Integration schemes

Let tn := nh be a uniform discretization of the interval [0, T ]. A given hierarchical

set A then induces the following numerical integration scheme,

Ŷtn+1 =
∑
w∈A

Iw[Ṽw ◦ id(Ŷn)](tn, tn+1), (4.25)

assuming the Wagner-Platen expansion exists across each interval [tn, tn+1]. We

now define a grading function g : A∗ 7→ R+ such that the Wagner-Platen expansions

corresponding to hierarchical sets g(w) ≤ m give integration schemes of strong order

m.

Definition 4.2.1 (Mean-square grading) Given a word w ∈ {−n, . . . , d}∗, let

ξ(w) be the number of occurrences of the letter 0, and ζ(w) the number of non-zero

letters. We then define

g(w) =

 ξ(w) + 1
2
ζ(w), w /∈ {0}∗

ξ(w)− 1
2
, w ∈ {0}∗.

(4.26)

Next, we require conditions on the smoothness of the vector fields sufficient to

ensure the convergence of the integration schemes to be considered. For a given

word w ∈ {−n, . . . , d}∗, let j(w) be the subword of w comprising only the negative

letters. For instance, we have j(−1, 2,−1, 3, 4,−2) = −1,−1,−2. We write j(w)i

for the ith letter of the word j(w). Note that |j(w)| = s(w), where we recall that

s(w) counts the number of negative letters in the word w.

Hypothesis 4.2.2 For a given set of iterated integrals (Iw) and hierarchical set

g(w) ≤ m, we say that the vector fields (Vw) obey the smoothness hypotheses if the

following conditions hold.

1. The compositions V̂w ◦ id exist and obey V̂w ◦ id ∈ Hw for all w : g(−w) ≤ m,

and are continuously differentiable with respect to space and twice continuously

differentiable with respect to time for all w : g(w) ≤ m.

2. For all w : g(w) ≤ m, t ∈ [0, T ], x, y ∈ Rd and u ∈ Rs(w), the compositions
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V̂w ◦ id obey the jump Lipschitz condition

|V̂w ◦ id(t, x, u)− V̂w ◦ id(t, y, u)| ≤ C2(u)|x− y|, (4.27)

where C2(u) is νj(w)1 × . . .× νj(w)s(w)-integrable.

3. For all w : g(w) ≤ m, t ∈ [0, T ], x, y ∈ Rd and u ∈ Rs(w), the compositions

V̂w ◦ id obey the linear growth condition

|V̂w ◦ id(t, x, u)|2 ≤ C3(u)(1 + |x|2), (4.28)

where C3(u) is νj(w)1 × . . .× νj(w)s(w)-integrable.

Note that the smoothness hypotheses are satisfied for a given hierarchical set g(w) ≤

m if the vector fields Vw are 2(m+2)-times continuously differentiable functions that

are uniformly bounded, with uniformly bounded derivatives, see Bruti-Liberati &

Platen (2010). They are also clearly satisfied where the vector fields are constant

and linear, of the form Vi(x) = Ai.x, for constant matrices Ai. The fundamental

result on strong convergence of the above integration scheme is the following, see

Bruti-Liberati & Platen (2005).

Theorem 4.2.3 Let Ŷt be integration scheme corresponding to the Wagner-Platen

expansion with timestep h and hierarchical set g(w) ≤ m. Assume the initial condi-

tion Y0 is an L2-random variable, and that

||Y0 − Ŷ0||L2 ≤ C1h
m. (4.29)

Suppose further that the vector fields Vw satisfy the smoothness hypotheses for the

set g(w) ≤ m. Then

E( sup
t∈[0,T ]

|Yt − Ŷt|2) ≤ Kh2m, (4.30)

for some finite positive constant K, independent of h, and the integration scheme Ŷt

converges with strong order h.
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4.3 Lévy flows and Taylor expansions

The main purpose of this thesis is to use algebraic methods to study integration

schemes for stochastic differential equations of the form

Yt = Y0 +

∫ t

0

V0(Ys)ds+
d∑
i=1

∫ t

0

Vi(Ys−)dZi
s (4.31)

where (Z1, . . . , Zd) are independent Lévy processes, and the Vi : RN → RN are

sufficiently smooth, non-commuting, autonomous vector fields. Note that, whilst the

Wagner-Platen expansions given in the previous section allow for time-dependent

coefficients, we will exclusively treat the autonomous case for the remainder of this

thesis. Such a system may be naturally rephrased in the setting of the previous

section by recalling the Lévy decomposition Zi
t = αit+ σiWt + J it, where αi, σi are

constants, W i are independent Wiener processes and J i are purely discontinuous

martingales of the form

J it =

∫ t

0

∫
R
x(Qi(ds, dv)− dsνi(dv)), (4.32)

where the Qi are Poisson measures with intensity measure dt × νi(dv). We may

therefore without loss of generality consider the equation (4.31) to be of the form

Yt = Y0 +

∫ t

0

V0(Ys)ds+
d∑
i=1

∫ t

0

Vi(Ys)dW
i
s +

−n∑
i=−1

∫ t

0

Vi(Ys−)dJ−is , (4.33)

where the J i are of the form (4.32). This is in line with the equations considered

in the previous section, where we have multiple driving measures and vector fields

V−i(x; v) = vV−i(x). In the introductory chapter, we remarked that algebraic struc-

tures enter due to the existence of expansions of the flowmap of the above equation

in the form

ϕ(t) =
∑
w

Vw(t)Iw(t). (4.34)

The product structure of the Vw and Iw is known, as the Vw compose associatively,

and the Iw generate a quasi-shuffle algebra. The pullback action of the flowmap on
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diffeomorphisms of RN may therefore be encoded symbolically in a formal product

algebra structure. We must note that the Wagner-Platen expansions as expounded

in the previous section are not of this form as they do not generally exhibit the

requisite separation of geometric and stochastic information; the integrands Vw(t)

may not be taken outside the integrals Iw(t) due to the mark dependencies. Indeed,

consider the iterated integral I−1,1[V−1,1](t) arising in the Wagner-Platen expansion

corresponding to f = id, it is given by

∫ t

0

(∫ s

0

∫
R
(V1(Y0 + vV−1(Y0))− V1(Y0))(Q1(dτ, dv)− dτν1(dv))

)
dW 1

s . (4.35)

However, the quasi-shuffle algebra of iterated Lévy integrals only includes those

integrals of the form

∫ t

0

∫
R
f(v)(Qi(ds, dv)− dsνi(dv)) (4.36)

for which the function f(v) is a polynomial. Indeed f(v) = v corresponds to J1, and

f(v) = vn the Teugels martingale (Y i)[n]. As the integral enclosed in brackets in

(4.35) is not necessarily of this form, the Wagner-Platen expansion is not generally

of the form (4.34), with the integrals Iw being elements of the quasi-shuffle algebra of

iterated Lévy integrals. The problem is that the space of iterated integrals featuring

in the Wagner-Platen expansions is strongly influenced by the geometric data of

the system, and relationships between the iterated Wagner-Platen integrals are in

general hard to come by.

Definition 4.3.1 The flowmap for a stochastic differential equation of the form

(4.33) possesses a separated stochastic Taylor expansion if it may be written in the

form

ϕ =
∑
w∈Ã

ṼwIw, (4.37)

where Ã is the extended Lévy alphabet, and Iw are the associated multiple iterated

integrals.
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We will now consider various methods of obtaining the desired separation of geo-

metric and stochastic data. Firstly, we will note several forms of equation for which

the integrands in the Wagner-Platen expansion exhibit either trivial or strictly poly-

nomial mark dependency. In these cases, the above concerns do not apply. They

are enumerated as follows:

1. Drift-diffusion equations, where there is no discontinuous term and hence no

mark dependency.

2. Jump-diffusion equations, where the discontinuous driving processes are stan-

dard Poisson processes, hence possess jumps of identical magnitude.

3. Linear equations, where the driving fields are linear, and hence induce linear

multiplicative mark dependencies upon shifting.

More generally, we show that for sufficiently smooth vector fields, shifts by vector

fields of the form V−i(x; v) = vV−i(x) may be expanded via Taylor’s theorem. The

resulting expression is polynomial in the mark dependency, so will be sufficient for

our purposes.

4.3.1 Drift-diffusion equations

Suppose we have a Lévy-driven equation for which all the driving processes are

continuous. The Lévy decomposition then indicates that we are considering a drift-

diffusion equation, where the driving processes are either independent Wiener pro-

cesses or deterministic processes that are scalar multiples of time. This is the situa-

tion considered in the papers Malham & Wiese (2009), Ebrahimi–Fard et al (2012),

but here the Wiener integrals are interpreted in the Itô, rather than Stratonovich

sense. We will proceed to show that the Wagner-Platen expansion naturally induces

a representation of the flowmap of such equations in a concatenate-quasi-shuffle

product algebra. The absence of driving jump measures means we need not concern

ourselves with shift operators; the vector fields may therefore be taken outside the

iterated integrals. The actions of Vi and Ṽi coincide for non-zero letters i, it follows

that Ṽw differs from the standard composition Vw only in that each Ṽ0 acts as the
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second-order differential operator

Ṽ0 : f(x) 7→ ∇V0(f(x)) +
1

2

∑
i>0

V j
i (x)V k

i (x)
∂2f(x)

∂xj∂xk
. (4.38)

Furthermore, from Theorem 3.2.10 we know that the iterated integrals generate a

quasi-shuffle algebra induced by the quadratic covariation algebra. More explicitly,

the product is seen to be that given in Gaines (1994): IwIw = Iw∗w′ , where the latter

product is the quasi-shuffle on A∗ = {0, 1, . . . , d}∗ given by the inductive formula

ua ∗ vb = (u ∗ vb)a+ (ua ∗ v)b+ Ia=b 6=0(u ∗ v)0, (4.39)

for u, v ∈ A∗, a, b ∈ A. It follows that the if the vector fields satisfy the smoothness

hypotheses to all orders, the Wagner-Platen expansion induces a separated stochastic

Taylor expansion for the pulled back flowmap, where the Ṽw are differential operators

arising from the composition of operators Ṽan ◦ . . . ◦ Ṽa1 described above.

4.3.2 Jump-diffusions

Suppose that the process J−1 is a standard Poisson process. Then the integrands in

the Wagner-Platen expansion exhibit no mark-dependence, furthermore we have

∫
R
ν(dv) = λ, (4.40)

where ν(dv) is the Lévy measure and λ the intensity of the Poisson process. More

generally, suppose our driving random measures have finite support. The associated

integral then decomposes as a sum of independent Poisson processes. Accordingly,

we consider equations of the form

Yt = Y0 +

∫ t

0

V 0(Ys)ds+
d∑
i=1

∫ t

0

V i(Ys)dW
i
s +

−n∑
i=−1

∫ t

0

V i(Ys)dN
−i
s , (4.41)

where the N i are independent standard Poisson processes with parameters λi. So-

lution processes of such equations are often referred to as jump-diffusions in the
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literature. The shift operators Ṽ−i have no mark-dependence; their actions are

given by

Ṽ−i : f(x) 7→ f(x+ V −i(x))− f(x). (4.42)

In computing the action of the deterministic operator Ṽ0, we must be aware that

equation (4.41) is given in an uncompensated form. We obtain the following by first

converting the above equation to an uncompensated equation using the relation

(4.6), and then applying the Wagner-Platen expansion.

Ṽ0 : f(x) 7→ ∇V0(f(x)) +
1

2

∑
i>0

V j
i (x)V k

i (x)
∂2f(x)

∂xj∂xk
+
∑
k≥1

λkṼ−k ◦ f(x). (4.43)

It follows that we obtain an separated stochastic Taylor expansion where the Ṽw

are given by the compositions of the above operators, ie Ṽw = Ṽa1 ◦ . . . ◦ Ṽan . The

presence of the shift operators Ṽ−k results in a rather different character of the

Ṽw from the familiar composition of vector fields, but it is important to note that

the associativity remains, and hence Vu ◦ Vv = Vuv, where uv is the concatenation

product of words.

4.3.3 Linear equations

An important class of Lévy-driven equations consists of those for which the vector

fields V i are constant and linear, i.e. they are of the form Vi(Y ) = AiY , where

Ai = [aijk] are constant N×N matrices. These are also sometimes known as bilinear

equations, and have been studied by Marcus (1978, 1980), for instance. In this case,

the Wagner-Platen expansions display the desired separation. Indeed, their form is

given in the following result.

Theorem 4.3.2 (Linear Lévy Taylor expansion) Let ϕ be the flow map for a

bilinear Lévy-driven equation of the form

Yt = Y0 +

∫ t

0

A0Ysds+
d∑
i=1

∫ t

0

AiYs−dW
i
s +

−n∑
i=−1

∫ t

0

AiYs−dJ
−i
s , (4.44)

The Wagner-Platen expansion induces the following expression for the pullback ac-
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tion, restricted to the space of linear diffeomorphisms Rn → Rn.

ϕ =
∑
w

VwIw, (4.45)

where w ∈ {−n, . . . ,−1, 0, 1, . . . , d}∗, the iterated integrals Iw are defined in the

usual sense, and the vector fields Vw compose by the usual matrix multiplication, but

in reverse order:

Va1...an(Y0) = Aan . . . Aa1(Y0). (4.46)

Although this result is simple to derive, we have not found it mentioned anywhere

in the literature. The proof is as follows.

Proof: By the hypothesis restricting the pullback action to the space of linear

diffeomorphisms, let f : RN → RN is linear, of the form f(x) = Fx, where F = [fij]

is an N ×N matrix. First, we compute the standard Lie derivative

Ṽi ◦ f(x) = ∇Vi(f(x)) = aijlxl
∂

∂xj
fkmxm = aijlxlfkj = FAix = f(Vi(x)). (4.47)

The action of the shift operators Ṽ−i(v) on linear functions f(x) is similar:

Ṽ−i(v) ◦ f(x) = f(x+ vV−i(x))− f(x) = vf(V−i(x)). (4.48)

Finally, consider the action of the operator Ṽ0. Recall the general formulation in the

Wagner-Platen expansion:

Ṽ0 : f(x, t) 7→ ∂f(x, t)

∂t
+∇V0(f(x, t)) +

1

2

∑
i

V j
i (x)V k

i (x)
∂2f

∂xj∂xk
(x, t)

+
∑
i

∫
R

(
Ṽ−i(v) ◦ f(x, t)−∇V−i(v)(f(x, t))

)
ν(dv). (4.49)

The first term above vanishes as we are restricting ourselves to autonomous functions

f(x). We have already computed the Lie derivative in (4.47), the second term is

therefore f(V0(x)). The linearity of f implies that the second order derivatives in the

third term vanish. It remains to consider the last term, however note from (4.47) and

(4.48) that the two terms under the integration are identical and therefore cancel.
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We conclude that the action of Ṽ0 reduces in this case to the Lie derivative

Ṽ0 ◦ f(x) = f(V0(x)). (4.50)

The forms (4.47), (4.48) and (4.50) show that all the operators Ṽi map linear

functions to linear functions. It follows that we may readily deduce the action

of Ṽw(v) on linear functions f(x); for a general word w and multi-dimensional mark

v = (v1, . . . , vs(w)) it is given by

Ṽw(v) ◦ f(x) = v1 . . . vs(w)FA
an . . . Aa1x, (4.51)

and the result follows.

The restriction of the pullback action to linear functions is necessary; we require

that the mark-dependence is linear to induce the requisite separation of the geo-

metric and stochastic information in the Wagner-Platen expansion. Note however

that the pullback flow ϕ sends linear diffeomorphisms to linear diffeomorphisms;

compositions of ϕ may therefore be computed using the above expansion. This is

sufficient to ensure that the above expansion may be encoded in a formal product

algebra.

4.3.4 Analytic vector fields

We now demonstrate a general case where a Taylor expansion of the mark-dependent

integrands may provide the separation of geometric and stochastic information. Con-

sider the Lévy-driven equation of the form (4.33). We will now show that, provided

the vector fields V−j are sufficiently smooth, we may approximate the action of the

shift operators Ṽ−i(v) by a sum of differential operators. In so doing, we will have

constructed a separated stochastic Taylor expansion for the flowmap.

Theorem 4.3.3 Let ϕ be the flowmap for a stochastic differential equation of the

form (4.33), where the vector fields satisfy the smoothness hypotheses to all orders,

and the vector fields of negative index are entire with infinite radius of convergence.
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The flowmap possesses a separated stochastic Taylor expansion, where the operators

Ṽi(m) are given by

Ṽi(m) =
∑

i1+...+ik=m

1

m!
V i1
−i . . . V

ik
−i

∂mf j

∂xi1 . . . ∂xik
ej, (4.52)

where (e1, . . . , en) denotes the standard basis of Rn, and the vector fields Ṽi arising

from non-negative letters i are those appearing in the Wagner-Platen expansion in

its full generality. The operators Ṽw for words with multiple letters are recovered by

composition of those corresponding to single letters.

Proof: Let F (x, v) : Rn × R → Rn be of the form F (x, v) = f(x)h(v), where

f : Rn → Rn is entire, that is possesses a Taylor expansion at every point. Moreover,

assume that the radius of convergence is everywhere infinite. We may then expand

Ṽ−i(v) ◦ F (x, v) = [f(x+ vV−i(x))− f(x)]h(v) (4.53)

in the form

Ṽ−i(v) ◦ F (x, v) = h(v)
∑
m≥1

i1+...+ik=m

vm

m!
V i1
−i(x) . . . V ik

−i(x)
∂mf j(x)

∂xi1 . . . ∂xik
ej, (4.54)

where V−i = (V 1
−i, . . . , V

n
−i), f = (f 1, . . . fn) and (e1, . . . , en) denotes the standard

basis of Rn. The result follows.

4.4 Encoding Flowmaps

We demonstrate the encoding of the flowmap of a Stratonovich drift-diffusion equa-

tion given in Malham & Wiese (2009), before preceding to its generalizations. We

recall that the flowmap ϕ acts smoothly on the space of diffeomorphisms of Rn

through the pullback ϕ∗(f) = f(ϕ), here this action is given by

ϕ∗(f) =
∑
w

JwVw ◦ f, (4.55)
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where the Vw are interpreted as differential operators arising from the composition of

vector fields. Let V =
⊕

nVn be the subset of the space of differential operators on

smooth functions on RN generated by vector fields and their compositions. Letting

J be the ring generated by multiple Stratonovich integrals and the constant random

variable 1, under pointwise multiplication and addition, we see that the flowmap ϕ∗

defined in (4.55) lives in the space J〈V〉 ∼=
⊕

n≥0 J⊗Vn. Define the linear word-to-

vector field map κ : K〈A〉 → V by w 7→ Vw, and the linear word-to-integral map

µ : K〈A〉 → J by w 7→ Jw. It may be shown that the former is a concatenation

homomorphism, and the latter a shuffle homomorphism; the former follows from the

associativity of vector field composition, and the latter is Ree’s theorem extended

to stochastic iterated integrals, see Ree (1958) and Malham & Wiese (2009). It

follows that the map κ ⊗ µ defines a homomorphism from the product algebra

A = K〈A〉conc⊗̄K〈A〉 xxy , where ⊗̄ denotes the completion with respect to the A-adic

topology (see Reutenauer 1993), to the space of flows. To further our enquiries into

integrators for equations driven by Lévy processes, we will discuss how the above

perspectives may be adapted to the differing algebraic structure of the flowmap.

Indeed, in the previous section we gave a number of expansions for the flowmap of

the form

ϕ∗(f) =
∑
w

IwṼw ◦ f. (4.56)

Now, however, the product structure on the Iw arises from the quasi-shuffle algebra

of iterated Lévy integrals; moreover, the Ṽw may arise in a manner different in

general from the standard composition of vector fields. In general, there are three

cases to consider:

1. Linear Lévy flows, where Ṽw = Vw is the standard vector field composition

2. Non-linear Itô drift-diffusion flows, where Ṽw are differential operators in the

algebra Ṽ, but there is no canonical grading structure on Ṽ analogous to that

of V.

3. Non-linear flows for jump equations, including the jump diffusion and analytic

vector fields cases. We denote by Ṽ the composition algebra of the operators
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Ṽw, but as they include shift operators alongside differential operators Ṽ is no

longer a subset of the space of differential operators.

In all cases, the operators Ṽw arise from an associative composition of operators

indexed by words. The word-to-operator map κ̃ : w 7→ Ṽw corresponding to this

indexing thus defines a concatenation homomorphism, though we stress that it is

in general distinct from the word-to-vector field map κ considered earlier. Now let

I be the ring of multiple Itô integrals, defined analogously to the above, and define

the Itô word-to-integral map µ̃ : w 7→ Iw. It follows that κ̃⊗ µ̃ is a homomorphism

from the product algebra Ã = K〈A〉co⊗̄K〈A〉∗, to the space of Itô flows. Note that

in the general case, the series for the flowmap is given by a sum

∑
w∈A∗⊂A∗

w ⊗ w, (4.57)

where A ⊂ A∗ is a subset not containing letters arising from the completion of the

alphabet to account for quadratic covariation processes not in the linear span of the

driving processes. Particularly, any letter i(n) corresponding to a Teugels martingale

with n > 1 is omitted. In this case we must assign zero operators Ṽw = 0 to all

words not in A∗; we may then modify the encoding in the product algebra such that

the flowmap corresponds to
∑

w∈A∗ w ⊗ w.

4.5 Map-truncate-invert integration schemes

Malham & Wiese (2009) introduced the class of map-truncate-invert schemes for

Stratonovich drift-diffusion equations, incorporating the integration scheme of Castell

& Gaines, to utilize the algebraic structure of the stochastic Taylor expansion. We

here present their natural generalization to Lévy-driven equations, showing how

an important subclass of such schemes may be encoded and studied in the quasi-

shuffle convolution algebra. We also justify their use with convergence results. Let

f : Diff(RN) → Diff(RN) be an invertible mapping, and suppose the flowmap ϕ

possesses a separated stochastic Taylor expansion. A map-truncate-invert scheme is

constructed by, across each timestep, truncating the series f(ϕ) and then composing
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the resulting mapping with the inverse f−1. We will study such schemes using the

algebra structure on A = R〈A〉⊗̄R〈A〉.

Definition 4.5.1 To a given power series f =
∑∞

k=0 ckx
k and quasi-shuffle algebra,

define the convolution power series f ∗ : End(R〈A〉)→ End(R〈A〉) by

f ∗(X) :=
∑
k

ckX
?k, (4.58)

where X?k are the kth powers in the convolution algebra with quasi-shuffle product

and deconcatenation coproduct.

We may use convolution power series to encode the effect of applying power series

maps to the Taylor expanded flowmap as follows.

Lemma 4.5.2 Let f be a power series and ϕ a flowmap possessing separated stochas-

tic Taylor expansion and word-to-operator and word-to-integral maps κ and µ respec-

tively. We have

f(ϕ) = (κ⊗ µ) ◦ ψ ◦ f ∗(id), (4.59)

where ψ : End(R〈A〉) → A is the embedding given by f 7→
∑

w w ⊗ f(w), and

the quasi-shuffle algebra of the convolution power series is that corresponding to the

algebra of iterated integrals.

Proof: This is a direct result of the encoding of the flowmap given in the previous

section and Lemma 3.1.12 that the mapping ψ is a homomorphism for the quasi-

shuffle convolution product. Indeed, as the the representation of the flowmap in the

product algebra A is given by the series
∑

w∈A∗ w ⊗ w, it follows that is the image

in A under the embedding ψ of the identity endomorphism on words. Powers of the

flowmap therefore correspond to convolution powers of the identity under ψ, and

the result follows.

The following observation is straightforward but critical.

Lemma 4.5.3 Suppose the power series f =
∑
ckx

k has an inverse which may be

expressed as f−1 =
∑
bkx

k. Then the compositional inverse of the convolution power

series f ∗ is given by the convolution power series (f−1)∗.
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Proof: Given two power series f =
∑
fkx

k and g =
∑

k gkx
k, the expansions for

(f ◦ g)∗ and f ∗ ◦ g∗ are both given by
∑

i+j=k figjX
?k and hence equal; the result

follows immediately as (f−1)∗ ◦ f ∗ = (f−1 ◦ f)∗ = id∗ = id.

Following the above discussion, we present a formal definition of map-truncate-invert

schemes, defined at the algebraic level.

Definition 4.5.4 Let f be an invertible power series and π≤n a truncation function.

The associated map-truncate-invert scheme across a timestep [tn, tn+1] is given by

ϕ̂tn,tn+1
:=
[
(κ⊗ µ)tn,tn+1 ◦ ψ

]
◦
[
(f−1)∗ ◦ π≤n ◦ f ∗(id)

]
, (4.60)

where (κ⊗ µ)tn,tn+1 is the tensor product of the maps given by the word-to-operator

map evaluated at time tn, and the word-to-integral map evaluated between the limits

tn and tn+1.

More explicitly, let g := (f−1)∗ ◦ π≤n ◦ f ∗(id); the integration scheme described is

that given by ϕ̂ =
∑

w VwIg(w). Recall from the introduction that the motivating

example of a map-truncate-invert scheme was the Castell-Gaines integration scheme,

corresponding to f = log. The logarithm does not possess a power series about the

origin, instead we have

log(1 + x) =
∞∑
k=1

(−1)k+1

k
xk. (4.61)

Let ν be the identity in the convolution algebra, i.e. the composition of the unit

and counit of the Hopf algebra structures, that sends non-empty words to 0 and the

empty word to itself (see Reutenauer, 1993). It follows that, for any endomorphism

X that fixes the empty word, we may define

log∗(X) :=
∞∑
k=1

(−1)k+1

k
(X − ν)?k. (4.62)

In particular, we have

log∗(id) = J − 1

2
J?2 + . . .+

(−1)k+1

k
J?k + . . . , (4.63)
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where J is the ‘augmented ideal projector’ given by J = id− ν. The map J acts as

the identity on non-empty words, but sends empty words to 0. We briefly illustrate

the distinction between convolution powers of the identity and of the augmented

ideal projector in the setting of the shuffle/de-concatenate convolution algebra. In

this case, both consist of sums of partitions of the word shuffled together, but in

the former case empty words may be included in the partition and in the latter not.

Explicitly, where xxy is the shuffle product, we have

id?2(ab) = 1 xxy ab+ a xxy b+ ab xxy 1, (4.64)

J?2(ab) = a xxy b. (4.65)

The justification for map-truncate-invert schemes is that many such schemes re-

produce the stochastic Taylor expansion up to the desired truncation level, but in

addition approximate higher order terms. We then have the following.

Theorem 4.5.5 Let ϕ̂ be a map-truncate scheme. Suppose that

(id⊗ π≤n) ◦ ψ ◦
[
(f−1)∗ ◦ π≤n ◦ f ∗(id)

]
= ψ(π≤n), (4.66)

in other words, that the coefficients of all iterated integrals of grade up to the trun-

cation order n are identical to those of the stochastic Taylor series. Suppose further

that the expectation of the remainder ϕ−ϕ̂ is zero at leading order. Then the scheme

ϕ̂ converges with the same strong order as the scheme arising from truncating the

stochastic Taylor series according to π≤n under the assumption that the latter is

convergent.

Proof: Let ϕn+1 := ϕtn,tn+1 be and ϕ̂ := ϕ̂tn,tn+1 be the exact and approximate

flows across the (n+1)th timestep respectively. The exact and approximate solutions

are given at discretization points by yn = (ϕn ◦ . . . ◦ϕ1)y0 and ŷn = (ϕ̂n ◦ . . . ◦ ϕ̂1)ŷ0.

The global mean square error is then given by

ε2(tn+1) := ||ϕn+1(yn)− ϕ̂n+1(ŷn)||2L2 . (4.67)
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The proof given in Bruti-Liberati & Platen (2010) for the convergence of truncated

stochastic Taylor expansion schemes relies on the estimate

ε2(tn+1) ≤ ||ϕ̂n+1(yn)− ϕ̂n+1(ŷn)||2L2 + ||(ϕn+1 − ϕ̂n+1)(yn)||2L2 . (4.68)

The first term is difficult to estimate, as it is a global error term that involves prod-

ucts of iterated integrals at different times. Milstein & Tretyakov (2004, Theorem

1.1), showed how convergence of integration schemes for drift-diffusion schemes may

be obtained from local error bounds using the estimate

ε2(tn+1) ≤ ||ϕn+1(yn)− ϕn+1(ŷn)||2L2 + ||(ϕn+1 − ϕ̂n+1)(ŷn)||2L2 , (4.69)

under the assumption that the expectation of the local error E(ϕn(x)− ϕ̂n(x)) is of

higher order than the mean square error, for all x. This result relies on two Lemmas;

the first, Lemma 1.3, gives a bound on the first term of (4.69) and generalizes readily

to the discontinuous setting by an analogous argument. The generalization of the

second, Lemma 1.4, is Lemma 6.6.1 of Bruti-Liberati & Platen (2010). The requisite

bound on the local error,

||ϕn(x)− ϕ̂n(x)||2 ≤ Chm (4.70)

for truncated stochastic Taylor expansions, is Lemma 4.5.2 of Bruti-Liberati &

Platen (2010), and holds for the map-truncate-invert schemes under the hypotheses

of the theorem. Furthermore, the condition on the expectation of the local error

holds by the hypotheses. The stated result then follows by an argument entirely

analogous to that of Theorem 1.1 of Milstein & Tretyakov (2004).

In our applications, assumption (4.66) is justified through the following result.

Lemma 4.5.6 Suppose f(1 + x) =
∑

k ckx
k is a power series with zero constant

term, c0 = 0, and inverse f−1 =
∑

k bkx
k. Suppose further that g(w) : Ã∗ 7→ Z+

is an integer-valued grading function and that the convolution powers f ∗ are with

respect to a quasi-shuffle algebra that preserves the grading. Let π≤n and π>n be the
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projections corresponding to the grading g, and define

P := π≤n ◦ f ∗(id); Q := π>n ◦ f ∗(id). (4.71)

Then assumption (4.66) holds, moreover we have the following relation for the

leading order local remainder of the associated map-truncate-invert scheme g :=

(f−1)∗ ◦ π≤n ◦ f ∗(id).

πn+1 ◦ (id− g) = b1Q. (4.72)

Proof: Note that id = P +Q, and hence we have

id− g = (f−1)∗(P +Q)− (f−1)∗(P ) (4.73)

=
∑
k

bk
[
(P +Q)?k − P ?k

]
(4.74)

= b1Q+ b2(P ? Q+Q ? P ) +O(Q?2). (4.75)

Note that we have assumed c0 = 0, as per the hypotheses. At leading order, we

have

P ? Q = c2
1(J ◦ π≤n)(J ◦ π>n). (4.76)

The term in the left bracket contains words of grade at least one, and that on the

right contains words of grade at least n + 1, by the hypothesis that the grading is

integer-valued. As the quasi-shuffle is graded, all the resulting terms are of grade at

least n+ 2, and we observe the same result for the term Q?P . The second result of

the theorem then follows. The first statement then holds a fortiori. Note that the

assumption that the grading takes integer values may easily be relaxed if required.

4.6 Comparing integration schemes

In the previous section we established a framework for constructing map-truncate-

invert schemes through algebraic endomorphisms of the form (f ∗)−1 ◦ π≤n ◦ f ∗(id).

Recall that our aim is to construct integration schemes minimizing the leading or-

der remainder. We now show how to construct an inner product on the space of
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endomorphisms that encodes the leading order remainder of the associated integra-

tion scheme for a class of stochastic differential equations. We conclude with an

important minimality result. The material presented here comprises a straightfor-

ward generalization of a similar construction given in Ebrahimi–Fard et al. (2012).

Recalling that the stochastic information contained in a separated Taylor expanded

flowmap is carried by the multiple Itô integrals, we begin by considering algebraic

encodings of the expectation.

Definition 4.6.1 (Expectation map and endomorphism) Given a quasi-shuffle

algebra K〈Ã〉 over the alphabet Ã = {. . . , 0, 1, . . . , d}, we define the expectation map

Ē : K〈Ã〉 → K[t] by

Ē(w) =


1
|w|!t

|w| if w ∈ {0}∗

0 otherwise,

(4.77)

where |w| denotes the length of the word w, and K[t] is the polynomial ring over a

single indeterminate t commuting with K. The composition of the above map with

the canonical inclusion K → K〈Ã〉, sending k 7→ k.1 then induces the expectation

endomorphism E : K〈Ã〉 → K〈Ã〉[t], explicitly

E : w 7→ Ē(w).1. (4.78)

Note that the expectation defined in (4.77) sends a word w to the (probabilistic) ex-

pectation of the the integral process that is the image of w under the word-to-integral

map µ̃; this follows as integrals indexed by words not ending in 0 are martingales and

hence have zero expectation. More generally, as long as we have at least one non-

zero letter we may apply a stochastic Fubini’s theorem to show the zero expectation

property (but note that, eg, the integral I10(t), whilst having zero expectation, is

not a martingale). The derivation of the expectation of the deterministic integrals

is immediate as they have no stochastic dependency.

We are now in a position to define an inner product on the space H := End(K〈A〉).

For a given quasi-shuffle algebra over the alphabet Ã, set of operators Ṽ and initial
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data y0, the map-truncate-invert scheme corresponding to the algebraic endomor-

phism X ∈ H is given by (κ ◦ µ) ◦ ψ ◦ X. We accordingly wish to define an inner

product on H such that

〈X, Y 〉 = E(((κ ◦ µ) ◦ ψ ◦X) ((κ ◦ µ) ◦ ψ ◦ Y )). (4.79)

This is achieved as follows.

Definition 4.6.2 (Inner product) For a given set of operators Ṽw, let

〈X, Y 〉(y0) :=
∑
u,v

Ē(X(u) ∗ Y (v))(Ṽu ◦ id(y0))T (Ṽv ◦ id(y0)). (4.80)

We then suppress the dependence on the set of operators Ṽw and the initial condition

y0 by writing (Ṽu ◦ id(y0)T )(Ṽv ◦ id(y0)) as a set of indeterminates (u, v). Hence

〈X, Y 〉 :=
∑
u,v

Ē(X(u) ∗ Y (v))(u, v). (4.81)

An equivalent characterization is given in Ebrahimi–Fard et al. (2012) in the

setting of the shuffle-deconcatenate convolution algebra which shows the positive-

definiteness of the inner product. We conclude with the following definitions.

Definition 4.6.3 (Remainder and Pre-remainder) Given an endomorphism g =

(f−1)∗ ◦ π≤n ◦ f ∗(id), we define the remainder endomorphism to be

R = id− g. (4.82)

The Pre-remainder is defined to be the the difference between the terms removed at

the truncation stage, ie

Q = f ∗(id)− π≤n ◦ f ∗(id). (4.83)

Our main comparison result is then the following.
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Theorem 4.6.4 Suppose g := (f−1)∗ ◦ π≤n ◦ f ∗(id) is the algebraic representation

of a map-truncate-invert scheme, satisfying

(id⊗ π≤n) ◦ ψ ◦
[
(f−1)∗ ◦ π≤n ◦ f ∗(id)

]
= ψ(π≤n). (4.84)

Let h := id − g, and suppose further that at leading order 〈g, h〉 = 0. Then the

associated map-truncate-invert scheme of order n, given in Definition 4.5.4, is a

efficient integrator in the sense of Chapter 2.7. This holds for all stochastic dif-

ferential equations driven by independent Lévy processes possessing moments of all

orders, and autonomous vector fields satisfying the smoothness hypotheses 4.2.2 to

all degrees.

Proof: By Lemma ??, it suffices to show that the leading order remainder endo-

morphism id ◦πn+1 associated with the truncated stochastic Taylor expansion has a

uniformly greater norm than the remainder endomorphism πn+1◦h. Now, id = g+h

and 〈πn+1 ◦ g, πn+1 ◦ h〉, so we have

||πn+1 ◦ id||2 = ||πn+1 ◦ g||2 + ||πn+1 ◦ h||2. (4.85)

The result follows immediately.

4.7 Truncations

We have already defined in Section 2.2 the mean-square grading such that truncation

of the Wagner-Platen expansion at grade n results in a numerical integration scheme

of strong order n. Note that we may instead define the local mean square error

grading defined by g(w) := ξ(w) + 1
2
ζ(w) without the special value for deterministic

letters if we consider instead integration schemes of the form

ϕ̂ =
∑

g(w)≤n

VwIw +
∑

g(w)=n+ 1
2

VwE(Iw) (4.86)
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as all non-deterministic words have zero expectation. This is the approach taken

in, eg. Malham & Wiese (2009), and has the advantage that the resulting grad-

ing is a homomorphism: K〈A〉 → (R+,+). Furthermore, it is the correct form for

Stratonovich-based schemes where not all non-deterministic iterated integrals have

zero expectation. In realizing numerical schemes derived from stochastic Taylor

expansions, the bulk of the computation effort is often associated with the simula-

tion of the iterated integrals Iw and particularly those involving the most distinct

non-deterministic letters. For instance, in the case of Milstein schemes - order 1 in-

tegrators derived from the stochastic Taylor expansion for drift-diffusion equations,

taking the form

ϕ̃ =
∑
a∈A

VaIa +
∑

i,j∈A\{0}

VijIij, (4.87)

the dominant computational cost often comes from simulating the iterated integrals

Iij. (See, eg Malham & Wiese 2014, Wiktorsson 2001, Kloeden & Platen 1998, and

Milstein 1995). Note however, that depending on the method used to simulate the

Iij, we may be able to simulate iterated integrals of the form Ii0 and I0i at minimal

additional computational cost. This is the case, for instance, if we employ the

method of Kloeden, Platen & Wright (1992) for simulation of iterated integrals based

on truncation of the Karhunen-Loève expansion of a Brownian bridge. Indeed, in

this case, simulating all the iterated integrals according to the mean-square grading

{I(w) : g(w) ≤ n will generate the set of iterated integrals {Iw : |w| ≤ 2n}, grading

by word order (see Kloeden & Platen, 1999). This raises the question, if we can

generate these extra integrals readily, should we include terms of the form

∑
g(w)>n
|w|≤2n

VwIw (4.88)

in the approximation? We will examine this separately for flow maps with iterated

Itô integrals and iterated Stratonovich integrals.

4.7.1 Itô integrals

We begin by answering the previous question in the affirmitive.
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Theorem 4.7.1 Let ϕ̃1, ϕ̃2 be approximate flowmaps for a Lévy-driven equation,

arising from the truncation of the stochastic Taylor expansion using the mean square

and word order gradings respectively, and assume that both schemes converge with

the same strong order of convergence. The L2 norm of the local flow remainder

associated with the word order approximation ϕ̃2 is always less than that of the

mean square approximation ϕ2 of the same order of convergence.

Proof: The local error associated with the truncation at word order of the stochas-

tic Taylor expansion of the flowmap, or remainder, is given by

R1 =
∑
|w|>n

ṼwIw. (4.89)

On the other hand, the remainder associated with truncation at the mean-square

grading is given by

R2 =
∑

g̃(w)>n
2

ṼwIw = R1 +Q, where Q =
∑

g(w)>n
2

; |w|≤n

ṼwIw. (4.90)

We see that

||R2||2 = ||R1||2 + ||Q||2 + 2〈Q,R1〉. (4.91)

The leading order term in Q, that is the term in Q with mean-square grade n+1
2

is that indexed by the set of words w : ζ(w) + 2ξ(w) = n + 1; ζ(w) + ξ(w) ≤ n.

We see that the leading order terms obey ξ(w) > 0, and hence ζ(w) < n + 1. In

contrast, the leading order terms of R1 are indexed by words w : ζ(w) + 2ξ(w) =

n + 1; ζ(w) + ξ(w) > n. Combining the equations, we obtain 2ξ(w) ≤ ξ(w), as

ξ(w) is a non-negative integer we deduce that it is zero. We conclude that ζ(w) =

n + 1. Given a word w, define k(w) to be the subword obtained by deleting the

zero letters. Now the expectation of the product of any two iterated integrals Iw, Iw′

such that k(w), k(w′) do not obey k(w) = k(w′), is zero. We see this by noting that

E(IwIw′) = E(Iw∗w′) = E(Iz(w∗w′)), where z(w) is the identity map on deterministic

words, but maps all non-deterministic words to zero (the latter relation follows

from the properties of the expectation map). Particularly, if w,w′ are such that
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ζ(w) 6= ζ(w′), it follows that E(IwIw′) = 0. Therefore Q and R1 are orthogonal at

leading order, and we have

||R2||2 = ||R1||2 + ||Q||2. (4.92)

In particular we obtain ||R2||2 ≥ ||R1||2, and it follows that the word order truncation

yields an integration scheme that is universally more accurate than the mean square

grading truncation.

4.7.2 Stratonovich integrals

We will show here that approximate flows based on truncating Stratonovich flowmaps

at word order are not necessarily more accurate at leading order than those based

on truncating at the variance grading. Specifically, we compare the Milstein approx-

imate flow map ϕ̂ given by (4.87) with the word order 2 approximation

ϕ̃ = ϕ̂+
∑

i∈A\{0}

Vi0Ji0 + V0iJ0i. (4.93)

Define R1 to be the leading order remainder of the word-order scheme and R2 that

of the Milstein scheme. Recalling that we must subtract the expectations of leading

order terms in the integrators, we have

R1 =
∑

VijkJijk + Vijk(δij + δjk)
t2

4
, (4.94)

R2 = R1 +
∑

Vi0Ji0 + V0iJ0i := R1 +Q. (4.95)

It follows that ||R2||2 = ||R1||2 + ||Q||2 +2〈Q,R1〉. We therefore have efficiency, here

meaning that the mean-square error associated with the word-order scheme, R1, is

always smaller than that of the Milstein scheme, R2, if and only if ||Q||2 + 2〈Q,R1〉

is a positive semidefinite quadratic form.

In order to assist with our calculation, we will convert all the above Stratonovich
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integrals into Itô integrals. Using the method described in Kloeden & Platen (1998,

pp. 175–6) we find that Ji0 = Ii0, J0i = I0i, and that Jijk = Iijk + 1
2
(δijI0k+ δjkIi0).

Lemma 4.7.2 Let Iij be iterated Itô integrals with respect to independent Wiener

processes and a determinstic drift term, indexed by {0, 1, . . . , d}. The following

identities describing the expectation of their products hold:

E(Ii0Ij0) = E(I0iI0j) = 2δij
t3

6
, (4.96)

E(Ii0I0j) = E(I0iIj0) = δij
t3

6
. (4.97)

These may be verified by computing the quasi-shuffles of the two words and using

the algebraic expectation map. Computing

||Q||2 = E((Vi0Ii0 + V0iI0i)(Vi0Ii0 + V0iI0i)), (4.98)

we obtain

||Q||2 =
t3

6



V10

V20

V01

V02



T 

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2





V10

V01

V20

V02


. (4.99)

Similarly, we calculate

2〈Q,R1〉 = 2E

(
(Vijk

1

2
(δjkIi0 + δijI0k))(Vi0Ii0 + V0iI0i)

)
, (4.100)
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where we have omitted the determinstic terms in R1 as the expectations E(tIij) are

all zero. We find

2〈Q,R1〉 =
t3

12



V111

V122

V211

V222

V112

V221

V10

V20

V01

V02



T 

0 0 0 0 0 0 3 0 3 0

0 0 0 0 0 0 2 0 1 0

0 0 0 0 0 0 0 2 0 1

0 0 0 0 0 0 0 3 0 3

0 0 0 0 0 0 0 1 0 2

0 0 0 0 0 0 1 0 2 0

3 2 0 0 0 1 0 0 0 0

0 0 2 3 1 0 0 0 0 0

3 1 0 0 0 2 0 0 0 0

0 0 1 3 2 0 0 0 0 0





V111

V122

V211

V222

V112

V221

V10

V20

V01

V02



. (4.101)

Explicitly it may be shown that

R3 =
t3

12



V111

V122

V211

V222

V112

V221

V10

V20

V01

V02



T 

0 0 0 0 0 0 3 0 3 0

0 0 0 0 0 0 2 0 1 0

0 0 0 0 0 0 0 2 0 1

0 0 0 0 0 0 0 3 0 3

0 0 0 0 0 0 0 1 0 2

0 0 0 0 0 0 1 0 2 0

3 2 0 0 0 1 4 0 2 0

0 0 2 3 1 0 0 4 0 2

3 1 0 0 0 2 2 0 4 0

0 0 1 3 2 0 0 2 0 4





V111

V122

V211

V222

V112

V221

V10

V20

V01

V02



. (4.102)

The matrix has positive and negative eigenvalues. We conclude that, in the Stratonovich

case, truncation at word order does not necessarily result in a scheme more efficient

than truncating using the mean-square grading.
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Map-truncate-invert Schemes

Having laid the algebraic groundwork, we are now in a position to compare integra-

tion schemes of the form ϕ̂ = f−1◦π◦f(ϕ), which we associate with endomorphisms

(f ∗)−1 ◦π ◦ f ∗ ∈ H. We aim to construct integration schemes such that their associ-

ated remainder endomorphisms minimize within a certain class of schemes the norm

induced by the inner product defined on the space of endomorphisms. We begin

by surveying the results of Ebrahimi–Fard et al. (2012) which gave such a scheme

for the case of Stratonovich flows for drift-diffusion equations. The results of this

paper are accordingly derived using the shuffle/de-concatenate Hopf algebra associ-

ated with Stratonovich integration, in particular the definitions of expectations and

inner products of endomorphisms differ from those given in Definitions 4.6.1 and

4.6.2, although they are perfectly analogous. We conclude the chapter by examin-

ing the proof of the above and highlighting obstacles to its immediate generalization

to equations driven by a broader class of driving process. Particularly, the proofs

rely on the shuffle (and not quasi-shuffle) algebraic structure and hence issues arise

for driving processeses for which the Stratonovich formalism does not yield a shuffle

algebra. We will examine resolutions of these issues in the chapters following this.

5.1 Stratonovich drift-diffusion equations

In this section we will consider exclusively Stratonovich drift-diffusion equations.

Recall that the power series map f(1 + x) = sinhlog(1 + x) = x+ 1
2

∑∞
k=2(−1)k−1xk
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induces a mapping of endomorphisms f ∗(X) = 1
2
(X−X∗(−1)). The approximation of

the flowmap ϕ̂ = sinhlog−1 ◦π ◦ sinhlog(ϕ), corresponding to the algebraic endomor-

phism (sinhlog∗)−1◦π◦sinhlog∗(id) is an encoding of the sinhlog integrator considered

in Malham & Wiese (2009). We note the identity sinhlog∗(id) = 1
2
(id−S), where S is

the shuffle convolution algebra antipode, we have similarly coshlog∗(id) = 1
2
(id+S).

Malham & Wiese (2009) established that, in the absence of drift, the approximate

flowmap associated to the endomorphism sinhlog∗(id) possesses the desired efficiency

of minimizing the coefficient of the leading order remainder term in comparison with

the truncated stochastic Taylor approximation. The truncation utilized was that

corresponding to the word-order grading. This was generalized to include drift in

Ebrahimi–Fard et al. (2012). We follow the exposition of the latter paper in showing

these results. The following result was critical in Ebrahimi–Fard et al. (2012), it is

essentially a reformulation of Lemma 4.3 of Malham & Wiese (2009).

Lemma 5.1.1 For all endomorphisms X, Y , we have 〈X, Y 〉 = 〈R ◦ X,R ◦ Y 〉,

where R is the reversal map.

Before giving a proof of the above statement, we note that in the shuffle setting, the

expectation map acquires a somewhat different form than that given in the previous

section. This is because Stratonovich integrals with respect to martingales are not

in general martingales. Indeed, we have

Ê : w 7→


tn(w)

2d(w)n(w)!
, w ∈ D∗,

0, w ∈ A∗ \ D∗
(5.1)

where D∗ ∈ A∗ free monoid on D = {0, 11, . . . , dd}, d(w) is the number of consecutive

pairs of non-zero letters in w, and n(w) is length of w when viewed as an element

of D∗, see Ebrahimi–Fard et al (2012).

Proof: It is possible to prove the result directly through the formula for the

expectation of iterated integrals with respect to Wiener processes given in Milstein

(1995) and Kloeden & Platen (1999), as was done in Malham & Wiese (2009).

However, we provide an alternative proof as we believe it is simpler, and is readily
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adaptable to the general discontinuous Itô setting, as we will show in Chapter 7.

We begin by noting that Ê(R(w)) = Ê(w). We see this as R preserves the spaces

D∗ and A∗ \ D∗, and within these spaces Ê is evaluated by counting letters. The

number of occurences of a letter in a given word is invariant under R. Note that

the identity E(R(w)) = E(w) also holds for E, the expectation associated with

multiple Itô integrals. Note further that R is a shuffle homomorphism, as stated in

Ebrahimi–Fard et al (2012). This suffices to give the result, as

∑
u,v

E{R(u) xxyR(v)}(u, v) =
∑
u,v

E{R(u xxy v)}(u, v) =
∑
u,v

E{u xxy v}(u, v). (5.2)

The following result of Ebrahimi–Fard et al. (2012) is a key step in establishing the

main result of this section.

Lemma 5.1.2 Let πn be the canonical projection from R〈A〉 onto its nth homoge-

neous component R〈A〉n with respect to the grading g(w) = |w|. We then have

1. 〈S ◦ πn, S ◦ πn〉 = 〈id ◦ πn, id ◦ πn〉,

2. 〈E ◦ S ◦ πn,E ◦ S ◦ πn〉 = 〈E ◦ id ◦ πn,E ◦ id ◦ πn〉,

3. 〈sinhlog∗(id) ◦ πn, coshlog∗(id) ◦ πn〉 = 0,

4. 〈E ◦ sinhlog∗(id) ◦ πn,E ◦ coshlog∗(id) ◦ πn〉 = 0.

These follow readily from the preceding Lemma as S(u) xxyS(v) = R(u) xxyR(v) where

u, v are of the same length (and E ◦ E = E). The main result of Malham & Wiese

(2009) and Ebrahimi–Fard et al. (2012) is the following.

Theorem 5.1.3 The map-truncate-invert integration scheme induced by the sinhlog

power series is efficient, in the sense that its leading order error norm is less

than that obtained by truncating a Stochastic Taylor expansion, where we grade by

word order on the shuffle-convolution algebra. This holds for all Stratonovich drift-

diffusion equations where the driving vector fields are smooth in the sense that they

have bounded derivatives of all orders.
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We comment that the method of proof utilized in Ebrahimi–Fard et al. (2012) can

be realized as an implementation of Theorem 4.6.4 of this thesis. Indeed, there exists

an explicit expression for the compositional inverse of sinhlog, given by

sinhlog−1(X) = X + (X?2 + ν)?(
1
2

) = ν +X +
1

2
X?2 − 1

8
X?4 + . . . (5.3)

It follows that the assumptions of Lemma 4.5.6 are satisfied, and in particular we

obtain that the preremainder and remainder are equal at leading order. This result,

in combination with Lemma 5.1.2 shows that the hypotheses of Theorem 4.6.4 are

satisfied. The result follows immediately. Ebrahimi–Fard et al. (2012) obtained

further results for related integration schemes by similar methods. For instance, it

was shown that any integrator of the form γ = Asinhlog∗(id) + Bcoshlog∗(id) is

efficient in this sense provided A 6= 0 and |B
A
| < 1, indeed we obtain

||id−R(γ)||2 =

(
1− B

A

)2

||coshlog∗(id)||2, (5.4)

and hence

||id||2 = ||R||2 +

[
1−

(
B

A

)]
||coshlog∗(id)||2. (5.5)

Ebrahimi–Fard et al. (2012) then noted that the sinhlog integrator (A = 1, B = 0) is

therefore optimal in this class. Further optimality results concerning perturbations

of the defining power series at leading order are given in Malham & Wiese (2009)

and Ebrahimi–Fard et al. (2012), we will not pursue this here.

5.2 Generalization

We wish to investigate the applicability of the previous results to numerical approx-

imations of quasi-shuffle flowmaps of more general SDEs, given in Itô form. We

assume we are able to give a quasi-shuffle product algebra representation of the

flowmap. Consider the integration scheme (f ∗)−1 ◦ π ◦ f ∗ ∈ H corresponding to the

modified sinhlog series f = 1
2
(id − Ŝ), where Ŝ is the quasi-shuffle antipode given

by (3.1.22). We have already noted that the first of the above lemmas continues to
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hold, therefore we might hope that such integrators will retain their efficiency. This

will turn out not to be true in general. We begin by showing that Lemma 5.1.2

does not hold in the new setting. Consider the Itô drift-diffusion flowmap on the

alphabet {0, 1}, i.e. corresponding to an SDE of the form

dYt = V0(Yt)dt+ V1(Yt)dWt. (5.6)

First consider the ‘true’ grading and its projectors πn, we have π2(A∗) = 11, and

S(11) = 11 + 0. It follows that

〈S, S〉 ◦ π2 = E{S(11) ∗ S(11)}(11, 11) =
3

2
t2(11, 11). (5.7)

However, we have

〈R,R〉 ◦ π2 = R{11 ∗ 11}(11, 11) =
1

2
t2(11, 11) 6= 〈S, S〉 ◦ π2. (5.8)

A similar result holds where we use the word order truncation, we will obtain

π2(A∗) = {11, 10, 01, 11}. Then S = R on all words in this set except 11, and

we obtain

〈S, S〉◦π2 = 〈R,R〉◦π2+E{0∗0}(11, 11)+E{0∗00}(11, 00)+E{00∗0}(00, 11). (5.9)

This precludes the possibility of an orthogonal decomposition of remainders

||πn||2 = ||πn ◦ sinhlog∗(id)||2 + ||πn ◦ coshlog∗(id)||2 (5.10)

in all but exceptional cases. The problem lies in the differing form of the quasi-shuffle

antipode. Before continuing our pursuit of efficient integrators from an algebraic

perspective, we will provide a more detailed analysis of power-series based integrators

and low-order schemes for drift-diffusion equations.
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Power series integrators

In this chapter we examine integration schemes induced by power series for Itô

drift-diffusion equations of the form

dYt = V0(Yt)dt+
d∑
i=1

Vi(Yt)dWt. (6.1)

The integration schemes are map-truncate-invert schemes induced by convolution

power series of the form f ∗ = J + αJ?2 + βJ?3 + . . .. We write out in full the

quadratic form in the vector fields giving the difference between the norms of the

leading order remainders of such integration schemes and the truncated stochastic

Taylor scheme with the same order of convergence. This is achieved under the

assumption that the pre-remainder of the power series schemes equals the remainder

at leading order. The justification for this assumption is Lemma 4.5.6. We will show

that for integration schemes of order half, any power series with α taking a value

between −1 and 0 induces an integrator with error norm uniformly less than that

of the stochastic Taylor integrator. The optimal value is α = −1
2
, corresponding to

the sinhlog and Castell-Gaines integrators, which are equivalent at order half. In

constrast, we will show that for integrators of strong order one, no such efficient

power series integrator exists.
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6.1 Order half integrators

The order half stochastic Taylor integrator is given by

ϕst =
∑
i≥0

ViIi. (6.2)

For ease of notation, we have dropped the tildes from the Vi. This means that, for

the rest of this chapter, V0 will denote the second order differential operator Ṽ0. The

power series integrator induced by f ∗ = J+αJ?2 + . . . is then given at leading order

by

ϕps = V0I0 +
∑
i>0

ViIi + αViiI0, (6.3)

assuming that the pre-remainder equals the remainder at leading order. We have

here employed the mean-square grading in the truncations. We therefore obtain

leading order remainders

Rst =
∑
i,j>0

VijIij (6.4)

and

Rps =
∑
i,j>0

VijIij + α
∑
i,j>0

Vij(Iij + Iji) = Rst + R̃. (6.5)

As all the sums in the above are over i, j > 0 we will henceforth employ summation

convention. We have Rst = Rps − R̃, and hence

||Rst||2 = ||Rps||2 − ||R̃||2 − 2〈Rst, R̃〉. (6.6)

The following is a straightforward consequence of the formula for the expectation

of the product of iterated Wiener integrals given in Milstein (1995) and Kloeden &

Platen (1999), and is recorded here to simplify the following calculations.

Lemma 6.1.1 Suppose i, j, k, l > 0. The following formula holds for the expectation

of the product of iterated integrals of word order two.

E{IijIkl} = δikδjl
t2

2
. (6.7)
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It follows that

||R̃||2 = α2〈Vij(Iij + Iji), Vkl(Ikl + Ilk)〉 (6.8)

= α2V T
ij Vkl [〈Iij, Ikl〉+ 〈Iij, Ilk〉+ 〈Iji, Ikl〉+ 〈Iji, Ilk〉] (6.9)

=
t2α2

2
V T
ij Vkl [δijδjl + δilδjk + δjkδil + δjlδik] (6.10)

= t2α2V T
ij Vkl [δijδjl + δilδjk] (6.11)

= t2α2(V T
ij Vij + V T

ij Vji). (6.12)

Similarly, we have

〈Rst, R̃〉 = α〈VijIij, Vkl(Ikl + Ilk)〉 (6.13)

=
αt2

2
V T
ij Vkl(δikδjl + δilδjk) (6.14)

=
αt2

2

[
V T
ij Vij + V T

ij Vji
]
. (6.15)

Combining the above, we obtain

||Rst||2 = ||Rps||2 − α(α + 1)
[
V T
ij Vij + V T

ij Vji
]
. (6.16)

We therefore wish to study the quadratic form −α(α+1)
[
V T
ij Vij + V T

ij Vji
]
. We may

represent the above as −α(α + 1)V TAV , where V is a vector comprising all the

vector fields Vij, i, j > 0, and A a matrix. It remains to find the eigenvalues of the

matrix A such that V TAV = V T
ij Vij + V T

ij Vji.

Lemma 6.1.2 The matrix A such that V TAV = V T
ij Vij + V T

ij Vji has eigenvalues of

2, with multiplicity n+ 1
2
n(n− 1) = 1

2
n(n+ 1), and 0 with multiplicity 1

2
n(n− 1).

Proof: We may decompose the matrix A as follows:

V TAV =
∑
i>1

2V T
ii Vii +

∑
i,j>1

Vij
Vji


T 1 1

1 1


Vij
Vji

 . (6.17)

The 2×2 matrix where every entry is one has eigenvalues of 2 and 0. The statement

follows by counting the number of terms in each sum.
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Theorem 6.1.3 Let Yt be the solution of a stochastic differential equation driven by

independent Wiener processes and autonomous vector fields obeying the smoothness

hypotheses to all orders. The order half power series integrator that minimizes the

mean square remainder compared with that of the Euler scheme is that given by

f = J − 1
2
J?2 + . . ..

Proof: By the preceding Lemma, the matrix A is positive semidefinite. It there-

fore suffices to choose α to maximise −α(α + 1). This is positive for α between -1

and 0, attaining its maximum at α = −1
2
.

6.2 Order one integrators

Here we consider integrators induced by f = J+αJ?2 +βJ?3. The stochastic Taylor

integrator is:

ϕ̂ =
∑
g(w)=1

IwVw, (6.18)

and the power series integrator is given by inverting

ψ̂ =
∑
g(w)=1

IwVw +
∑
u,v∈A

αVuvIuIv, (6.19)

where A is the set of all non-deterministic letters {1, . . . , d}. Again we assume that

the pre-remainder and remainder are equal at leading order, following Lemma 4.5.6.

We therefore obtain the following expressions for the leading order remainders of

the above schemes.

Rst =
∑

g(w)=1.5

IwVw, (6.20)

Rps =
∑

g(w)=1.5

IwVw +
∑
u∈A

α(Vu0 + V0u)Iu xxy 0 (6.21)

+
∑

u,v,w∈A

Vuvw{(α + β) [Iu xxy v xxyw + δuvIw xxy 0 + δuwIv xxy 0 + δvwIu xxy 0] (6.22)

− α [Iwvu − Iuvw + δuvIw0 + δvwI0u]}, (6.23)
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where we have, for instance, used the relation

uv xxyw + u xxy vw = u xxy v xxyw − (wvu− uvw) (6.24)

to relate the terms αVuvw(Iuv xxyw+Iu xxy vw) arising from αJ?2 with the terms βVuvw(Iu xxy v xxyw)

arising from βJ?3. We have similarly related the quasi-shuffle terms of these prod-

ucts. Recall that we may write Rps = Rst + R̃, from which we obtain

||Rst||2 = ||Rps||2 − ||R̃||2 − 2〈Rst, R̃〉. (6.25)

Our aim is therefore to establish an explicit form for the difference −||R̃||2−2〈Rst, R̃〉

derived above. The coming calculations are simplified by noting the following simple

consequences of the formula for the expectations of iterated Wiener interals found

in Milstein (1995) and Kloeden & Platen (1999).

Lemma 6.2.1 For u, v ∈ A+, we have the following formulae for the expectations

of products of iterated integrals of word order two.

E{Iu xxy 0Iv0} = δuv
t3

2
, (6.26)

E{Iu xxy 0I0v} = δuv
t3

2
, (6.27)

E{Iu xxy 0Iv xxy 0} = δuvt
3. (6.28)

Lemma 6.2.2 Suppose that u, v, w ∈ A+. The following formulae for the expecta-

tions of products of iterated integrals of word order three hold.

E{Iu xxy v xxywIp xxy q xxy r} = Γt3, (6.29)

E{IuvwIp xxy q xxy r} = Γ(u, v, w, p, q, r)
t3

6
, (6.30)

E{IuvwIpqr} = δupδvqδwr
t3

6
. (6.31)

where Γ is defined such that Γ(u, v, w, p, q, r) = 1 if there exists a permutation σ of

p, q, r for which σ(p) = u, σ(q) = v, σ(r) = w, and Γ(u, v, w, p, q, r) = 0 otherwise.
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We treat first the term −||R̃||2. Using the formulae for the leading order remainders

Rst and Rps previously derived, we obtain

R̃ =
∑
u,k∈A

Iu xxy 0 [αVu xxy 0 + (α + β)Vu xxy kk]− α [VukkI0u + VkkuIu0] (6.32)

+
∑

u,v,w∈A

Vuvw [(α + β)Iu xxy v xxyw + α(Iuvw − Iwvu)] . (6.33)

Write R̃ = P +Q, where P is the first sum above and Q the second. We note that

P and Q are orthogonal with respect to the inner product, so we have

||R̃||2 = ||P ||2 + ||Q||2. (6.34)

We now treat separately the terms P and Q. We begin by splitting the sum up

further into Q = q1 + q2, where q1 is the term on the left in α + β and q2 the term

on the right in α. It follows that

||Q||2 = ||q1||2 + ||q2||2 + 2〈q1, q2〉. (6.35)

Furthermore, we may calculate

||q1||2 =
∑

u,v,w;σ∈S3

(α + β)2t3
[
V T
uvwVσ(uvw)

]
(6.36)

and

||q2||2 =
∑
u,v,w

α2t3

3

[
V T
uvwVuvw − V T

uvwVwvu
]
. (6.37)

Note that by the second relation of Lemma 6.2.2, we have

E{IuvwIp xxy q xxy r} = E{IwvuIp xxy q xxy r}. (6.38)

It follows that 〈q1, q2〉 = 0. We again write P = p1 + p2 where p1 is the term in Iu xxy 0

and p2 the term in Iu0 and I0u, although note that this decomposition will not be
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orthogonal as above. Explicitly, we have

p1 =
∑
u,k∈A

Iu xxy 0 [αVu xxy 0 + (α + β)Vu xxy kk] (6.39)

and

p2 =
∑
u,k∈A

−α [VukkI0u + VkkuIu0] . (6.40)

First we compute ||p2||2. We have

||p2||2 =
∑
u,k,k′

α2t3

6

[
2V T

ukkVuk′k′ + V T
kkuVuk′k′ + V T

ukkVk′k′u + 2V T
kkuVk′k′u

]
. (6.41)

We follow by computing ||p1||2; we obtain

||p1||2 =
∑
u,k,k′

t3[αV T
u xxy 0 + (α + β)V T

u xxy kk][αVu xxy 0 + (α + β)Vu xxy k′k′ ]. (6.42)

The inner product is calculated to be the following

〈p1, p2〉 =
∑
u,k,k′

−αt
3

2
V T
u xxy k′k′ [αVu xxy 0 + (α + β)Vu xxy kk]. (6.43)

We obtain the following coefficients of t3 in the sum for ||P 2||:

V T
u xxy 0Vu xxy kk : α(α + β)− 1

2
α2 = α(

1

2
α + β), (6.44)

V T
u xxy 0Vu xxy 0 : α2, (6.45)

V T
ukkVuk′k′ , V

T
kkuVk′k′u : β(α + β) +

1

3
α2, (6.46)

V T
ukkVk′k′u , V

T
kkuVuk′k′ : β(α + β) +

1

6
α2. (6.47)

The following coefficients contain contributions from both ||P ||2 and ||Q||2:

V T
ukkVukk , V

T
kkuVkku : (α + β)(2α + 3β) +

2

3
α2, (6.48)

V T
ukkVkku , V

T
kkuVukk : (α + β)(2α + 3β)− 1

6
α2, (6.49)
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this follows as there are two relevant permutations in the sum of ||q1||2 each adding

an (α + β)2 term, and we add or subtract a term in α2

3
from ||q2||2 according to

which of the above entries we are in.

We now calculate the second term in the difference of ||Rst||2 and ||Rps||2; this

is the term −2〈Rst, R̃〉. Recalling the identity

Rst =
∑
i,j,k

VijkIijk +
∑
u

Vu0Iu0 + V0uI0u, (6.50)

we call the first sum above r1 and the second r2. It is clear then that

〈Rst, R̃〉 = 〈r1, Q〉+ 〈r2, P 〉, (6.51)

where we recall that P and Q were given by the following expressions.

P =
∑
u,k∈A

Iu xxy 0 [αVu xxy 0 + (α + β)Vu xxy kk]− α [VukkI0u + VkkuIu0] (6.52)

:= p1 + p2. (6.53)

Q =
∑

u,v,w∈A

Vuvw [(α + β)Iu xxy v xxyw + α(Iuvw − Iwvu)] . (6.54)

We obtain

〈r1, Q〉 =
∑
u,v,w;σ

V T
uvw

[
(α + β)Vσ(uvw) + α(Vuvw − Vwvu)

] t3
6
. (6.55)

We then calculate 〈r2, P 〉 using the decomposition P = p1 + p2. The contribution

from 〈r2, p2〉 is

[V T
u0(Vukk + 2Vkku) + V T

0u(2Vukk + Vkku)]
−αt3

6
. (6.56)

and that from 〈r2, p1〉 is

V T
u xxy 0(αVu xxy 0 + (α + β)Vu xxy kk)

t3

2
. (6.57)
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We obtain the following coefficients of t3 in the expansion for 〈r2, P 〉:

V T
u xxy 0Vu xxy 0 :

α

2
, (6.58)

V T
u0Vukk , V

T
0uVkku :

1

3
α +

1

2
β, (6.59)

V T
u0Vkku , V

T
0uVukk :

1

6
α +

1

2
β. (6.60)

Gathering and summing all the previous results, we obtain the following coefficients

of t3 in the sum.

V T
u xxy 0Vu xxy 0 : α(α + 1), (6.61)

V T
u0Vukk , V

T
0uVkku :

1

3
α +

1

2
β + αβ +

1

2
α2, (6.62)

V T
u0Vkku , V

T
0uVukk :

1

6
α +

1

2
β + αβ +

1

2
α2, (6.63)

V T
ukkVuk′k′ , V

T
kkuVk′k′u : β(α + β) +

1

3
α2, (6.64)

V T
ukkVk′k′u , V

T
kkuVuk′k′ : β(α + β) +

1

6
α2, (6.65)

V T
uvwVσ(uvw) : (α + β)(α + β +

1

3
), (6.66)

V T
uvwVuvw :

1

3
α(α + 1), (6.67)

V T
uvwVwvu : −1

3
α(α + 1), (6.68)

V T
ukkVukk , V

T
kkuVkku : (α + β)(2α + 3β +

2

3
) +

1

3
α(2α + 1), (6.69)

V T
ukkVkku , V

T
kkuVukk : (α + β)(2α + 3β +

2

3
)− 1

6
α(α + 2), (6.70)

V T
kukVukk , V

T
kukVkku , V

T
kukV

T
kuk : 2(α + β)(α + β +

1

3
). (6.71)

We must also consider carefully the coefficients of terms in Vuuu. We expect that

we obtain the new expressions by summing existing ones, but doing so by hand is a

useful check. Note that the relevant terms in R̃ are

Vuuu[(α + 2β)Iu xxy 0 + 6(α + β)Iuuu]. (6.72)

We compute first

2〈Rst, R̃〉 = V T
uuu{2(α + β)t3Vuuu +

1

2
(α + 2β)t3Vu xxy 0}+ . . . , (6.73)
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where the . . . signify that we have omitted a term in V T
u xxy 0Vuuu whose coefficient is

clear from the symmetry of the matrix. We obtain the following coefficients of t3 in

the expansion for ||R̃||2:

V T
uuuVu xxy 0 : α(α + 2β) +

α + 2β

2
= (α +

1

2
)(α + 2β), (6.74)

V T
uuuVuuu : 2(α + β) + 6(α + β)2 + (α + 2β)2, (6.75)

: 6(α + β)(α + β +
1

3
) + (α + 2β)2. (6.76)

These are consistent with the previous coefficients; the latter coming from 6 terms

in (α + β)(α + β + 1
3
) and

(α + 2β)2 = 4β(α + β) +
2

3
α(2α + 1)− 1

3
α(α + 2). (6.77)

Note that we can’t sum up the values for V T
ukkVukk, V

T
kkuVkku, V

T
ukkVkku, VkkuVukk here

as we will end up counting 8 permutations of uuu, not 6. The final value (coefficient

of t3) is

V T
uuuVu xxy kk : (α + 2β)(α + β)− α

2
(α + 2β) =

1

2
α2 + 2β(α + β). (6.78)

The last value is as we expect.

6.2.1 Error form analysis

As in the order half case, we may write the quadratic form −||R̃||2 − 2〈Rst, R̃〉 in

the form V TAV , where V is a vector of indeterminates (V10, V01, . . .) corresponding

to the vector fields, and A is a matrix. To obtain an integration scheme with mean

square error less than that associated with the stochastic Taylor scheme, we would

then require that A be positive semidefinite. As before, this form will split into a

sum
∑

i V
T
i AiVi where the Vi are disjoint. The eigenvalues will then be the totality

of eigenvalues of the Ai. As iterated integrals of the form Iuvw, u, v, w ∈ A+ are

orthogonal to those of the form Iu0, u,∈ A+, the decomposition will be twofold. We

will require both quadratic forms to be positive definite. The first part comprises a
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sum over all vectors of indeterminates

(Vuvw, Vuwv, Vvuw, Vwuv, Vvwu, Vwvu) (6.79)

corresponding to the threefold composition of vector fields with distinct indices

u, v, w ≥ 1. The matrices for each distinct set of indices u, v, w is the same. We

obtain 

Vuvw

Vuwv

Vvuw

Vwuv

Vvwu

Vwvu



T

(γA+ δB)



Vuvw

Vuwv

Vvuw

Vwuv

Vvwu

Vwvu


, (6.80)

where γ = 1
3
α(α+ 1), δ = (α+β)(α+β+ 1

3
), B is the 6x6 matrix where every entry

is a 1, and

A =



1 −1

1 −1

1 −1

−1 1

−1 1

−1 1


. (6.81)

There are values of α and β for which this expression is negative semidefinite, and

hence its negation is positive semidefinite as we wish. Both the sinhlog and log

integrators possess this property. We hence focus on the other sum in the decom-

position. The second part of the decomposition comprises vectors of indeterminates

corresponding to compositions of vector fields with non-distinct indices or indices

including a zero. Again, there is a sum
∑
V T
i AiVt here, but the matrices Ai are the
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same. They are given by



Vu0

V0u

Vukk

Vkku

Vkuk

Vuk′k′

Vk′k′u

Vk′uk′

Vuuu



T 

κ κ γ δ 0 γ δ 0 ζ

κ κ δ γ 0 δ γ 0 ζ

γ δ ν µ φ ψ ξ 0 η

δ γ µ ν φ ξ ψ 0 η

0 0 φ φ φ 0 0 0 0

γ δ ψ ξ 0 ν µ φ η

δ γ ξ ψ 0 µ ν φ η

0 0 0 0 0 φ φ φ 0

ζ ζ η η 0 η η 0 ω





Vu0

V0u

Vukk

Vkku

Vkuk

Vuk′k′

Vk′k′u

Vk′uk′

Vuuu



t3, (6.82)

where the coefficients of the matrix are

κ = α(α + 1), (6.83)

φ = 2(α + β)(α + β +
1

3
), (6.84)

δ =
1

6
α +

1

2
β + αβ +

1

2
α2, (6.85)

γ =
1

3
α +

1

2
β + αβ +

1

2
α2, (6.86)

ψ = β(α + β) +
1

3
α2, (6.87)

ξ = β(α + β) +
1

6
α2, (6.88)

ζ =
α

2
+ β + αβ + α2, (6.89)

η = 2β(α + β) +
α2

2
, (6.90)

ν =
8

3
α2 + 5αβ + 3β2 + α +

2

3
β, (6.91)

µ =
11

6
α2 + 5αβ + 3β2 +

α

3
+

2

3
β, (6.92)

ω = 7α2 + 16αβ + 10β2 + 2(α + β). (6.93)

This matrix possesses at least one negative eigenvalue for all values of α and β

except α = β = 0. The eigenvalues were computed numerically. We present two

visualizations of the smallest eigenvalue of the above matrix for general values of α

and β. The first is a contour plot, and the second is a surface in three dimensions.
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In particular, we see that there are no values of α and β for which the matrix A

is positive semidefinite. It follows that we may not obtain an efficient integrator in

the sense of Section 2.7 of this thesis of order 1 using power series methods.
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Chapter 7

One-step Schemes and

Sign-reverse Integrator

In this chapter, we introduce a new method of generalizing the sinhlog integrator

of Malham & Wiese (2009) designed to preserve its efficiency properties for broader

classes of driving processes. In doing so, we will examine a new method for realiz-

ing map-truncate-invert schemes in a single step, removing many of the difficulties

inherent in inverting such schemes. We begin with a discussion of the algebraic

encoding of power-series schemes, and show how the algebraic structure naturally

gives rise to a broader class of scheme. This provides the stimulus for introduc-

ing the new sign-reverse integrator, a scheme arising from the consideration of the

sinhlog integrator. In the main result of this chapter and indeed the thesis, to be

published in Curry et al. (2014b), we show that this integration scheme is efficient

for Lévy-driven equations with sufficiently smooth vector fields, in the same sense

as the sinhlog integrator of Malham & Wiese.

Present knowledge, however, does not provide a method of computing the inversion

step in this map-truncate-invert scheme. Accordingly, in the next section we intro-

duce a new perspective for analysing map-truncate-invert schemes. We show that

the terms up to the desired strong order of convergence coincide with the schemes

arising from a truncation of the stochastic Taylor expansion. They differ, however,

in that they possess terms of higher order than the truncation. We show how these
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are related to the remainder endomorphisms discussed previously, and show how

they may be generated from lower order terms utilizing the algebraic structure. In

doing so we resolve the difficulties inherent in inverting such schemes. We then

return to our discussion of the sign-reverse integrator, showing how it fits into this

framework. We conclude with a brief discussions of stochastic differential equations

where the stochastic and geometric information contained in the flowmap may not

be separated, and comment on the extent to which our integration schemes may be

applied there.

7.1 The sign-reverse integrator

We adopt the following perspective. We have viewed integration schemes under two

lenses, first as approximations of the flowmap of the form ϕ̂ = f−1 ◦ ϕ ◦ f(ϕ) for

smooth, invertible f ; and second as approximations induced by the algebraic maps

(f ∗)−1 ◦ π ◦ f ∗ ∈ H. We showed in the section on encoding integration schemes that

the homomorphic embedding ψ : H → Ā, where Ā = K〈A〉 ⊗ K〈A〉∗ provides a

relation between f and f ∗ above where f is a power series. Composition powers

of the identity do not however exhaust the space End(K〈A〉), the reversal map

R is one example of a map not expressible as a power series. We will therefore

expand our search to include approximations to the flowmap in the wider image

space ψ(H). It is worth pausing a moment to reflect on the role of the convolution

product in the broader setting. Note that the only place in the computation of ϕ =

sinhlog−1◦π◦sinhlog∗(id) where we use the convolution structure is in the expression

of the algebraic map sinhlog−1; all the products are standard compositions. Indeed,

the power of the convolution formalism is that it allows us to compute composition

inverses through Lemma 4.5.3.

Definition 7.1.1 Let f(1+x) = sinhlog(1+x). The sign-reverse integration scheme

is defined to be the map-truncate-invert scheme

ϕ̂tn,tn+1
:=
[
(κ⊗ µ)tn,tn+1 ◦ ψ

]
◦
[
(f−1)∗ ◦ π≤n ◦ f ∗(id)

]
, (7.1)
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where the convolution powers are taken in the shuffle/deconcatenate convolution

algebra, regardless of the quasi-shuffle algebra structure of the iterated integrals.

The sign-reverse takes its name from the relation f ∗(id) = 1
2
(id + (−1)|w|+1R(w)).

We can not in general give an expression for these maps as convolution power series,

except where the convolution algebra is a shuffle algebra. To see this, compare the

action by S(w) := (−1)|w|R(w) and a map f := αJ + βJ?2 on a general word of

length two ; we have

f(ab) = (α + β)ab+ βba+ β[a, b]. (7.2)

Comparing this to the identity S(ab) = ba, we see that −α = β = 1, and that

[a, b] = 0 for all a, b. This implies that the operation [, ] is trivial and the quasi-

shuffle algebra is therefore the shuffle algebra.

Lemma 7.1.2 For all endomorphisms X, Y , we have 〈X, Y 〉 = 〈R ◦ X,R ◦ Y 〉,

where R is the reversal map.

Proof: As E(w) = 0 unless w ∈ {0}∗, we have E(w) = E(R(w)). Moreover, by

Proposition 4.2 of Hoffman & Ihara (2011), R is a homomorphism for any quasi-

shuffle algebra to itself. The result then follows as

∑
u,v

E{R(u) ∗R(v)}(u, v) =
∑
u,v

E{R(u ∗ v)}(u, v) =
∑
u,v

E{u ∗ v}(u, v). (7.3)

Let πn be the projector of R〈A〉 onto its nth homogeneous component in the local

mean square grading g(w) = 1
2
(|w| + ξ(w)); for this section we will use this form

of the mean-square grading, remembering to add the expectation of leading order

terms. Define Ag = Im(πn). We now note the following.

Lemma 7.1.3 (Orthogonal decomposition) The subspaces Ag decompose or-

thogonally (with respect to the inner product) into word-homogenous subspaces ⊕nAn
g .
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Proof: Eliminating ξ(w) from the simultaneous equations

1

2
ζ(w) + ξ(w) = g(w) (7.4)

ζ(w) + ξ(w) = |w|, (7.5)

we obtain |w| = g(w) + 1
2
ζ(w). Recall that if the polynomial w ∗ w′ is to have non-

zero expectation, the words w,w′ must have the same number of non-zero letters,

ie ζ(w) = ζ(w′). If we have w,w′ ∈ Ag, some g, then by definition g(w) = g(w′). It

follows that |w| = |w′|, as required.

We have the following.

Corollary 7.1.4 Let πn be the projector of R〈A〉 onto its nth homogeneous compo-

nent in the grading g(w) = 1
2
(|w| + ξ(w)), and let 〈, 〉 be the inner product on the

quasi-shuffle algebra. We then have:

1. 〈S ◦ πn, S ◦ πn〉 = 〈id ◦ πn, id ◦ πn〉,

2. 〈E ◦ S ◦ πn,E ◦ S ◦ πn〉 = 〈E ◦ id ◦ πn,E ◦ id ◦ πn〉,

3. 〈sinhlog∗(id) ◦ πn, coshlog∗(id) ◦ πn〉 = 0,

4. 〈E ◦ sinhlog∗(id) ◦ πn,E ◦ coshlog∗(id) ◦ πn〉 = 0,

where sinhlog∗(id) and coshlog∗(id) are given by convolution power series in the

shuffle/deconcatenate convolution algebra.

Proof: The first point holds as, by the orthogonal decomposition lemma, all

contributing terms in the expectations E(S(u) ∗ S(v)) are expectations of prod-

ucts of words of the same length. We therefore have E((−1)|u+v|R(u) ∗ R(v)) =

E(R(u) ∗ R(v)), and the result follows from Lemma 7.1.2. The rest are immedi-

ate consequences of the above, noting the identities sinhlog∗(id) = 1
2
(id − S) and

coshlog∗(id) = 1
2
(id + S).

If we adopt the word order grading, the proof of the analogous result is similar,

indeed we do not need the orthogonal decomposition lemma.
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Lemma 7.1.5 Let πn be the projector onto the nth homogeneous component accord-

ing to the word-order grading. With the usual inner product, we obtain

1. 〈S ◦ πn, S ◦ πn〉 = 〈id ◦ πn, id ◦ πn〉,

2. 〈shl ◦ πn, chl ◦ πn〉 = 0.

Proof: As above, all words u, v in the image of πn are of the same length. It

follows that (−1)u(−1)v = 1, and we obtain the result using Lemma 7.1.2.

We are now in a position to state our main result.

Theorem 7.1.6 Let ϕ be the flowmap of a stochastic differential equation driven

by independent Lévy processes with moments of all orders. Assume that ϕ possesses

a separated stochastic Taylor expansion, and that the driving vector fields satisfy

the smoothness Hypotheses 4.2.2 to all orders. The sign-reverse approximation of a

given order n is then efficient in the sense that its local leading order mean square

errors are always smaller than those of the truncated stochastic Taylor scheme of

the same order, independent of the initial conditions. This holds for truncations at

both the mean square grading and the word order grading.

Proof: The main ingredient in the proof is Theorem 4.6.4. Let g := (f−1)∗ ◦π≤n ◦

f ∗(id), and define h := id − g. The result follows if we can show that 〈g, h〉 = 0.

Note that sinhlog possesses a power series inverse, given by

sinhlog−1(x) = 1 + x+
1

2
x2 + . . . , (7.6)

see Ebrahimi–Fard et al. (2012). Furthermore, the sinhlog series is an expansion

in convolution powers of the augmented ideal projector with zero constant term.

The hypotheses of Lemma 4.5.6 are then satisfied, as the shuffle product in the

convolutions preserves all grading functions. It follows that g = sinhlog∗(id) at

leading order, and h = coshlog∗(id). The preceding lemmas then guarantee that the

hypotheses of Theorem 4.6.4 hold, and the result therefore follows.
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The one caveat is that we may now only compute the inverse at an algebraic level,

and not with operations on the flowmap itself. In what follows, we explore a method

of resolving this issue.

7.2 One-step realizations

We begin by noting that any endomorphism X = f−1 ◦πn ◦f inducing an integrator

of strong order n is necessarily the identity on A≤n, where A≤n = π≤n(A∗) is the

projection operator π≤n according to the mean square grading, this is essentially

Theorem 4.5.5. Furthermore, any higher order terms in X = f−1 ◦ πn ◦ f may be

expressed in terms of functions of elements in A≤n. Consider the strong order 1

sinhlog scheme for a Stratonovich drift-diffusion equation. It is possible to work

out an explicit expression for the endomorphism X = sinhlog−1 ◦π≤1 ◦ sinhlog∗(id) :

R〈A〉 → R〈A〉. We will simplify matters by computing only the leading order terms,

i.e. in this case π≤ 3
2
◦X. At leading order, we have sinhlog−1(X) = X + 1

2
X?2 and

π≤1 ◦ sinhlog∗(id) = π≤1 − 1
2
J?2 ◦ π≤1. Note the following identities:

π≤ 3
2
◦ (π≤1 ∗ π≤1) = J?2 ◦ π≤ 3

2
, (7.7)

π≤ 3
2
◦ ((J?2 ◦ π≤1) ∗ π≤1) = J?3 ◦ π 3

2
, (7.8)

π≤ 3
2
◦ (J?2 ◦ π≤1)?2 = 0. (7.9)

We may now proceed:

π≤ 3
2
◦ sinhlog−1 ◦ π≤1 ◦ sinhlog∗(id)

= π≤ 3
2
◦ (π≤1 −

1

2
J?2 ◦ π≤1 +

1

2
(π≤1 −

1

2
J?2 ◦ π≤1)?2),

= π≤ 3
2
◦ (π≤1 −

1

2
(J?2 ◦ π≤1 + π?2≤1 − (J?2 ◦ π≤1) ◦ π≤1 +

1

4
(J?2 ◦ π≤1)?2)),

= π≤1 +
1

2
(J?2 − J?3) ◦ π 3

2
. (7.10)
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It follows that the integration scheme given by

ψ(X) =
∑
g(w)≤1

VwIw +
1

2

∑
g(w)= 3

2

VwI(J?2−J?3) (7.11)

is equivalent, at leading order, to that constructed by X̃ = sinhlog−1 ◦ π≤1 ◦

sinhlog∗(id). We may establish this more simply however, from Lemma 4.5.6; if

we have an expression for the remainder R at leading order (ie, n+ 1
2
), the identity

id − R = X ◦ πn+ 1
2

holds. In the sinhlog case, we have R = Q where Q is the pre-

remainder sinhlog∗(id) ◦ π≥n+ 1
2
. It follows that we may extend (7.11) to all orders

immediately; we have

ψ(X) =
∑

g(w)≤n

VwIw +
1

2

∑
g(w)=n+ 1

2

VwI(J?2−J?3+...)(w) (7.12)

Note that a similar derivation allows us to perform a leading-order equivalent version

of the Castell-Gaines scheme; R = Q also holds in this setting. We also note the

expression 1
2
(J?2 − J?3 + . . .)(w) = coshlog∗(id)(w). This gives us an alternative

method of proof of Theorem 7.1.6 by immediate application of the sinhlog/coshlog

orthogonality. It also gives a different insight into the result of Ebrahimi–Fard et al.

(2012) that f = coshlog∗(id) fails to induce a satisfactory integrator: the integrator

includes a term in sinhlog∗(id)(w), containing in turn a term in J(w) and hence

may not be generated from lower order terms. Indeed, the computational power of

(7.12) is that the terms of grading > n are all of the form J?n(w), that is to say

they are all shuffles of lower order words. In practice, this means that we need only

simulate the integrals Iw up to order n, and the remaining terms may be generated

by products of these without incurring significant computational costs.

7.3 Signed-reverse integrator revisited

Note that the derivation of (7.12) is purely a computation of the algebraic endo-

morphism ϕn = sinhlog−1 ◦ π ◦ sinhlog∗(id). At no point does it invoke the result

that the embedding H → K〈A〉⊗̄K〈A〉 is an algebra homomorphism, nor that the
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quasi-shuffle products of words correspond to real products of stochastic integrals.

Recall that the integrator for more general Itô equations given in Section 7.1 corre-

sponds to the identical endomorphism ϕn ∈ H. It follows that we may derive the

same algebraic expression

X = id ◦ π≤n + coshlog∗(id) ◦ πn+1, (7.13)

and hence obtain the integrator

ψ(X) =
∑

g(w)≤n

VwIw +
1

2

∑
g(w)=n+1

VwIJ∗2−J∗3+...(w), (7.14)

where the convolutions J?2 etc are in the shuffle convolution algebra, and not the

more natural quasi-shuffle convolution. We will refer to the extra terms in such an

integrator compared with the stochastic Taylor scheme as the remainder terms. We

must note, however, that the last paragraph of the previous section no longer applies

exactly; the integrals Iu xxy v are no longer equal to their real products IuIv. We can

at least say that the components of greatest word order of u xxy v and u ∗ v are the

same. For this reason we will always truncate according to the word order grading.

We may therefore derive expressions of the form

Iu xxy v = IuIv +
∑

g(w)∈A≤n

Iw. (7.15)

Indeed, this observation is behind the result of Hoffman (1999) that the Lyndon

words form a basis for the quasi-shuffle algebra. We now give a brief derivation of

the remainder terms

X(ϕ) =
1

2

∑
g(w)=n+1

VwIchl(w) (7.16)

in terms of lower order iterated integrals (under the word order grading g(w)). This

amounts to computing the difference between I(J?2−J?3+...)(w) where the convolutions

are quasi-shuffles, and the same term where the convolutions are shuffles. This is

accomplished most readily by noting that in both cases (J?2 − J?3 + . . .)(w) =

1
2
(id + S)(w), where S is the relevant antipode. It follows that this difference is
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1
2
(S−Ŝ), where Ŝ is the quasi-shuffle antipode and S the shuffle antipode. Explicitly,

we have

(S − Ŝ)(ijk) = [k, j]i+ k[i, j] + [i, j, k]. (7.17)

For instance, we see that the order 1 sign-reverse approximation of the drift-diffusion

flowmap has remainder term:

X(ϕ) =
1

2

∑
ijk≥1: i 6=k

Vijk(IijIk + IiIjk − IiIjIk + δijIk0 + δjkI0i). (7.18)

Note that the expression

(J xxy 2 − J xxy 3)(ijk) = ij xxy k − i xxy kj = ijk − kji, (7.19)

where J xxyn denotes the n-fold convolution power in the shuffle/de-concatenate con-

volution algebra, implies that the terms in (7.18) where i = k are zero, hence the

restricted summation given. More generally, a similar expression may be derived

from (7.17) in the various quasi-shuffle settings.
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Practical Implementation

We here give a brief overview of some of the practical issues pertaining to strong

numerical schemes for Lévy-driven equations, before presenting the results of our

numerical experiments.

8.1 Simulation

We give a brief sketch of certain issues concerning practical implementation of in-

tegrators for SDEs driven by Lévy processes. There are two main problems to

surmount. First, simulating multiple integrals, already a difficult task for drift-

diffusion SDEs, may be prohibitively difficult for Lévy driven equations. Second,

even simulating the increments of a Lévy process is difficult in many cases. Knowl-

edge of the canonical decomposition Z = αt + σWt + Jt, where Jt is characterized

through its random jump measure, may not provide a method of calculating the law

of increments L(Zt+h−Zt) in the case that Jt is an infinite activity process. We also

briefly discuss the consequences of the infinite alphabet appearing in the linearized

flow.

The most important class of Lévy processes we can readily simulate consists of

jump diffusions. A Lévy process is a jump diffusion if its Lévy measure is finite, i.e.

ν(R) = λ <∞. In the absence of drift and Brownian components, such a process is
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a compound Poisson process (see Bertoin 1996, p. 16), that is of the form

Zt =
Nt∑
i=1

Y i, (8.1)

where Nt is a standard Poisson process, and the marks Y i are independent, iden-

tically distributed random variables with a known distribution. In this instance,

we may simulate Zt by simulating the Poisson process N = Nt to give the number

of jumps in the interval considered. As the jump times are uniformly distributed

on this interval, we sample N independent uniformly distributed jump times, and

then sample Y i according to the known law (see Cont & Tankov 2004, p.174). More

challenging is the computation of the iterated integrals featuring a Wiener process

and a compound Poisson process. In our simulations, we have computed

I12(t) =

∫ t

0

WsdZs =
Nt∑
i=1

(W (ti)−W (ti−1))Y i, (8.2)

where the {ti} are the jump times of Z, by simulating the increments of the Wiener

process Wt at all the jump times. Note that this is computationally expensive where

the intensity of the compound Poisson process is large. Furthermore, it is close in

spirit to the jump-adapted schemes described in Bruti-Liberati & Platen (2010), an

interesting question is how our analysis translates into this framework?

More generally, it may be shown that the integrability conditions on Lévy mea-

sures require ν(A) < ∞ where A ⊂ R is bounded away from the origin. We may

therefore hope to approximate Lévy processes of infinite intensity with jump diffu-

sions by ignoring or approximating jumps below a given small magnitude ε. The

simplest such approximation is given by

Zt ≈ Zε
t = αt+ βWt +

∫
t

∫
|x|>ε

x[Q(dx, ds)− sν(dx)]. (8.3)

Let Rε
t := Zt − Zε

t . As we are working with compensated jump measures, we have

E(Rε
t) = 0. Defining σ2(ε) :=

∫
|x|<ε x

2ν(dx), we find that Var(Rε
t) = tσ2(ε). The
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accuracy of this approximation depends on the rate at which σ(ε) converges to zero.

Various results concerning weak convergence of this approximation are given in Cont

& Tankov (2004). Integration schemes based on performing such an approximation

and applying an Euler method have been studied at length by Protter & Talay

(1997), Jacod et al. (2005), but only in the weak sense. We can often improve

the above in approximating the small jumps by a Brownian motion. Critical is the

following result, due to Asmussen & Rosinski, (2001):

Theorem 8.1.1 σ(ε)−1Rε → W in distribution as ε → 0, where W a standard

Brownian motion, if and only if, ∀k > 0,

σ(kσ(ε) ∧ ε)
σ(ε)

→ 1, as ε→ 0. (8.4)

A sufficient condition for the above to hold is that ε−1σ(ε)→∞ as ε→ 0, necessary

if ν has no atoms in a neighbourhood of 0 as will often be the case.

Weak convergence of integration schemes based on solving approximate SDEs driven

by Ẑε
t = Zε

t + σ(ε)Wt has been investigated by Jacod et al (2005), for instance. A

recent paper of Fournier (2011) showed strong convergence in the case of a single

driving Lévy process. The difficulty is that we need convergence of the above ap-

proximation in the Wasserstein metric, not just in distribution. Fournier was able to

use a recent result of Rio (2009) on convergence of the central limit in the Wasser-

stein metric. Rio’s result only applies for convergence to a one-dimensional Gaussian

random variable, hence the restriction to a single driving process, although it is con-

jectured that this restriction is not necessary. Furthermore Rosinski (2001) showed

a class of alternative methods for approximating Lévy processes by jump diffusions

based on summing a random number of terms of an infinite series. Interesting ques-

tions remain concerning the application of such approximations to strong numerical

schemes.

We remark that, in the case of the linearized flow, the free monoid Ã∗ is not lo-

cally finite with respect to the word order or variance grading, that is to say for
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each graded homogenous component there may be an infinite number of terms. To

obtain an implementable numerical integration scheme from its truncation, we would

therefore have to truncate the Taylor expansion employed in the linearization after

a fixed number of terms, say N . For such a scheme to be practical, the Taylor series

would have to exhibit rapid convergence. At present, such expansions seem to be of

greater theoretical than practical interest.

8.2 Numerical experiments

We here present a number of numerical experiments concerning the results given

above. First, consider the drift-diffusion equation driven by linear vector fields

dYt = V0YtdYt + V1YtdW
1
t + V2YtdW

2
t , (8.5)

where the W i are independent, standard Wiener processes, Yt ∈ R2 with initial

condition Y0 = (1, 0.5)T and the linear fields are given by the matrices

V0 =

 −0.0721 −0.2173

−0.1719 −0.9581

 , (8.6)

V1 =

 0.0800 0.5769

−0.5961 −0.9619

 , and V2 =

 −0.9438 0.5520

−0.4684 0.1591

 . (8.7)

We compare the global mean square error E(sup0≤t≤T |Yt − Ŷt|2)1/2, estimated by

sampling 10000 paths, for three different numerical schemes: (i) the Milstein scheme

Ŷtn =

(
∆tnV0 +

∑
i=1,2

∆W i(tn)Vi +
∑
i,j=1,2

∆Iij(tn)VjVi

)
Ŷtn−1 , (8.8)

where ∆tn = tn − tn−1 = h (we will consider only schemes with a fixed, uniform

discretization grid), ∆W i(tn) = W i(tn) −W i(tn−1), and ∆Iij(tn) =
∫ tn
tn−1

W idW i;
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(ii) The order 1 word-order truncated stochastic Taylor expansion:

Ŷtn =

(
∆tnV0 +

∑
i=1,2

∆W i(tn)Vi +
∑

i,j=0,1,2

∆Iij(tn)VjVi

)
Ŷtn−1 , (8.9)

where Iij is defined as above, using the convention W 0(t) = t, and (iii) the Sign-

reverse (word order) scheme

Ŷtn =

(
∆tnV0 +

∑
i=1,2

∆W i(tn)Vi
∑
i,j=1,2

∆Iij(tn)VjVi

+
∑

i,j,k=1,2

(∆Iij∆W
k(tn) + ∆W i∆Ijk(tn)−∆W i∆W j∆W k(tn))VkVjVi

+
∑

i,j,k=1,2

(δij∆Ik0(tn) + δjk∆I0i(tn))VkVjVi

)
Ŷtn−1 . (8.10)

In figure 8.1 we have plotted the global mean square error of the three numerical
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Figure 8.1: log-log plot of mean square error against stepsize for equation (8.5) with
parameters as given, derived through numerical means

approximations against the discretization grid stepsize (the exact solution being

unavailable, we have computed an approximate exact solution using an order 1

integrator with a smaller stepsize and accumulated the increments of the stochastic

processes when computing the approximations of a higher stepsize). We observe

strong convergence of order 1 in all three methods, as predicted. Furthermore,
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Figure 8.2: Plot of log(mean square error) against computation time for equation
(8.5) with parameters as given, derived through numerical means

in line with our analytic results, we notice that ‘sign-reverse’ integrator gives a

significant improvement on the word-order stochastic Taylor scheme, which is in

turn significantly more accurate than the Milstein scheme. Explicit integration

schemes for the equation (8.5) show less tendency to blowup when eigenvalues of

the driving fields are of less than unit magnitude, and have been chosen thus. Note,

however, that the theoretical improvement in mean-square error of the sign-reverse

scheme over the word order Taylor scheme is measured in terms of the form

1

3
VkVjVi(VkVjVi − ViVjVk).yn. (8.11)

Heuristically, it follows that this will be small (compared with the improvement

from Milstein to word-order Taylor) unless the commutators [Vi, (Vj)
2] have eigen-

values of comparable magnitude to the vector fields. Thus, generically for linear

drift-diffusion equations with driving matrices with spectra contained in the unit

disc, the improvement demonstrated by the sign-reverse integrator is likely to be

more modest than that shown in figure 8.1. Of greater practical interest is the ques-

tion of whether the improvement in accuracy resulting from the extra terms in the

word order and sign reverse integrators. In figure 8.2 we have plotted the global

mean square error of the approximations against the total computational time used
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by each integration scheme in the same simulation as above. We see that, in this

case, both the word order stochastic Taylor and sign-reverse outperform the Milstein

scheme according to this criterion. There is little difference between the word order

Taylor and sign-reverse schemes however, the extra computations required by the

latter in this case roughly offset the improved accuracy.

Consider the equation

dYt = V0YtdYt + V1YtdWt + V2YtdJt, (8.12)

where Wt is a standard Wiener process and Jt is the compound Poisson process

Jt =
∑Nt

i=1 Yi, where Nt is a (standard) Poisson process with intensity λ, and the

independent, identically distributed marks Yi ∼ N (0, λ). Yt ∈ R2 and the initial

condition is again Y0 = (1, 0.5)T . We compare the three order 1 schemes: (i) Mil-

stein, (ii) word-order stochastic Taylor (iii) sign-reverse integrator, where the first

two are as given before (employing the convention W 1(t) = W (t);W 2(t) = J(t)),

and the sign-reverse integrator is given by:

Ŷtn =

(
∆tnV0 +

∑
i=1,2

∆W i(tn)Vi +
∑
i,j=1,2

∆Iij(tn)VjVi

+
∑

i,j,k=1,2

(∆Iij∆W
k(tn) + ∆W i∆Ijk(tn)−∆W i∆W j∆W k(tn))VkVjVi

+
∑

i,j,k=1,2

(Ii=j=1∆Ik0(tn) + Ij=k=1∆I0i(tn))VkVjVi

+
∑

i,j,k=1,2

(Ii=j=2∆Ik2(2)(tn) + Ij=k=2∆I2(2)i(tn))VkVjVi

)
Ŷtn−1 , (8.13)

where I2(2)i(tn) =
∫ tn
tn−1

[J ]sdW
i
s and Ii2(2)(tn) =

∫ tn
tn−1

W i
sd[J ]s, [J ] being the quadratic

variation process [J ]t =
∑Nt

0 Y 2
i . We have approximated the iterated integrals using

the methods outlined earlier. For our simulations, we have taken intensity parameter

λ = 43.40, and matrices

V0 =

 −0.6841 0.5588

0.9335 −0.0273

 , (8.14)
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V1 =

 0.9530 −0.6357

0.9556 −0.3250

 , and V2 =

 −0.1763 −0.9088

0.3382 0.8925

 . (8.15)

As before, we observe in figure 8.3 strong convergence of order 1, with the sign-
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Figure 8.3: log-log plot of mean square error against stepsize for equation (8.12)
with parameters as given, derived through numerical means

reverse integrator more accurate than the word-order stochastic Taylor integrator,

which in turn is more accurate the Milstein scheme. Note that the previous remarks

on generic behaviour of the integration schemes and the particular vector fields

chosen apply equally here. In this instance, however, the Milstein scheme obtains

the better results when we factor in the additional computational time taken by

the other schemes. This is because, unlike in the previous case, we require extra

computational effort to simulate the additional iterated integrals such as Ii0.
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Figure 8.4: plot of log(mean square error) against computational time for equation
(8.12) with parameters as given, derived through numerical means
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Conclusion and Future Work

We have shown how to express the flowmap of a stochastic differential equation

driven by independent Lévy processes, with moments of all orders and autonomous

vector fields that are uniformly bounded with uniformly bounded derivatives of all

orders, in the form

ϕ =
∑
w

ṼwIw, (9.1)

where the Ṽw are operators constructed from the driving vector fields Vi and the Iw

are the multiple iterated integrals with respect to the driving processes. From this,

we have constructed an integration scheme based on the approximation of the above

flowmap in the form

ϕ̂ =
∑
|w|≤n

ṼwIw +
1

2

∑
|w|=n+1

Ṽw(I(id+s)(w)), (9.2)

utilising the fact that (id + S)(w) may be expressed as linear combinations in the

quasi-shuffle algebra of words of length smallar than n + 1. It was shown that

the above scheme is efficient in the sense that the coefficient of its leading order

remainder is always less than or equal to that of the integration schemee

ϕ̂ =
∑
|w|≤n

VwIw, (9.3)

obtained by simple truncation of the stochastic Taylor series. As the above integrator

is not a power series integrator as discussed in Chapter 6, however, we can no longer

128



Chapter 9: Conclusion and Future Work

show the optimality of this scheme with respect to certain perturbations, as was

shown in Malham & Wiese (2009) and Ebrahimi–Fard et al. (2012). The following

question is then natural. Let V ⊂ H be the subspace of endomorphisms f of K〈A〉

such that f(w) is computable from linear combinations of quasi-shuffles of words

of lower order. Any power series map of the form f ∗ = c2J
?2 + c3J

?3 + . . . is in

this space, for instance, as is (id + S). We have endowed H with the structure of

an inner product space. If we can show that this is a Hilbert space, and V is as

closed subspace, then there exists an orthogonal projection PV : H→ V . Under our

formalism, this would show the optimality of the integration scheme

ϕ̂ =
∑
|w|≤n

VwIw +
∑
|w|=n+1

VwIPV (id)(w). (9.4)

Further questions arise concerning the applicability of our results. We have assumed

that the vector fields are sufficiently smooth for the stochastic Taylor expansions to

exist to all orders. This is somewhat restrictive, and perhaps unnecessarily so. The

convergence of integration schemes arising from the truncation of the stochastic

Taylor series only requires the existence of uniformly bounded derivatives up to the

order of the remainder, and it seems likely that such conditions would be sufficient

for the schemes considered here. To establish this through algebraic methods would,

however, require the algebraic encodings to be modified to allow for truncated series

representations of approximate flows.

As was noted in the section on practical experiments, the improved accuracy ob-

tained by the sign-reverse integration scheme comes at the expense of increased

computational effort. This is to be expected, indeed this was discussed in detail in

Newton (1986), and the order one sign-reverse integration scheme for drift-diffusion

equations driven by a single Wiener process is exactly Newton’s order one asymp-

totically efficient integrator. Newton (1986) considered the problem of when the

increased accuracy could be considered worth the extra computational effort. A

detailed appraisal of the same considerations applied to our integration scheme in

some generality would be valuable. In the simulations presented earlier, for the
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compound Poisson case the extra computational effort was found to dominate. This

is largely due to the inefficient method utilized to compute the iterated integrals

appearing in the expansions. It was commented that the methods employed were

similar in spirit to the jump-adapted schemes described in Bruti-Liberati & Platen

(2010). There the discretization grid is generated by superimposing the jump times

of the compound Poisson processes on the deterministic grid of fixed step size. In

such a situation, any iterated integrals involving the compound Poisson processes

vanish. In view of the detrimental effect on performance arising from the simulation

of these iterated integrals, it would be extremely useful to examine whether the

integration schemes derived here translate to the jump-adapted framework.

In many cases, the computation of the operators Ṽw, containing derivatives of the

driving vector fields is complicated and may even dominate the computational cost

of the numerical scheme. For such situations it is advisable to consider the im-

plementation of derivative-free schemes, where the composition of operators Ṽw are

replaced with finite differences. It would be useful to examine whether our results

our applicable to such schemes. At the least, Newton (1991) derived an asymp-

totically efficient, derivative free integration scheme of order one for drift-diffusion

equations driven by a single Wiener process.

It was commented in Chapter 8 that for drift-diffusion equations, the improve-

ment in accuracy attained by the sign-reverse integrator compared with the trun-

cated Taylor methods is greatest where the magnitudes of the diffusion coefficients

dominate those of the drift coefficient. Such equations are liable to blow up, and

are therefore best tackled using implicit schemes (see Milstein & Tretyakov, 2004).

The derivation of an analogous implicit integration scheme using algebraic methods

would therefore be of substantial practical and theoretical interest. Indeed, fully

implicit schemes are required for the derivation of symplectic structure-preserving

integration schemes for stochastic differential equations on manifolds, see Milstein,

Repin & Tretyakov (2002). The generalization of our methods to equations on man-
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ifolds in general would be of interest, see Malham & Wiese (2008).

We conclude by commenting that the establishment of a quasi-shuffle algebra struc-

ture for iterated Lévy integrals has potential implications beyond the derivation of

numerical integration schemes. The algebra of iterated stochastic integrals has ap-

plications to, for instance, chaotic expansions of representation of martingales, see

Jamshidian (2011). Whether the quasi-shuffle algebra structure may be applied in

such situations remains a topic for future exploration.
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point processes, in Lévy processes - Theory and Applications, Barndorff-Nielsen,

O., Mikosch, T., Resnick, S., eds., Birkhäuser: Boston.
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