FROM m-CLUSTERS TO m-NONCROSSING PARTITIONS VIA EXCEPTIONAL SEQUENCES

ASLAK BAKKE BUAN, IDUN REITEN, AND HUGH THOMAS

Abstract

Let W be a finite crystallographic reflection group. The generalized Catalan number of W coincides both with the number of clusters in the cluster algebra associated to W, and with the number of noncrossing partitions for W. Natural bijections between these two sets are known. For any positive integer m, both m-clusters and m-noncrossing partitions have been defined, and the cardinality of both these sets is the Fuss-Catalan number $C_{m}(W)$. We give a natural bijection between these two sets by first establishing a bijection between two particular sets of exceptional sequences in the bounded derived category $D^{b}(H)$ for any finite-dimensional hereditary algebra H.

Introduction

This paper is motivated by the following problem in combinatorics. Let W be a finite crystallographic reflection group. Associated to W is a positive integer called the generalized Catalan number, which on the one hand equals the number of clusters in the associated cluster algebra FZ, and on the other hand equals the number of noncrossing partitions for W, see Be . Natural bijections between the sets of clusters and noncrossing partitions associated with W have been found in [Re, ABMW]. More generally, for any integer $m \geq 1$, there is associated with W a set of m-clusters introduced in [FR] and a set of m-noncrossing partitions defined in Ar . Each of these sets has cardinality the Fuss-Catalan number $C_{m}(W)$, see [FR, Ar]. The formula for $C_{m}(W)$ is as follows:

$$
C_{m}(W)=\frac{\prod_{i=1}^{n} m h+e_{i}+1}{\prod_{i=1}^{n} e_{i}+1}
$$

where n is the rank of W, h is its Coxeter number, and e_{1}, \ldots, e_{n} are its exponents.
One of our main results is to establish a natural bijection between the m-clusters and the m-noncrossing partitions for any $m \geq 1$. We accomplish this by first solving a related, more general problem about bijections between classes of exceptional sequences in bounded derived categories of finite dimensional hereditary algebras, which is also of independent interest.

Let H be a connected hereditary artin algebra. Then H is a finite dimensional algebra over its centre, which is known to be a field k. Examples of such algebras

[^0]are path algebras over a field of finite quivers with no oriented cycles. Let $\bmod H$ be the category of finite dimensional left H-modules and let $\mathcal{D}=D^{b}(H)$ be the bounded derived category. An H-module M is called rigid if $\operatorname{Ext}^{1}(M, M)=0$, and an indecomposable rigid H-module is called exceptional. The set of isomorphism classes of exceptional modules is countable, and it has interesting combinatorial structures, which have been much studied in the representation theory of algebras, and in various combinatorial applications of this theory.

We study exceptional objects and sequences in the derived category \mathcal{D}. With a slight modification of the definition in [KV], we say that an object T in \mathcal{D} is silting if $\operatorname{Ext}^{i}(T, T)=0$ for $i>0$ and T is maximal with respect to this property. We say that a basic object $X=X_{1} \oplus \cdots \oplus X_{n}$ in \mathcal{D} is a $H_{\leq 0}$-configuration if all X_{i} are exceptional, $\operatorname{Hom}\left(X_{i}, X_{j}\right)=0$ for $i \neq j, \operatorname{Ext}^{t}(X, X)=0$ for $t<0$, and there is no subset $\left\{Y_{1}, \ldots, Y_{r}\right\}$ of the indecomposable summands of X such that $\operatorname{Ext}^{1}\left(Y_{i}, Y_{i+1}\right) \neq 0$ for $1 \leq i<r$ and $\operatorname{Ext}^{1}\left(Y_{r}, Y_{1}\right) \neq 0$. (Here n denotes the number of isomorphism classes of simple H-modules.) It follows from the definition of $\mathrm{Hom}_{\leq 0}$-configuration that $\left\{X_{1}, \ldots, X_{n}\right\}$ can be ordered into a complete exceptional sequence. For any $m \geq 1$, we say that X is an m - $\operatorname{Hom}_{\leq 0}$-configuration if the X_{i} lie in $\bmod H[t]$ for $0 \leq t \leq m$.

Given the representation-theoretic interpretation of noncrossing partitions provided by [IT], it was reasonable to expect a representation-theoretic manifestation of m-noncrossing partitions. One approach to developing such a definition would have been to follow IT] closely, and consider sequences of finitely generated exact abelian, extension closed subcategories with suitable orthogonality conditions. $H^{\leq 0} \mathrm{H}_{\leq 0}$-configurations seemed to provide a more convenient viewpoint. When we have a Dynkin quiver, the vanishing of Hom and of Ext, which can be reduced to Hom, is easy to compute on the AR-quiver. Hence it is not hard to compute $\operatorname{Hom}_{\leq 0}$-configurations in this case.

Our main result is to obtain a natural bijection between silting objects and Hom $_{\leq 0}$-configurations via a certain sequence of mutations of exceptional sequences. This induces a bijection between m-cluster tilting objects and m-Hom ≤ 0-configurations, for any H. We also give a bijection between m-Hom ≤ 0-configurations and m noncrossing partitions for arbitrary H. Specializing to H being of Dynkin type, we get as an application a bijection betwen m-clusters and m-noncrossing partitions.

The paper is organized as follows. We first review preliminaries concerning exceptional sequences in module categories as well as in derived categories. In Section 2 , we recall the definition of silting objects and m-cluster tilting objects, and define $\operatorname{Hom}_{\leq 0}$-configurations and m-Hom ≤ 0-configurations. We also state the precise version of our main result. In the next section we give some basic results about mutations of exceptional sequences in the derived category. In Section 4 we show how to construct $H^{\prime} \leq 0_{0}$-configurations from silting objects. In the next two sections we finish the proof of our main result. In Section 7 we give the combinatorial interpretation of our main result, including a version for the "positive" Fuss-Catalan combinatorics. In Section 8, we discuss the relationship between our Hom ≤ 0-configurations and Riedtmann's combinatorial configurations from her work on selfinjective algebras Rie1, Rie2. In Section 9 we show how the bijection we have constructed interacts with torsion classes in \mathcal{D}.

We remark that the results in Section 8 have also been obtained by Simoes [G], in the Dynkin case, with an approach which is different than ours, and and independent from it.

1. Preliminaries on exceptional sequences

As before, let H be a finite dimensional connected hereditary algebra over a field k which is the centre of H, and let $\bmod H$ denote the category of finite dimensional left H-modules. We assume that H has n simple modules up to isomorphism. In this section we recall some basic results about exceptional sequences.
1.1. Exceptional sequences in the module category. A sequence of exceptional objects $\mathcal{E}=\left(E_{1}, \ldots, E_{r}\right)$ in $\bmod H$ is called an exceptional sequence if $\operatorname{Hom}\left(E_{j}, E_{i}\right)=$ $0=\operatorname{Ext}^{1}\left(E_{j}, E_{i}\right)$ for $j>i$.

There are right and left mutation operations, denoted respectively μ_{i} and μ_{i}^{-1}, which take exceptional sequences to exceptional sequences. Given an exceptional sequence $\mathcal{E}=\left(E_{1}, \ldots, E_{r}\right)$, right mutation replaces the subsequence $\left(E_{i}, E_{i+1}\right)$ by $\left(E_{i+1}, E_{i}^{*}\right)$, while left mutation replaces the subsequence $\left(E_{i}, E_{i+1}\right)$ by $\left(E_{i+1}^{!}, E_{i}\right)$, for some exceptional objects $E_{i+1}^{!}$and E_{i}^{*}.

We need the following facts about exceptional sequences in $\bmod H$. These are proved in [C] (if the field k is algebraically closed) and in Rin2] in general.

Proposition 1.1. Let $\mathcal{E}=\left(E_{1}, \ldots, E_{r}\right)$ in $\bmod H$ be an exceptional sequence. Then the following hold:
(a) $r \leq n$
(b) if $r<n$, then there is an exceptional sequence $\left(E_{1}, \ldots, E_{r}, E_{r+1}, \ldots, E_{n}\right)$
(c) if $r=n-1$, then for a fixed index $j \in\{1, \ldots n\}$, there is a unique indecomposable M, such that

$$
\left(E_{1}, \ldots, E_{j-1}, M, E_{j}, \ldots E_{n-1}\right)
$$

is an exceptional sequence
(d) for any $i \in\{1, \ldots, r-1\}$, we have $\mu_{i}^{-1}\left(\mu_{i}(\mathcal{E})\right)=\mathcal{E}=\mu_{i}\left(\mu_{i}^{-1}(\mathcal{E})\right)$
(e) the set of μ_{i} satisfies the braid relations, i.e. $\mu_{i} \mu_{i+1} \mu_{i}=\mu_{i+1} \mu_{i} \mu_{i+1}$ for $i \in\{1, \ldots, r-2\}$, and $\mu_{i} \mu_{j}=\mu_{j} \mu_{i}$ for $|i-j|>1$
(f) the action of the set of μ_{i} on the set of complete exceptional sequences is transitive.

An exceptional sequence $\mathcal{E}=\left(E_{1}, \ldots, E_{r}\right)$ is called complete if $r=n$.
1.2. Exceptional sequences in derived categories. Let $\mathcal{D}=D^{b}(H)$ denote the bounded derived category with translation functor [1], the shift functor. This is a triangulated category, see [H] for general properties of such categories. It is well known that since H is hereditary, the indecomposable objects of \mathcal{D} are stalk complexes, i.e. they are up to isomorphism of the form $M[i]$ for some indecomposable H-module M and some integer i. If $X=M[i]$ is an indecomposable object in \mathcal{D}, we will write $\bar{X}=M$ for the corresponding object in $\bmod H$.

It is well-known that the derived category \mathcal{D} has almost split triangles [H], and hence an AR-translation τ, or equivalently a Serre-functor ν, where we have $\nu=\tau[1]$. We have the AR -formula $\operatorname{Hom}_{\mathcal{D}}(X, Y) \simeq D \operatorname{Hom}(Y, \tau X)$, for all objects X, Y in \mathcal{D}.

It is convenient to consider also exceptional sequences in the derived category \mathcal{D}. Let $\mathcal{E}=\left(E_{1}, E_{2}, \ldots, E_{r}\right)$ be a sequence of indecomposable objects in \mathcal{D}. It is called an exceptional sequence in \mathcal{D} if $\overline{\mathcal{E}}=\left(\overline{E_{1}}, \overline{E_{2}}, \ldots, \overline{E_{r}}\right)$ is an exceptional sequence in $\bmod H$, and complete if $\overline{\mathcal{E}}$ is complete.

In Section 3 we will describe a mutation operation on exceptional sequences in \mathcal{D}. For this we need the following preliminary results.
Lemma 1.2. Let (E, F) be an exceptional sequence in \mathcal{D}. Then $\operatorname{Ext}^{i}(E, F)=$ $\operatorname{Hom}_{\mathcal{D}}(E, F[i])$ is nonzero for at most one integer i, and $\operatorname{Ext}^{i}(F, E)=\operatorname{Hom}_{\mathcal{D}}(F, E[i])=$ 0 for all $i \in \mathbb{Z}$.
Proof. We provide the short proof from [BRT2] for the convenience of the reader.
It suffices to check the statements for (\bar{E}, \bar{F}). By results from [C, Rin2, we can consider (\bar{E}, \bar{F}) as an exceptional sequence in a hereditary module category, say $\bmod H^{\prime}$, with H^{\prime} of rank 2 , and such that $\bmod H^{\prime}$ has a full and exact embedding into $\bmod H$. For a hereditary algebra H^{\prime} of rank 2 , the only exceptional indecomposable modules are preprojective or preinjective. Hence, a case analysis of the possible exceptional sequences in $\bmod H^{\prime}$ for such algebras, gives the first statement. The second statement is immediate from the definition of exceptional sequence.

There is a general notion of exceptional sequences in triangulated categories, see Bond, GK. Note that in our setting, this definition is equivalent to our definition. This follows from combining the fact that indecomposables in \mathcal{D} are stalk complexes with the second part of Lemma 1.2 ,

2. Silting objects and $\mathrm{Hom}_{\leq 0 \text {-Configurations }}$

In this section we recall some basic properties of silting objects, and introduce the notion of $\mathrm{Hom}_{\leq 0}$-configurations.
2.1. Silting objects. A basic object Y in \mathcal{D} is called a partial silting object if $\operatorname{Ext}_{\mathcal{D}}^{i}(Y, Y)=0$ for $i \geq 1$, and silting if it is maximal with respect to this property. Note that this differs slightly from the original definition in [KV. It is known (see [BRT2]) that a partial silting object Y is silting if and only if it has n indecomposable direct summands. If a silting object Y is in $\bmod H$, it is called a tilting module.

The following connection with exceptional sequences is a special case of AST, Theorem 2.3]. We include the sketch of a proof for convenience.
Lemma 2.1. If Y is partial silting in \mathcal{D}, there is a way to order its indecomposable direct summands to obtain an exceptional sequence $\left(Y_{1}, \ldots, Y_{r}\right)$ in \mathcal{D}.

Proof. Assume that $A[u]$ and $B[v]$ are indecomposable direct summands of Y where A, B are H-modules. If $v>u$, then $\operatorname{Ext}_{\mathcal{D}}^{i}(B, A)=0$ for all i, so we put $A[u]$ before $B[v]$ in the exceptional sequence. For a fixed degree d, assume there are $t \geq 1$ direct summands of Y of degree d. The direct sum of these t summands is the shift of a rigid module in $\bmod H$. By $[\mathrm{HR}$, there are no oriented cycles in the quiver of
the endomorphism ring of a rigid module. Hence, there is an ordering on these t summands, say A_{1}, \ldots, A_{t}, such that $\operatorname{Hom}\left(A_{j}, A_{k}\right)=0$ for $j>k$.

An exceptional sequence is called silting if it is induced by a silting object as in Lemma 2.1 .

An object M in \mathcal{D} is called a generator if $\operatorname{Hom}_{\mathcal{D}}(M, X[i])=0$ for all i only if $X=0$. For a hereditary algebra, the indecomposable projectives can be ordered to form an exceptional sequence. Hence, by transitivity of the action of mutation on exceptional sequences (Proposition [1.1) (e)), the direct sum of the objects in an exceptional sequence is a generator. Thus we obtain the following consequence of Lemma 2.1.

Lemma 2.2. Any silting object in \mathcal{D} is a generator.
For a positive integer m, the m-cluster category is the orbit category $\mathcal{C}_{m}=$ $\mathcal{D} / \tau^{-1}[m]$, see BMRRT, K, T, Z, W]. It is canonically triangulated by K]. An object T in \mathcal{C}_{m} is called maximal rigid if $\operatorname{Ext}_{\mathcal{C}_{m}}^{i}(T, T)=0$ for $i=1, \ldots, m$, and T is maximal with respect to this property. An object T in \mathcal{C}_{m} is called m-cluster tilting if for any object X, we have that X is in add T if and only if $\operatorname{Ext}_{\mathcal{C}_{m}}^{i}(T, X)=0$ for $i=1, \ldots, m$. It is known by $\bar{W}, \overline{Z Z}$ that T is maximal rigid if and only if it is an m-cluster tilting object. Let $\mathcal{D}_{\leq m}^{(\geq 1)+}$ denote the full subcategory of \mathcal{D} additively generated by: the injectives in $\bmod H$, together with $\bmod H[i]$ for $1 \leq i \leq m$. Every object in \mathcal{C}_{m} is induced by an object contained in $\mathcal{D}_{\leq m}^{(\geq 1)+}$.

In BRT2 it is shown that silting objects contained in $\mathcal{D}_{\leq m}^{(\geq 1)+}$ are in 1-1 correspondence with m-cluster tilting objects. We consider this an identification, and from now on we will refer to silting objects contained in $\mathcal{D}_{\leq m}^{(\geq 1)+}$ as m-cluster tilting objects.
2.2. $\mathrm{Hom}_{\leq 0}$-configurations and m - $\mathrm{Hom}_{\leq 0}$-configurations. In this subsection we introduce new types of objects in \mathcal{D}. They are related to the combinatorial configurations investigated in [Rie1, Rie2, and will turn out to be closely related to noncrossing partitions.

A basic object X in \mathcal{D} is a $\mathrm{Hom}_{\leq 0}$-configuration if
(H1) X is the direct sum of n exceptional indecomposable summands X_{1}, \ldots, X_{n}, where n is the number of simple modules of H.
(H2) $\operatorname{Hom}\left(X_{i}, X_{j}\right)=0$ for $i \neq j$.
(H3) $\operatorname{Ext}^{t}(X, X)=0$ for $t<0$.
(H4) there is no subset $\left\{Y_{1}, \ldots, Y_{r}\right\}$ of the indecomposable summands of X such that $\operatorname{Ext}^{1}\left(Y_{i}, Y_{i+1}\right) \neq 0$ and $\operatorname{Ext}^{1}\left(Y_{r}, Y_{1}\right) \neq 0$.

Lemma 2.3. The indecomposable summands of $a \mathrm{Hom}_{\leq 0-c o n f i g u r a t i o n ~ c a n ~ b e ~ o r-~}^{\text {- }}$ dered into a complete exceptional sequence.
 and where all but finitely many of the A_{i} are zero. Each A_{i} is the direct sum of finitely many indecomposables in $\bmod H$ with no morphisms between them, so (H4) suffices to conclude that they can be ordered into an exceptional sequence.

Now concatenate the sequences in decreasing order with respect to i. This implies that if E, F are indecomposable summands of X lying in $\bmod H[e]$ and $\bmod H[f]$ respectively with $e<f$, then F will precede E in the sequence. We must therefore show that $\operatorname{Ext}^{j}(E, F)=0$ for all j. This is true for $j \leq 0$ by (H2) and (H3), and for $j>0$ because $e<f$.

Note that it is also the case that, for X in \mathcal{D}, if the summands of X can be ordered into a complete exceptional sequence, then (H4) is necessarily satisfied.

If X is a $H^{\leq} m_{0}$-configuration, we refer to an exceptional sequence on the indecomposable summands of X as a $\mathrm{Hom}_{\leq 0}$-configuration exceptional sequence. A Hom $_{\leq 0}$-configuration will be called an m-Hom ≤ 0-configuration if it is contained in the full subcategory $\mathcal{D} \leq m$, whose indecomposables are in $\bmod H[i]$ for $0 \leq i \leq m$.
2.3. Main results. One aim of this paper is to use mutation of exceptional sequences to establish the following result.

Theorem 2.4. There are bijections between
(a) exceptional sequences which are silting and exceptional sequences which are $H^{\prime} \leq 0$-configurations.
(b) silting objects and $\mathrm{Hom}_{\leq 0}$-configurations.
(c) m-cluster tilting objects and m-Hom ≤ 0-configurations (for any $m \geq 1$).

We prove (a) in Section 4 and (b) in Section 5, while (c) is proved in Section 6 , In Section 7 we apply (c) in finite type to obtain a bijection between m-noncrossing partitions in the sense of Ar] and m-clusters in the sense of [FR].

3. Mutations in the derived category

In this section we give some basic results on mutations of exceptional sequences in the bounded derived category. This is the main tool used in the proof of Theorem 2.4. We also compare mutations in \mathcal{D} with mutations in $\bmod H$. The results in this section can also be found in e.g. Bond, GK. We include proofs, for completeness and for the convenience of the reader.

We start with the following observation.
Lemma 3.1. Let $\left(E_{1}, \ldots, E_{n}\right)$ be a complete exceptional sequence in \mathcal{D}. For any complete exceptional sequence $\left(E_{2}, \ldots, E_{n}, X\right)$, we have $X=\nu^{-1} E_{1}[k]$ for some k.
Proof. Since the sequence $\left(E_{1}, \ldots, E_{n}\right)$ is exceptional, we know that $\operatorname{Ext}_{\mathcal{D}}^{i}\left(E_{j}, E_{1}\right)=$ 0 for $j>1$ and all i. By Serre duality for \mathcal{D}, this implies that $\operatorname{Ext}_{\mathcal{D}}^{i}\left(\nu^{-1} E_{1}, E_{j}\right)=0$ for all i and all $j>1$. From this it follows that $\left(\overline{E_{2}}, \ldots, \overline{E_{n}}, \nu^{-1} \overline{E_{1}}\right)$ is exceptional in $\bmod H$. The claim now follows from Proposition 1.1 (c).

We now describe mutation of exceptional sequences in \mathcal{D}, and show that it is compatible with mutation in the module category.

For an object Y in \mathcal{D}, we write $\operatorname{th}(Y)$ for the thick additive full subcategory of \mathcal{D} generated by Y. Note that if Y is exceptional, the objects of $\operatorname{th}(Y)$ are direct sums of objects of the form $Y[i]$.

Define an operation $\hat{\mu}_{i}$ on exceptional sequences in \mathcal{D} by replacing the pair $\left(E_{i}, E_{i+1}\right)$ by the pair $\left(E_{i+1}, E_{i}^{*}\right)$, where E_{i}^{*} is defined by taking $E_{i} \rightarrow Z$ to be the minimal left $\operatorname{th}\left(E_{i+1}\right)$-approximation of E_{i}, and completing to a triangle:

$$
E_{i}^{*} \rightarrow E_{i} \rightarrow Z \rightarrow E_{i}^{*}[1]
$$

Note that Z is of the form $E_{i+1}^{r}[p]$, by Lemma 1.2 (in other words, Z is concentrated in one degree).

Similarly, we define $\hat{\mu}_{i}^{-1}$ of $\left(E_{1}, \ldots, E_{r}\right)$ by taking $Z \rightarrow E_{i+1}$ to be the minimal right th $\left(E_{i}\right)$ approximation of E_{i+1}, completing to a triangle

$$
Z \rightarrow E_{i+1} \rightarrow E_{i+1}^{!} \rightarrow Z[1]
$$

and replacing the pair $\left(E_{i}, E_{i+1}\right)$ with $\left(E_{i+1}^{!}, E_{i}\right)$.
We recall the following well-known properties of exceptional objects in $\bmod H$. The proofs of these are contained in Bong, [HR] and RS2, see also [Hu.

Lemma 3.2. Let E, F be exceptional modules, and assume $\operatorname{Hom}(F, E)=0=$ $\operatorname{Ext}^{1}(F, E)$.
(a) Let $f: E \rightarrow F^{r}$ be a minimal left add F-approximation. If $\operatorname{Hom}(E, F) \neq 0$, then f is either an epimorphism or a monomorphism.
(b) If $\operatorname{Ext}^{1}(E, F) \neq 0$, there is an extension

$$
0 \rightarrow F^{r} \rightarrow U \rightarrow E \rightarrow 0
$$

with the property that $\operatorname{Hom}\left(F^{r}, F^{\prime}\right) \rightarrow \operatorname{Ext}^{1}\left(E, F^{\prime}\right)$ is a surjection for any $F^{\prime} \in \operatorname{add} F$.

Lemma 3.3. (a) The operations $\hat{\mu}_{i}$ and $\hat{\mu}_{i}^{-1}$ are mutual inverses.
(b) Let \mathcal{E} be an exceptional sequence in \mathcal{D}, then $\mu_{i}(\overline{\mathcal{E}})=\overline{\hat{\mu}_{i}(\mathcal{E})}$ and $\mu_{i}^{-1}(\overline{\mathcal{E}})=$ $\overline{\hat{\mu}_{i}^{-1}(\mathcal{E})}$.
(c) If $\left(E_{1}, \ldots, E_{n}\right)$ is a complete exceptional sequence in \mathcal{D}, then

$$
\mu_{n-1} \ldots \mu_{1}\left(E_{1}, \ldots, E_{n}\right)=\left(E_{2}, \ldots, E_{n}, \nu^{-1} E_{1}\right)
$$

(d) The operators $\hat{\mu}_{i}$ and $\hat{\mu}_{j}$ satisfy the braid relations.
(e) $\operatorname{Let}(A, B, C)$ be an exceptional sequence in \mathcal{D}. Let $\hat{\mu}_{1} \hat{\mu}_{2}(A, B, C)=\left(C, A^{*}, B^{*}\right)$. Then $\operatorname{Ext}^{\bullet}(A, B) \simeq \operatorname{Ext}^{\bullet}\left(A^{*}, B^{*}\right)$.

Proof. (a) Let

$$
E_{i+1}^{r}[p-1] \rightarrow E_{i}^{*} \rightarrow E_{i} \rightarrow E_{i+1}^{r}[p]
$$

be the approximation triangle defining E_{i}^{*}. Since $\operatorname{Hom}\left(E_{i+1}, E_{i}[j]\right)=0$ for all j by Lemma 1.2 , it is clear that the map $E_{i+1}^{r}[p-1] \rightarrow E_{i}^{*}$ is a right $\operatorname{th}\left(E_{i+1}\right)$ approximation of E_{i}^{*}. The assertion follows from this and the dual argument.

For (b), let us recall how right mutation μ_{i} is defined in $\bmod H$. For (E, F) an exceptional pair in $\bmod H$ we have that $\mu_{1}(E, F)=\left(F, E^{*}\right)$. Let $f: E \rightarrow F^{r}$ be the minimal left add F-approximation. Then the module E^{*} is defined as follows:

$$
E^{*}= \begin{cases}E & \text { if } \operatorname{Hom}(E, F)=0=\operatorname{Ext}^{1}(E, F) \\ \operatorname{ker} f & \text { if } \operatorname{Hom}(E, F) \neq 0 \text { and } f \text { is an epimorphism } \\ \operatorname{coker} f & \text { if } \operatorname{Hom}(E, F) \neq 0 \text { and } f \text { is a monomorphism } \\ U & \text { if } \operatorname{Ext}^{1}(E, F) \neq 0 \text { with } U \text { as in (3.2 (b)) }\end{cases}
$$

Note that at most one of $\operatorname{Hom}(E, F)$ and $\operatorname{Ext}^{1}(E, F)$ is non-zero, by Lemma 1.2, It is now straightforward to check that in all cases we have $\mu_{i}(\overline{\mathcal{E}})=\overline{\hat{\mu}_{i}(\mathcal{E})}$. This proves part (b) of Lemma 3.3.

For (c) consider the approximation triangles

$$
X_{j} \xrightarrow{f_{j-1}} X_{j-1} \rightarrow E_{j}^{r_{j}}\left[k_{j}\right] \rightarrow X_{j}[1]
$$

where we let X_{i} be the object in the i-th place of $\mu_{i-1} \ldots \mu_{1}\left(E_{1}, \ldots, E_{n}\right)$; that is to say, the object obtained by $i-1$ successive mutations of E_{1}. We want to show that $\operatorname{Hom}\left(X_{n}, X_{1}\right) \neq 0$. We have a sequence of morphisms

$$
X_{n} \xrightarrow{f_{n-1}} X_{n-1} \xrightarrow{f_{n-2}} \cdots \xrightarrow{f_{2}} X_{2} \xrightarrow{f_{1}} X_{1}
$$

We claim that the composition of the morphisms is nonzero. Without loss of generality we can replace $E_{j}^{r_{j}}\left[k_{j}\right]$ with $E_{j}^{r_{j}}$, and assume that all approximations are non-zero. We first consider the composition $f_{1} f_{2}$.

Apply the octahedral axiom:

If the composition $f_{1} f_{2}$ is zero then the left column splits, and $Y \simeq X_{3} \oplus X_{1}[-1]$. By Lemma 1.2, since $\left(X_{1}, E_{3}\right)$ is exceptional, then $\operatorname{Hom}\left(E_{3}, X_{1}\right)=0$.

Thus we have a pair of triangles and a commutative diagram, where the second vertical arrow is projection onto the second summand

which implies the existence of the dotted arrow. This forces the right column in the previous diagram to split, which is a contradiction. Hence $f_{1} f_{2} \neq 0$.

The same argument can be iterated, taking the left column from the previous diagram and using it as the right column for another octahedron. One then uses the fact that $\operatorname{Hom}\left(E_{4}, X_{1}\right)=0$ in a similar way to the above, and obtains $\left(f_{1} f_{2}\right) f_{3} \neq 0$. By further iterations one obtains $f_{1} f_{2} \ldots f_{n-1} \neq 0$.

By Lemma 3.1, we know that $X_{n}=\nu^{-1} X_{1}[j]$ for some j, so the fact that there is a nonzero morphism from X_{n} to X_{1} implies that $X_{n}=\nu^{-1} X_{1}$ as desired. This completes the proof of (c).

The nontrivial case of (d) is to show

$$
\left(\hat{\mu}_{1} \hat{\mu}_{2} \hat{\mu}_{1}\right)(X, Y, Z)=\left(\hat{\mu}_{2} \hat{\mu}_{1} \hat{\mu}_{2}\right)(X, Y, Z)
$$

(and similarly for left mutation). The first terms of the sequences on the left and right hand sides are both Z, and the second terms agree by definition. The third terms agree by part (c), after passing to the derived category of the rank 3 abelian category containing $\bar{X}, \bar{Y}, \bar{Z}$.

For (e) consider the exchange triangles

$$
B^{*} \rightarrow B \rightarrow C^{u} \rightarrow B^{*}[1]
$$

and

$$
A^{*} \rightarrow A \rightarrow C^{v} \rightarrow A^{*}[1]
$$

Applying $\operatorname{Hom}\left(A^{*},\right)$ to the first and $\operatorname{Hom}(, B)$ to the second triangle one obtains the long exact sequences

$$
\operatorname{Ext}^{i-1}\left(A^{*}, C^{u}\right) \rightarrow \operatorname{Ext}^{i}\left(A^{*}, B^{*}\right) \rightarrow \operatorname{Ext}^{i}\left(A^{*}, B\right) \rightarrow \operatorname{Ext}^{i}\left(A^{*}, C^{u}\right)
$$

and

$$
\operatorname{Ext}^{i}\left(C^{v}, B\right) \rightarrow \operatorname{Ext}^{i}(A, B) \rightarrow \operatorname{Ext}^{i}\left(A^{*}, B\right) \rightarrow \operatorname{Ext}^{i+1}\left(C^{v}, B\right)
$$

The first and last term of both sequences vanish. Hence we obtain the isomorphisms $\operatorname{Ext}^{i}(A, B) \simeq \operatorname{Ext}^{i}\left(A^{*}, B\right) \simeq \operatorname{Ext}^{i}\left(A^{*}, B^{*}\right)$ for each i.

From now on, we shall omit the carets from $\hat{\mu}_{i}, \hat{\mu}_{i}^{-1}$.

4. From silting objects to $\operatorname{Hom}_{\leq 0 \text {-CONfigurations via exceptional }}$ SEQUENCES

In this section we consider exceptional sequences induced by silting objects and by $\operatorname{Hom}_{\leq 0}$-configurations in \mathcal{D}. Recall that an exceptional sequence $\mathcal{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$ is called silting if $Y_{1} \oplus Y_{2} \oplus \cdots \oplus Y_{n}$ is a silting object. Note that different exceptional sequences can in this way give rise to the same silting object, and recall that by Lemma 2.1 any silting object can be obtained from an exceptional sequence in this way.

Recall also that any $\mathrm{Hom}_{\leq 0}$-configuration gives rise to a (not necessarily unique) exceptional sequence, and that such exceptional sequences are called $\mathrm{Hom}_{\leq 0}$-configuration exceptional sequences.

We will prove part (a) of Theorem [2.4; that silting exceptional sequences are in $1-1$ correspondence with $\mathrm{Hom}_{\leq 0}$-configuration exceptional sequences. This will be proved by considering the following product of mutations:

$$
\begin{equation*}
\mu_{\mathrm{rev}}^{(n)}=\mu_{n-1}\left(\mu_{n-2} \mu_{n-1}\right) \ldots\left(\mu_{1} \ldots \mu_{n-1}\right) . \tag{1}
\end{equation*}
$$

where we sometimes omit the superscript (n) from $\mu_{\mathrm{rev}}^{(n)}$. The same sequence of mutations has been considered in [Bond] in a related context.

Using that the μ_{i} satisfy the braid relations, $\mu_{\text {rev }}$ can be expressed in various ways, in particular as

$$
\begin{equation*}
\mu_{\mathrm{rev}}=\mu_{1}\left(\mu_{2} \mu_{1}\right)\left(\mu_{3} \mu_{2} \mu_{1}\right) \ldots\left(\mu_{n-1} \ldots \mu_{1}\right) \tag{2}
\end{equation*}
$$

We say that a mutation μ_{i} of an exceptional sequence $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ is negative if the left approximation is of the form:

$$
Y_{i+1}^{r}[j] \rightarrow Y_{i}^{*} \rightarrow Y_{i} \rightarrow Y_{i+1}^{r}[j+1]
$$

where j is negative and non-negative if $j \geq 0$.
Similarly, we say that μ_{i}^{-1} is negative if j is negative in the approximation

$$
Y_{i-1}^{r}[j] \rightarrow Y_{i} \rightarrow Y_{i}^{*} \rightarrow Y_{i-1}^{r}[j+1]
$$

and non-negative if $j \geq 0$.
It is immediate from the definitions that if μ_{i} is negative, then μ_{i}^{-1} applied to $\mu_{i}(Y)$ will also be negative.

Lemma 4.1. Assume that the exceptional sequence $\left(Y_{1}, \ldots, Y_{n}\right)$ is silting. Consider the process of applying μ_{rev} to it in the order given by (11). Then each mutation will be negative.

Proof. Note that $\mu_{1} \ldots \mu_{n-1}\left(Y_{1}, \ldots, Y_{n}\right)=\left(Y_{n}, Y_{1}^{*}, \ldots, Y_{n-1}^{*}\right)$. Since Y is a silting object, each of the mutations $Y_{i} \rightarrow Y_{n}^{r}[j]$ is negative. The claim can now be proved by induction, after using Lemma 3.3 (e), which guarantees that $\left(Y_{1}^{*}, \ldots, Y_{n-1}^{*}\right)$ form a silting object in the subcategory of \mathcal{D} which they generate.
Lemma 4.2. If the exceptional sequence \mathcal{Y} is silting, then the exceptional sequence $\mu_{\mathrm{rev}}(\mathcal{Y})$ is a $\mathrm{Hom}_{\leq 0}$-configuration.
Proof. The proof is by induction. First consider the case $n=2$. Let (E, F) be an exceptional sequence, and apply $\operatorname{Hom}(F$,$) to the approximation triangle$

$$
E^{*} \rightarrow E \rightarrow F^{r} \rightarrow E^{*}[1]
$$

It follows that $\left(F, E^{*}\right)$ is a $\mathrm{Hom}_{\leq 0}$-configuration.
Now, let $n>2$. We use the presentation of $\mu_{\text {rev }}$ defined by (11). After applying $\mu_{1} \ldots \mu_{n-1}$, we obtain the exceptional sequence $\left(Y_{n}, Y_{1}^{*}, \ldots, Y_{n-1}^{*}\right)$. Then $\operatorname{Hom}\left(Y_{n}, Y_{i}^{*}[j]\right)=0$ for $i<n, j \leq 0$. By Lemma 3.3(e), we know that $\left(Y_{1}^{*}, \ldots, Y_{n-1}^{*}\right)$ is silting. By induction, applying $\mu_{\text {rev }}^{(n-1)}$ to this silting exceptional sequence will yield a $\operatorname{Hom}_{\leq 0}$-configuration. We know that the mutations which are used are negative, that is to say, of the form

$$
E_{i-1}[j] \rightarrow E_{i}^{*} \rightarrow E_{i} \rightarrow E_{i-1}[j+1]
$$

with $j<0$. It follows that if we know that $\operatorname{Hom}\left(Y_{n}, E_{i}[t]\right)$ and $\operatorname{Hom}\left(Y_{n}, E_{i-1}[t]\right)$ vanish for $t \leq 0$, then also $\operatorname{Hom}\left(Y_{n}, E_{i}^{*}[t]\right)$ and $\operatorname{Hom}\left(Y_{n}, E_{i-1}^{*}[t]\right)$ vanish for $t \leq 0$. This shows that the mutations $\mu_{\mathrm{rev}}^{(n-1)}$ which we apply to reverse $\left(Y_{1}^{*}, \ldots, Y_{n-1}^{*}\right)$ preserve the property that $\operatorname{Ext}^{t}\left(Y_{n},\right)=0$ for $t \leq 0$, and thus we are done.
Lemma 4.3. Let $\left(Y_{1}, \ldots, Y_{n}\right)$ be a $\operatorname{Hom}_{\leq 0-c o n f i g u r a t i o n ~ e x c e p t i o n a l ~ s e q u e n c e . ~ C o n-~}^{\text {- }}$ sider the process of applying μ_{rev} in the order given by (1). Each mutation will be non-negative.
Proof. The mutations which move Y_{n} are all non-negative since we begin with a $H^{\leq 0} \mathrm{H}_{\leq 0}$-configuration. The result holds by induction, as in the proof of Lemma 4.1

Lemma 4.4. If \mathcal{Y} is a $\mathrm{Hom}_{\leq 0 \text {-configuration exceptional sequence, then the excep- }}$ tional sequence $\mu_{\mathrm{rev}}(\mathcal{Y})$ is silting.

Proof. The proof is by induction, and the statement is easily verified in the case $n=2$. Assume $n>2$. We prove that $\mu_{\text {rev }}(\mathcal{Y})$ is silting using the order (11). We apply $\mu_{1} \mu_{2} \ldots \mu_{n-1}$ to obtain the exceptional sequence $\left(Y_{n}, Y_{1}^{*}, \ldots, Y_{n-1}^{*}\right)$, and hence $\operatorname{Ext}^{j}\left(Y_{n}, Y_{i}^{*}\right)=0$ for $j \geq 1$ and $1 \leq i \leq n-1$. The sequence $\left(Y_{1}^{*}, \ldots, Y_{n-1}^{*}\right)$ is a $\operatorname{Hom}_{\leq 0}$-configuration, by Lemma 3.3, and hence applying $\mu_{\mathrm{rev}}^{(n-1)}$ to this it will give a silting object by induction.

We then have to check that the mutations $\mu_{\text {rev }}^{(n-1)}$ used in reversing the Y_{i}^{*} 's preserve the property of $\operatorname{Ext}^{j}\left(Y_{n},\right)$ vanishing for $j>1$.

By Lemma 4.3, the approximations are of the form

$$
E_{i-1}[j] \rightarrow E_{i}^{*} \rightarrow E_{i} \rightarrow E_{i-1}[j+1]
$$

with $j \geq 0$. The desired result is immediate.
Proposition 4.5. Let \mathcal{Y} be an exceptional sequence. Then $\mu_{\mathrm{rev}}\left(\mu_{\mathrm{rev}}(\mathcal{Y})\right)=\nu^{-1}(\mathcal{Y})$.
Proof. We know that the effect of $\left(\mu_{n-1} \ldots \mu_{1}\right)$ is to remove the left end term Y_{1} from the exceptional sequence and replace it with $\nu^{-1}\left(Y_{1}\right)$ at the right end. Thus, the effect of $\left(\mu_{n-1} \ldots \mu_{1}\right)^{n}$ is to apply ν^{-1} to every element of the exceptional sequence, maintaining the same order.

Consider the operation

$$
\begin{equation*}
\left(\mu_{n-1} \ldots \mu_{1}\right)\left(\mu_{n-1} \ldots \mu_{1}\right) \ldots\left(\mu_{n-1} \ldots \mu_{1}\right) \tag{3}
\end{equation*}
$$

with n repetitions of the product $\left(\mu_{n-1} \ldots \mu_{1}\right)$. This operation can be written as the composition of the following two operations

$$
\mu^{\prime}=\left(\mu_{n-1} \ldots \mu_{1}\right)\left(\mu_{n-1} \ldots \mu_{2}\right) \ldots\left(\mu_{n-1} \mu_{n-2}\right)\left(\mu_{n-1}\right)
$$

and

$$
\mu^{\prime \prime}=\left(\mu_{1}\right)\left(\mu_{2} \mu_{1}\right) \ldots\left(\mu_{n-1} \ldots \mu_{1}\right)
$$

This can be done using only commutation relations, by taking the expression (3) and moving to the left the rightmost generator in the second parenthesis, the two
rightmost in the third parenthesis, etc. (counting from the left). Both μ^{\prime} and $\mu^{\prime \prime}$ are expressions for μ_{rev}.

Summarizing, we have proved part (a) of Theorem [2.4, i.e. we have the following.
Theorem 4.6. The operation μ_{rev} gives a bijection between silting exceptional sequences and $\mathrm{Hom}_{\leq 0}$-configuration exceptional sequences.
Proof. This is a direct consequence of Lemmas 4.2 and 4.4 and Proposition 4.5, since obviously ν gives a bijection on the set of all exceptional sequences.

5. The bijection between silting objects and $\operatorname{Hom}_{\leq 0 \text {-Configurations }}$

We have given a bijection from exceptional sequences coming from silting objects to exceptional sequences coming from $\mathrm{Hom}_{\leq 0}$-configurations. We would like to show that this also determines a bijection from silting objects to $\mathrm{Hom}_{\leq 0}$-configurations. This is not immediate from Theorem 4.6, because there can be more than one way to order a silting object or a $\mathrm{Hom}_{\leq 0}$-configuration into an exceptional sequence.

We proceed as follows. Suppose we have a silting object T, and consider some exceptional sequence $\mathcal{E}=\left(E_{1}, \ldots, E_{n}\right)$ obtained from it. Consider the braid group $B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right\rangle$, where the action of B_{n} on exceptional sequences is defined by having σ_{i} act like μ_{i}.

Let $R_{\mathcal{E}}=\left\{(i, j) \mid \operatorname{Ext}\left(E_{i}, E_{j}\right)=0\right\}$. Clearly, if we know $R_{\mathcal{E}}$, we know exactly which reorderings of \mathcal{E} will be exceptional sequences. Let $\operatorname{Stab}_{\mathcal{E}}=\left\{\sigma \in B_{n} \mid \sigma \mathcal{E}=\right.$ $\mathcal{E}\}$ be the stabilizer.
Lemma 5.1. $(i, j) \in R_{\mathcal{E}}$ if and only if $\mu_{j-1}^{-1} \ldots \mu_{i+1}^{-1}\left(\mu_{i}\right)^{2} \mu_{i+1} \ldots \mu_{j-1} \in \operatorname{Stab} \mathcal{E}$.
Proof. The effect of $\mu_{i+1} \ldots \mu_{j-1}$ is to move E_{j} to the left so it is adjacent on the right to E_{i}. (This also modifies the elements it passes over.) We claim that μ_{i}^{2} does not change E if and only if $\operatorname{Ext}{ }^{\bullet}\left(E_{i}, E_{j}\right)=0$. In case $\operatorname{Ext}^{\bullet}\left(E_{i}, E_{j}\right)=0$, the remaining mutations $\mu_{j-1}^{-1} \ldots \mu_{i+1}^{-1}$ undo the effect of the first mutations $\mu_{i+1} \ldots \mu_{j-1}$, so the result is the identity.

If $\operatorname{Ext}{ }^{\bullet}\left(E_{i}, E_{j}\right) \neq 0$, then the i-th element will be modified, and hence the composition $\mu_{j-1}^{-1} \ldots \mu_{i+1}^{-1}\left(\mu_{i}\right)^{2} \mu_{i+1} \ldots \mu_{j-1}$ is not in $\operatorname{Stab}_{\mathcal{E}}$.

Denote by σ_{rev} the element of B_{n} corresponding to μ_{rev}.
From a basic lemma about group actions, we have that $\operatorname{Stab}_{\mu_{\mathrm{rev}}(E)}=\sigma_{\mathrm{rev}} \operatorname{Stab}_{E} \sigma_{\text {rev }}^{-1}$. To determine $\operatorname{Stab}_{\mu_{\mathrm{rev}}}(\mathcal{E})$, we need the following lemma. (See Br for a different proof.)
Lemma 5.2. In B_{n}, we have $\sigma_{\mathrm{rev}} \sigma_{i} \sigma_{\mathrm{rev}}^{-1}=\sigma_{n-i}$.
Proof. Let S_{n} be the symmetric group generated by the simple reflections s_{1}, \ldots, s_{n-1} and let w_{0} be the longest element in S_{n}. This is the permutation which takes i to $n+1-i$ for all i. For any i, we can write $w_{0}=\left(w_{0} s_{i} w_{0}^{-1}\right)\left(w_{0} s_{i}\right)$. Note that $w_{0} s_{i} w_{0}^{-1}=s_{n-i}$.

For any $w \in S_{n}$, write σ_{w} for the element of the braid group B_{n} obtained by taking any reduced word for w and replacing each occurrence of s_{i} by σ_{i} for all i.

This produces a well-defined element of B_{n} because any two reduced words for w are related by braid relations, which also hold in B_{n}.

Fix i, and write $u=w_{0} s_{i}$. We now have that $\sigma_{\text {rev }}=\sigma_{w_{0}}=\sigma_{n-i} \sigma_{u}$. So $\sigma_{\text {rev }} \sigma_{i} \sigma_{\text {rev }}^{-1}=\sigma_{n-i} \sigma_{u} \sigma_{i} \sigma_{\text {rev }}^{-1}=\sigma_{n-i} \sigma_{\text {rev }} \sigma_{\text {rev }}^{-1}=\sigma_{n-i}$.

It follows that $(n-j, n-i) \in R_{\mu_{\mathrm{rev}}(\mathcal{E})}$ if and only if $(i, j) \in R_{\mathcal{E}}$. Hence we have proved the following, which is part (b) of our main theorem.

Theorem 5.3. The operation μ_{rev} induces a bijection between silting objects and $\mathrm{Hom}_{\leq 0}$-configurations.

6. Specializing to m-cluster tilting objects and
 m-Hom ≤ 0-CONFIGURATIONS

In this section we prove part (c) of our main theorem. We need to recall the following notions. A full subcategory \mathcal{T} of \mathcal{D} is called suspended if it satisfies the following:
(S1) If $A \rightarrow B \rightarrow C \rightarrow A[1]$ is a triangle in \mathcal{D} and A, C are in \mathcal{T}, then B is in \mathcal{T}.
(S2) If A is in \mathcal{T}, then $A[1]$ is in \mathcal{T}.
A suspended subcategory \mathcal{U} is called a torsion class in [BR (or aisle in [KV]) if the inclusion functor $\mathcal{U} \rightarrow \mathcal{D}$ has a right adjoint. For a subcategory \mathcal{U} of \mathcal{D}, we let $\mathcal{U}^{\perp}=\{X \in \mathcal{D} \mid \operatorname{Hom}(\mathcal{U}, X)=0\}$. For a torsion class \mathcal{T}, let $\mathcal{F}=\mathcal{T}^{\perp}$ be the corresponding torsion-free class. Recall that a torsion class in \mathcal{D} is called splitting if every indecomposable object in \mathcal{D} is either torsion or torsion-free; in other words, any indecomposable object which is not in the torsion class, does not admit any morphisms from any object of the torsion class.

We prove the following easy lemmas:
Lemma 6.1. If \mathcal{E} is an exceptional sequence contained in a splitting torsion-free class \mathcal{F}, then $\mu_{\mathrm{rev}}(\mathcal{E})$ is also contained in \mathcal{F}.

Proof. This follows from the fact that each object in $\mu_{\mathrm{rev}}(\mathcal{E})$ has a sequence of nonzero morphisms to an object in \mathcal{E}.
Lemma 6.2. If \mathcal{E} is an exceptional sequence contained in a splitting torsion class \mathcal{T}, then $\mu_{\mathrm{rev}}(\mathcal{E})$ is contained in $\nu^{-1}(\mathcal{T})$.
Proof. This follows from the fact that, applying μ_{rev} to $\mu_{\mathrm{rev}}(\mathcal{E})$, we obtain $\nu^{-1}(\mathcal{E})$ by Proposition 4.5, which implies that there is a sequence of non-zero morphisms to every element in $\mu_{\mathrm{rev}}(\mathcal{E})$ from an element in $\nu^{-1}(\mathcal{E})$.

By combining the above lemmas, we obtain that $\mu_{\text {rev }}$, applied to an exceptional sequence in $\mathcal{D}_{\leq m}^{(\geq 1)+}$, yields a sequence with elements in $\mathcal{D}_{\leq m}^{\geq 0}$. Recall that an m Hom $_{\leq- \text {configuration }}$ is a $H_{\leq} \leq$-configuration contained in $\mathcal{D}_{\leq m}^{\geq 0}$, and that an m cluster tilting object is a silting object contained in $\mathcal{D}_{\leq m}^{(\geq 1)+}$. Hence, in particular we have the following.

Proposition 6.3. Let \mathcal{E} be an exceptional sequence which is an m-cluster tilting object. Then $\mu_{\mathrm{rev}}(\mathcal{E})$ is an m - $\mathrm{Hom}_{\leq 0}$-configuration.

We aim to show that the converse also holds. For this we need the following lemmas.

Lemma 6.4. Let \mathcal{E} be an exceptional sequence contained in a torsion class \mathcal{T}. Then if μ_{i} is non-negative, $\mu_{i}(\mathcal{E})$ is also contained in \mathcal{T}.

Proof. When we apply a non-negative μ_{i}, we have the approximation sequence:

$$
E_{i-1}^{r}[j] \rightarrow E_{i}^{*} \rightarrow E_{i} \rightarrow E_{i-1}^{r}[j+1]
$$

with $j \geq 0$. The left and right terms of this triangle are in \mathcal{T}, so the middle term is also.

Corollary 6.5. If $a \operatorname{Hom}_{\leq 0}$-configuration exceptional sequence \mathcal{E} is contained in a torsion class \mathcal{T}, so is $\mu_{\mathrm{rev}}(\overline{\mathcal{E}})$.

Proof. By Lemma 4.3, we can calculate $\mu_{\mathrm{rev}}(\mathcal{E})$ using only non-negative mutations. The claim now follows from Lemma 6.4.

Lemma 6.6. If \mathcal{E} is an exceptional sequence contained in a torsion-free class \mathcal{F}, and μ_{i}^{-1} is a negative mutation, then $\mu_{i}^{-1}(\mathcal{E})$ is also contained in \mathcal{F}.

Proof. The proof is similar to that of Lemma 6.4. The approximation is of the form

$$
E_{i-1} \rightarrow E_{i-1}^{*} \rightarrow E_{i}^{r}[j] \rightarrow E_{i-1}[1]
$$

and $j \leq 0$. Again, the left and right terms of the triangle are in \mathcal{F}, hence the middle is also.

Corollary 6.7. If \mathcal{E} is a $\mathrm{Hom}_{\leq 0}$-configuration exceptional sequence which is contained in a torsion-free class \mathcal{F}, then $\mu_{\mathrm{rev}}^{-1}(\mathcal{E})$ is contained in \mathcal{F}.

Proof. We know that $\mu_{\text {rev }}^{-1}$ can be expressed as a product of negative mutations by Lemma 4.1

Proposition 6.8. Let \mathcal{E} be an m-Hom \leq-configuration exceptional sequence. Then $\mu_{\mathrm{rev}}^{-1}(\mathcal{E})$ is an m-cluster tilting object.

Proof. By Proposition 4.5 we have that $\mu_{\mathrm{rev}}(\mathcal{E})=\nu^{-1} \mu_{\mathrm{rev}}^{-1}(\mathcal{E})$ and hence $\mu_{\mathrm{rev}}^{-1}(\mathcal{E})=$ $\nu \mu_{\mathrm{rev}}(\mathcal{E})$. By Corollary 6.5 we have that $\mu_{\mathrm{rev}}(\mathcal{E})$ is contained in $\mathcal{D} \geq 0$. Hence $\mu_{\mathrm{rev}}^{-1}(\mathcal{E})$ is contained in $\nu\left(\mathcal{D}^{\geq 0}\right)$. We also know that $\mu_{\text {rev }}^{-1}(\mathcal{E})$ is contained in $\mathcal{D}_{\leq m}$ by Corollary 6.7. This completes the proof.

Summarizing, we obtain part (c) of Theorem 2.4.
Theorem 6.9. The product of mutations μ_{rev} defines a bijection between m-clustertilting objects and m-Hom ≤ 0-configurations.

Proof. This is a direct consequence of Propositions 6.8 and 6.3, using the already established bijections from Theorems 4.6 and 5.3 .

7. A COMBINATORIAL INTERPRETATION: m-NONCROSSING PARTITIONS

In this section, we give our desired combinatorial interpretation of part (c) of Theorem 2.4. The main task of this section is to construct, for an arbitrary connected hereditary artin algebra H, a bijection between m-Hom ≤ 0-configurations and m noncrossing partitions in the sense of $[\mathrm{Ar}]$ for the reflection group W corresponding to H.

The set of m-clusters is only defined in the case that H is of finite type; in this case, they are known to be in bijection with the m-cluster tilting objects [T, Z. Thus, once we have accomplished the main task of this section, we will have obtained a bijection between m-clusters and m-noncrossing partitions for H of finite type (or equivalently, for W any finite crystallographic reflection group). A description of the resulting bijection, in purely Coxeter-theoretic terms, has already been presented, without proof, in BRT1.
7.1. Weyl groups and noncrossing partitions. We define the Weyl group W associated to H following [Rin2]. Let k be the centre of H (which is a field since we have assumed that H is connected). Number the simple objects of H in such a way that $\left(S_{1}, \ldots, S_{n}\right)$ is an exceptional sequence. The Grothendieck group of H, denoted $K_{0}(H)$, is a free abelian group generated by the classes $\left[S_{i}\right]$.

For $i<j$, define

$$
\begin{aligned}
\Delta_{i j} & =-\operatorname{dim}_{\operatorname{End}\left(S_{i}\right)}\left(\operatorname{Ext}^{1}\left(S_{i}, S_{j}\right)\right) \\
\Delta_{j i} & =-\operatorname{dim}_{\operatorname{End}\left(S_{j}\right)}\left(\operatorname{Ext}^{1}\left(S_{i}, S_{j}\right)\right)
\end{aligned}
$$

Write d_{i} for the k-dimension of $\operatorname{End}\left(S_{i}\right)$. Note that $d_{i} \Delta_{i j}=d_{j} \Delta_{j i}$. Now define a symmetric, bilinear form on $K_{0}(H)$ by $\left(\left[S_{i}\right],\left[S_{j}\right]\right)=d_{i} \Delta_{i j}$ for $i \neq j$, and $\left(\left[S_{i}\right],\left[S_{i}\right]\right)=$ $2 d_{i}$.

For x in $K_{0}(H)$, with $(x, x) \neq 0$, define t_{x}, the reflection along x, by:

$$
t_{x}(v)=v-\frac{2(v, x)}{(x, x)} x
$$

We now have the following lemma:
Lemma 7.1. (a) For A, B modules, we have $([A],[B])=\operatorname{dim}_{k} \operatorname{Hom}(A, B)+$ $\operatorname{dim}_{k} \operatorname{Hom}(B, A)-\operatorname{dim}_{k} \operatorname{Ext}^{1}(A, B)-\operatorname{dim}_{k} \operatorname{Ext}^{1}(B, A)$.
(b) If (A, B) is an exceptional sequence in \mathcal{D}, and $\left(B, A^{*}\right)$ is the result of mutating it, then:

$$
\left[A^{*}\right]=t_{[B]}[A] .
$$

Proof. (a) See Rin1, p. 279].
(b) Let (A, B) be an exceptional sequence in \mathcal{D}. Consider the triangle $A^{*} \rightarrow A \rightarrow$ $B^{r}[p]$, where $f: A \rightarrow B^{r}[p]$ is a minimal left $\operatorname{th}(B)$-approximation. Note that we know that $\operatorname{Hom}(A, B[j])=0$ for all but at most one j. Without loss of generality, assume $p=0$.

Assume that $f: A \rightarrow B^{r}$ is non-zero. We have that $K_{0}(H) \simeq K_{0}(\mathcal{D})$, and the above triangle gives $\left[A^{*}\right]=[A]-r[B]$. Since B is exceptional, and hence $\operatorname{End}(B)$
is a division ring, it follows directly that $f=\left(f_{1}, \ldots, f_{r}\right)$ where $\left\{f_{1}, \ldots, f_{r}\right\}$ is an $\operatorname{End}(B)$-basis for $\operatorname{Hom}(A, B)$. Hence, $r=\operatorname{dim}_{\operatorname{End}(B)} \operatorname{Hom}(A, B)$. Since

$$
t_{[B]}[A]=[A]-\frac{2([A],[B])}{([B],[B])}[B],
$$

it suffices to show that $r=2([A],[B]) /([B],[B])$. We have that $([A],[B])=\operatorname{dim}_{k} \operatorname{Hom}(A, B)$ by extending (a) to \mathcal{D}. (We use here that $\operatorname{Ext}^{i}(B, A)=0$ since (A, B) is an exceptional sequence, and $\operatorname{Ext}^{1}(A, B)=0$ since $\operatorname{Hom}(A, B) \neq 0$.) By (a), we similarly get that $([B],[B])=2 \operatorname{dim}_{k}(\operatorname{Hom}(B, B))$. Hence we have:

$$
\frac{2([A],[B])}{([B],[B])}=\frac{2 \operatorname{dim}_{k} \operatorname{Hom}(A, B)}{2 \operatorname{dim}_{k} \operatorname{Hom}(B, B)}=\operatorname{dim}_{\operatorname{End}(B)} \operatorname{Hom}(A, B)=r
$$

and we are done in this case.
If $f=0$, so that $r=0$, then $\left[A^{*}\right]=[A]$, and $([A],[B])=0$, so $t_{[B]}([A])=[A]$, as desired.

We now define $s_{i}=t_{\left[S_{i}\right]}$ for $1 \leq i \leq n$, and let W be the group generated by the set $\left\{s_{1}, \ldots, s_{n}\right\}$; it is a Weyl group. By definition, we say that an element of W is a reflection if it is the conjugate of some s_{i}. We denote the set of all reflections in W by T.

It follows directly from Lemma 7.1 that if $\left(E_{i}, E_{i+1}\right)$ and $\left(E_{i+1}, E_{i}^{*}\right)$ are related by mutation, then

$$
\begin{equation*}
t_{\left[E_{i}\right]} t_{\left[E_{i+1}\right]}=t_{\left[E_{i+1}\right]} t_{\left[E_{i}^{*}\right]} . \tag{4}
\end{equation*}
$$

Since the reflections corresponding to the simple objects are all in W, it follows from (44) that $t_{[E]}$ is in W for each exceptional module E. It also follows from (4) that the product of the reflections corresponding to any exceptional sequence is the Coxeter element c (see [IT]).

Conversely, we have the following result from [IS]:
Theorem 7.2. If $c=t_{1} \ldots t_{n}$ in W, with $t_{i} \in T$, then each t_{i} must be of the form $t_{\left[E_{i}\right]}$ for some exceptional module E_{i}, where $\left(E_{1}, \ldots, E_{n}\right)$ forms an exceptional sequence.

Now we give the (purely Coxeter-theoretic) definition of an m-noncrossing partition. First of all, define a function $\ell_{T}: W \rightarrow \mathbb{N}$, where $\ell_{T}(w)$ is the length of the shortest expression for w as a product of reflections. (Note that this is not the classical length function on W, which is the minimum length of an expression for w as a product of simple reflections.) We note that $\ell_{T}(c)=n$.

We say that $\left(u_{1}, \ldots, u_{r}\right)$, an r-tuple of elements of W, is a T-reduced expression for $u_{1} \ldots u_{r}$ if $\ell_{T}\left(u_{1}\right)+\cdots+\ell_{T}\left(u_{r}\right)=\ell_{T}\left(u_{1} \ldots u_{r}\right)$. We can now follow Armstrong [Ar in defining the m-noncrossing partitions for W to consist of the set of T-reduced expressions for c with $m+1$ terms.

Now we define the bijection. Let $\left(u_{1}, \ldots, u_{m+1}\right)$ be a T-reduced expression for c. By Theorem 7.2, pick an exceptional sequence E_{1}, \ldots, E_{n} such that the first $\ell_{T}\left(u_{1}\right)$ terms correspond to some factorization of u_{1} into reflections, and similarly for the next $\ell_{T}\left(u_{2}\right)$ terms, and so on. For each i with $1 \leq i \leq m+1$, we then have an
exceptional sequence \mathcal{E}_{i}. Write \mathcal{C}_{i} for the minimal abelian subcategory containing \mathcal{E}_{i}. Let F_{i} be the sum of the simples of \mathcal{C}_{i}. Set $\phi\left(u_{1}, \ldots, u_{m+1}\right)=\bigoplus F_{i}[m+1-i]$.

Theorem 7.3. The above map ϕ from T-reduced expressions of c to objects in \mathcal{D} is a bijection from m-noncrossing partitions to m-Hom ≤ 0-configurations.

Proof. First, we show that if $\left(u_{1}, \ldots, u_{m+1}\right)$ is a T-reduced expression for c, then $\bigoplus F_{i}[m+1-i]=\phi\left(u_{1}, \ldots, u_{m+1}\right)$ is an m-Hom ≤ 0-configuration. By definition, $\bigoplus F_{i}[m+1-i]$ is contained in $\mathcal{D} \geq 0$. We check the four conditions in the definition of a $\mathrm{Hom}_{\leq 0 \text {-configuration. (H1) is immediate. It is possible to transform each }}$ sequence $\overline{\mathcal{E}}_{i}$ into (an ordering of) the summands of F_{i} by mutations, thanks to the transitivity of the action of mutations within \mathcal{C}_{i}. (H4) follows, and the form of this exceptional sequence guarantees (H2) and (H3).

Next, we show that any m-Hom ≤ 0-configuration arises in this way. Take X to be an m - $\mathrm{Hom}_{\leq 0}$-configuration and order it into an exceptional sequence in such a way that the objects in $\bmod H[m]$ come first, then those in $\bmod H[m-1]$, etc. This was shown to be possible in the proof of Lemma 2.3]

Now, for $1 \leq i \leq m+1$, define \mathcal{C}_{i} to be the subcategory of $\bmod H$ consisting of modules admitting a filtration by modules corresponding to the summands in X of degree $m+1-i$. This is the minimal abelian subcategory of $\bmod H$ containing these summands of X, and the summands of X are obviously the simple objects in this subcategory. We can therefore define u_{i} by taking the product of these summands of X, ordered as in the exceptional sequence, and we obtain a T-reduced expression for c.
7.2. Combinatorics of positive Fuss-Catalan numbers. When H is of finite type, corresponding to a finite crystallographic group W, there is a variant of the Fuss-Catalan number called the positive Fuss-Catalan number, denoted $C_{m}^{+}(W)$. By definition, $C_{m}^{+}(W)=\left|C_{-m-1}(W)\right|$.

It is known that the number of m-cluster tilting objects contained in $\mathcal{D}_{\leq m}^{\geq 1}$ is $C_{m}^{+}(W)$, see FR.

Write $\mathcal{D} \leq m$ ($(0)-$ for the full subcategory of $\mathcal{D}_{\leq m}^{\geq 0}$ additively generated by the indecomposable objects of $\mathcal{D} \geq{ }_{\leq}^{\geq 0}$ other than the summands of H. The following is an immediate corollary of Theorem [2.4.

Corollary 7.4. (a) There is a bijection between silting objects contained in $\mathcal{D}_{\leq m}^{\geq 1}$ and m-Hom ≤ 0-configurations contained in $\mathcal{D}_{\leq m}^{(\geq 0)-}$ given by μ_{rev}.
(b) If H is of Dynkin type with corresponding crystallographic reflection group W, then the number of m - $\mathrm{Hom}_{\leq 0}$-configurations contained in $\mathcal{D}_{\leq m}^{(\geq 0)-}$ is $C_{m}^{+}(W)$.

It is possible to give a Coxeter-theoretic description of the subset of m-noncrossing partitions which correspond, under the bijection of Theorem 7.3, to the m-Hom $\leq 0^{-}$ configurations contained in $\mathcal{D}_{\leq m}^{(\geq 0)-}$. See [BRT1] for more details.

8. The link Between $\operatorname{Hom}_{\leq 0} 0^{-C o n f i g u r a t i o n s ~ a n d ~ R i e d t m a n n ' s ~}$ COMBINATORIAL CONFIGURATIONS

In this section we show that our $H^{\prime} m_{\leq 0 \text {-configurations contained in }} \mathcal{D}_{\leq 1}^{(\geq 0)-}$ are related to the combinatorial configurations introduced by Riedtmann in connection with her work on selfinjective algebras of finite representation type. Note that an alternative and independent approach to this, dealing with the Dynkin case, is given by Simoes [S]. She also gives a bijection from combinatorial configurations to a subset of the 1-noncrossing partitions, and thus to the positive clusters (in the sense of the previous section).
8.1. Complements of tilting modules and cluster-tilting objects. In this subsection we recall some basic facts about complements of tilting modules in mod H and cluster tilting objects in the associated cluster category. For more on complements of tilting modules, see [HU, RS1, U, CHU]; for more on complements in cluster categories, see BMRRT.

Suppose that $T=\bigoplus_{i=1}^{n} T_{i}$ is a tilting object in $\bmod H$. Write \bar{T} for $\bigoplus_{j \neq i} T_{j}$.
We say that an indecomposable object X in $\bmod H$ is a complement to \bar{T} if $X \oplus \bar{T}$ is tilting. If \bar{T} is not sincere, then T_{i} is its only complement; otherwise, it has exactly two complements up to isomorphism, T_{i} and one other one, T_{i}^{\prime}. We say that $T_{i}^{\prime} \oplus \bar{T}$ is the result of mutating T at T_{i}.

Lemma 8.1. Exactly one of the following three possibilities occurs:
(a) T_{i} has no replacement. This occurs if and only if \bar{T} is not sincere.
(b) T_{i} admits a monomorphism to a module in add \bar{T}. In this case, let $T_{i} \rightarrow B$ be the minimal left add \bar{T}-approximation to T_{i}. Then there is a short exact sequence:

$$
0 \rightarrow T_{i} \rightarrow B \rightarrow T_{i}^{\prime} \rightarrow 0
$$

(c) T_{i} admits a epimorphism from a module in add \bar{T}. In this case, let $B \rightarrow T_{i}$ be the minimal right add \bar{T}-approximation to T_{i}. Then there is a short exact sequence

$$
0 \rightarrow T_{i}^{\prime} \rightarrow B \rightarrow T_{i} \rightarrow 0
$$

We also think of $\bmod H$ as embedded inside the cluster category associated to H. A tilting object in $\bmod H$ is thereby identified with a (1-)cluster tilting object in the cluster category. In the cluster category, there is always exactly one way to replace T_{i} by some other indecomposable object while preserving the property of being a cluster tilting object. If there is a replacement for T_{i} in $\bmod H$, that replacement is also a replacement in the cluster category; otherwise, the replacement for T_{i} is of the form $P[1]$, where P is indecomposable projective.
8.2. Torsion classes arising from partitions of exceptional sequences. This subsection is mainly devoted to the proof of Lemma 8.3, which says that if a complete exceptional sequence in $\bmod H$ is divided into two parts, $\left(E_{1}, \ldots, E_{r}\right)$ and $\left(E_{r+1}, \ldots, E_{n}\right)$, for some $0<r<n$, and the objects from the second part are used
to generate a torsion class, then the corresponding torsion-free class is generated (in a suitable sense) by the objects from the first part of the exceptional sequence.

Let T be a tilting module, $\mathcal{T}=\operatorname{Fac} T$ the torsion class generated by T, and $\mathcal{F}=\operatorname{Sub} \tau T$ the corresponding torsion-free class.

Some summand U of T (typically not indecomposable) is minimal among modules such that $\operatorname{Fac} U=\mathcal{T}$. We refer to U as the minimal generator of \mathcal{T}. Similarly, there is a minimal cogenerator of \mathcal{F}.

We have the following lemma, based on an idea from [T].
Lemma 8.2. Let T_{i} be an indecomposable summand of T. Then T_{i} is a summand of the minimal generator of \mathcal{T} if and only if τT_{i} is not a summand of the minimal cogenerator of \mathcal{F}. (By convention, if $\tau T_{i}=0$, then we do not consider it a summand of the minimal cogenerator of \mathcal{F}.)

Proof. If T_{i} is projective, then it must be a summand of the minimal generator for \mathcal{T}, and then τT_{i} is zero, so (by convention) it is not a summand of the minimal generator for \mathcal{F}. We may therefore assume that T_{i} is not projective.

For the rest of the proof, we embed $\bmod H$ into the corresponding cluster category. Note that τ is an autoequivalence on the cluster category.

Let T_{i}^{\prime} be the result of mutating T at T_{i} in the cluster category. Since τ is an autoequivalence, the effect of mutating τT at τT_{i} is to replace τT_{i} by τT_{i}^{\prime}. Write \bar{T} for $\bigoplus_{j \neq i} T_{j}$.

Suppose now that T_{i} is a summand of the minimal generator for \mathcal{T}. Then there is no epimorphism from $\operatorname{add} \bar{T}$ to T_{i}, so either there is a short exact sequence in the module category

$$
0 \rightarrow T_{i} \rightarrow B \rightarrow T_{i}^{\prime} \rightarrow 0,
$$

where B is in add \bar{T}, or else T_{i}^{\prime} is a shifted projective.
In the former case, applying τ to the above sequence shows that τT_{i} is not a summand of the minimal cogenerator of \mathcal{F}, since τT_{i} injects into $\tau B \in \operatorname{add} \tau \bar{T}$. In the latter case, τT_{i}^{\prime} is injective, so the exchange sequence in $\bmod H$ again has the same form $\left(\tau T_{i}\right.$ is on the left, and therefore injects into an object of add $\tau \bar{T}$, so is not a summand of the minimal cogenerator of \mathcal{F}).

Next suppose that T_{i} is not a summand of the minimal generator for \mathcal{T}. So there is an epimorphism from some B in add \bar{T} to T_{i}, and thus we have a short exact sequence in $\bmod H$ of the form

$$
0 \rightarrow T_{i}^{\prime} \rightarrow B \rightarrow T_{i} \rightarrow 0
$$

Therefore either τ applied to the above sequence in $\bmod H$ is still a short exact sequence, or else T_{i}^{\prime} is projective, and hence τT_{i}^{\prime} is a shifted projective. In the first case, the exchange sequence for τT_{i} has τT_{i} on the right; in particular, τT_{i} does not admit a monomorphism to any B^{\prime} in add $\tau \bar{T}$. Thus τT_{i} is a summand of the minimal cogenerator of \mathcal{F}. In the second case, τT_{i} has no complement in $\bmod H$, so $\tau \bar{T}$ is not sincere and thus τT_{i} is again a summand of the minimal cogenerator for \mathcal{F}.

A subcategory of $\bmod H$ is called exact abelian if it is abelian with respect to the exact structure inherited from $\bmod H$. If $\left(E_{1}, \ldots, E_{r}\right)$ is an exceptional sequence in
$\bmod H$, it naturally determines an exact abelian and extension-closed subcategory of $\bmod H$, the smallest such subcategory of $\bmod H$ containing E_{1}, \ldots, E_{r}. This subcategory is a module category for a hereditary algebra H^{\prime} with r simples Rin2]. If $\left(E_{1}, \ldots, E_{n}\right)$ is a complete exceptional sequence, then the minimal exact abelian and extension-closed subcategory of $\bmod H$ containing E_{1}, \ldots, E_{r} can also be described as the full subcategory of $\bmod H$ consisting of all Z such that $\operatorname{Hom}\left(E_{i}, Z\right)=0=$ $\operatorname{Ext}^{1}\left(E_{i}, Z\right)=0$ for all $r+1 \leq i \leq n$.

Lemma 8.3. Let $\left(E_{1}, \ldots, E_{n}\right)$ be a complete exceptional sequence in $\bmod H$. Let \mathcal{B} be the exact abelian extension-closed subcategory generated by E_{1}, \ldots, E_{r}, with $0<r<n$, and let \mathcal{C} be the exact abelian extension-closed subcategory generated by $E_{r+1}, \ldots, E_{n} . \operatorname{Let} \mathcal{T}=\operatorname{Fac} \mathcal{C}$, and $\mathcal{G}=\operatorname{Sub} \mathcal{B}$. Then $(\mathcal{T}, \mathcal{G})$ forms a torsion pair.

Proof. Since \mathcal{C} is closed under extensions, it is straightforward to see that \mathcal{T} is also closed under extensions, and hence that it is a torsion class. Let \mathcal{F} be the torsion-free class corresponding to \mathcal{T}. Clearly \mathcal{G} is a full subcategory of \mathcal{F}. Suppose first that \mathcal{T} is generated by a tilting object $T=\bigoplus T_{i}$, so we can apply Lemma 8.2 Let P be the minimal generator of \mathcal{T}. This consists of the direct sum of the indecomposable Ext-projectives of \mathcal{C}. (Note that \mathcal{C} is again a module category.) Let T_{i} be a summand of T which is not a summand of the minimal generator of \mathcal{T}. Since τT_{i} is in \mathcal{F}, we know that $\operatorname{Hom}\left(P, \tau T_{i}\right)=0$. Let P_{j} be an indecomposable summand of P. We want to show that $\operatorname{Hom}\left(T_{i}, P_{j}\right)=0$. Morphisms between indecomposable summands of a tilting object are epimorphisms or monomorphisms [HR . Since P_{j} is by assumption a summand of the minimal generator of \mathcal{T}, it cannot admit an epimorphism from T_{i}. Since T_{i} admits an epimorphism from \bar{T}, it cannot also admit a monomorphism into P_{j} (by Lemma 8.1). Therefore, $\operatorname{Hom}\left(T_{i}, P\right)=0$, and hence $\operatorname{Ext}^{1}\left(P, \tau T_{i}\right) \simeq D \underline{\operatorname{Hom}}\left(T_{i}, P\right)=0$. Using the remarks before the statement of the lemma, we conclude that τT_{i} lies in \mathcal{B}. By Lemma 8.2 we conclude that all the indecomposable summands of the minimal cogenerator of \mathcal{F} lie in \mathcal{B}, and therefore in \mathcal{G}. So $\mathcal{F}=\mathcal{G}$, as desired.

Suppose now that \mathcal{T} is not generated by a tilting module. It is still generated by the direct sum of the indecomposable non-isomorphic Ext-projectives of \mathcal{C}, which we denote by T. Let I_{1}, \ldots, I_{s} be the indecomposable injectives such that $\operatorname{Hom}\left(T, I_{i}\right)=$ 0 . These are objects of \mathcal{B}. Suitably ordered, $\left(I_{1}, \ldots, I_{s}\right)$ form an exceptional sequence in \mathcal{B}; we can therefore extend this sequence to a complete exceptional sequence in \mathcal{B}, which we denote by $\left(I_{1}, \ldots, I_{s}, F_{1}, \ldots, F_{r-s}\right)$. Note that this sequence can be further extended to a complete exceptional sequence in $\bmod H$ by appending $\left(E_{r+1}, \ldots, E_{n}\right)$.

Consider the category \mathcal{M} with objects $\left\{M \mid \operatorname{Hom}\left(M, I_{i}\right)=0\right.$ for $\left.1 \leq i \leq s\right\}$. This is a module category for some hereditary algebra H^{\prime} with $n-s$ simples. \mathcal{T} is a torsion class for $\bmod H^{\prime}$, and T is tilting in $\bmod H^{\prime}$. We can therefore apply the previous case to conclude that the torsion-free class in $\bmod H^{\prime}$ associated to \mathcal{T} is cogenerated by \mathcal{C}^{\prime}, the smallest exact abelian extension-closed subcategory of $\bmod H^{\prime}$ containing F_{1}, \ldots, F_{r-s}. Now if Z is any object in $\bmod H$, we want to show that there is an exact sequence

$$
0 \rightarrow K \rightarrow Z \rightarrow Z / K \rightarrow 0
$$

with Z / K in \mathcal{G} and K in \mathcal{T}. If we can do this, then that shows that \mathcal{G} is "big enough", that is to say, it coincides with \mathcal{F}.

To do this, let N be the maximal quotient of Z which is a subobject of add $\oplus_{i=1}^{s} I_{i}$, and let the kernel be Z^{\prime}. So Z^{\prime} admits no non-zero morphisms to $\oplus_{i=1}^{s} I_{i}$; in other words, Z^{\prime} is in $\bmod H^{\prime}$. So Z^{\prime} has a maximal torsion submodule K, and Z^{\prime} / K is in the torsion-free class associated to \mathcal{T} in $\bmod H^{\prime}$. It follows that Z / K is in \mathcal{G}, and we are done.
8.3. Riedtmann's combinatorial configurations. Define the autoequivalence $F=[-2] \tau^{-1}$ of \mathcal{D}.

A collection \mathcal{I} of indecomposable objects in \mathcal{D} is called a (Riedtmann) combinatorial configuration if it satisfies the following two properties:

- For X and Y non-isomorphic objects in \mathcal{I}, we have $\operatorname{Hom}(X, Y)=0$.
- For any nonzero Z in \mathcal{D}, there is some $X \in \mathcal{I}$ such that $\operatorname{Hom}(X, Z) \neq 0$.

Note that Riedtmann only considers combinatorial configurations for path algebras of type ADE, but the above definition does not require that restriction.

A combinatorial configuration is called periodic if it satisfies the additional property that (in our notation) for any $X \in \mathcal{I}$, we have $F^{i}(X) \in \mathcal{I}$ for all i. Riedtmann showed that if H is a path algebra of type A or D, then any combinatorial configuration is periodic $\mathrm{Rie} 1, \mathrm{Rie} 2$.

Theorem 8.4. If T is a $\operatorname{Hom}_{\leq 0}$-configuration contained in $\mathcal{D}_{\leq 1}^{(\geq 0)-}$, then the set of indecomposable summands of $F^{i}(T)$ for all i is a periodic combinatorial configuration in the sense of Riedtmann.

Proof. To verify the Hom-vanishing condition in the definition of a combinatorial configuration, it suffices to verify, for any non-isomorphic indecomposable summands A, B of T, that $\operatorname{Hom}\left(A, F^{i}(B)\right)=0$. It is clear that $\operatorname{Hom}\left(A, F^{i}(B)\right)$ is zero unless $i=0$ or $i=-1$. If $i=0$, the vanishing follows directly from the definition of a $\operatorname{Hom}_{\leq 0}$-configuration. For $i=-1$, observe that $\operatorname{Hom}\left(A, F^{-1} B\right) \simeq D \operatorname{Ext}^{-1}(B, A)=$ 0.

Let $\hat{T}=\bigoplus_{i} F^{i}(T)$. Now we consider the property that for each X in \mathcal{D}, we have that $\operatorname{Hom}(\hat{T}, X) \neq 0$. We may assume that X is indecomposable. We can clearly assume that $X \in \mathcal{D}_{\leq 1}^{(\geq 0)-}$.

Let $E_{1}[1], \ldots, E_{r} \overline{[1]}$ be the indecomposable summands of T in degree 1 , and let E_{r+1}, \ldots, E_{n} be the indecomposable summands of T in degree 0 , ordered so that $\left(E_{1}, \ldots, E_{n}\right)$ forms an exceptional sequence in $\bmod H$.

Assume first that X is in degree 0 . Let \mathcal{B} be the smallest exact abelian extensionclosed subcategory containing E_{1}, \ldots, E_{r}. This is the category of objects of $\bmod H$ filtered by $\left\{E_{1}, \ldots, E_{r}\right\}$. Similarly, let \mathcal{C} be the smallest exact abelian extensionclosed subcategory containing E_{r+1}, \ldots, E_{n}.

Let $\mathcal{T}=\operatorname{Fac} \mathcal{C}$, and $\mathcal{F}=\operatorname{Sub} \mathcal{B}$. By Lemma $8.3,(\mathcal{T}, \mathcal{F})$ is a torsion pair.
If X has non-zero torsion, then we have shown that X admits a non-zero morphism from some object in \mathcal{T}, and therefore from some object of \mathcal{C}, so X admits a non-zero
morphism from some E_{i} with $r+1 \leq i \leq n$. Since this E_{i} is a summand of \hat{T}, we are done with this case.

Now suppose that X has no torsion, which is to say, it is torsion-free. X therefore admits a monomorphism into some object of \mathcal{B}, and thus a non-zero morphism to some E_{i} with $1 \leq i \leq r$. Hence there is a non-zero morphism from $\nu^{-1}\left(E_{i}\right)$ to X. But $\nu^{-1}\left(E_{i}\right)=F\left(E_{i}[1]\right)$, which is a summand of \hat{T}, and we are done.

Now consider the case that X lies in degree 1. Let $Z=\left(\bigoplus_{i=1}^{r} E_{i}[1]\right) \oplus\left(\bigoplus_{i=r+1}^{n} F^{-1} E_{i}\right)$. We claim that Z is a $H^{\prime 2} m_{\leq 0}$-configuration contained in $\mathcal{D}_{(\leq 2)-}^{(\geq 1)}$ (by which we mean $\mathcal{D}_{(\leq 2)}^{(\geq 1)}$ with $D H[2]$ removed). (H1) is clear. For (H2), the nontrivial requirement is to show $\operatorname{Hom}\left(E_{i}[1], F^{-1} E_{j}\right)=0$ with $i \leq r$ and $j>r$. Now $\operatorname{Hom}\left(E_{i}[1], F^{-1} E_{j}\right) \simeq$ $D \operatorname{Ext}^{-1}\left(E_{j}, E_{i}[1]\right)=0$. For (H3), the nontrivial requirement is to show that $\operatorname{Ext}^{-1}\left(E_{i}[1], F^{-1} E_{j}\right)=0$ for $i \leq r$ and $j>r$, and we see that $\operatorname{Ext}^{-1}\left(E_{i}[1], F^{-1} E_{j}\right) \simeq$ $\operatorname{Hom}\left(E_{j}, E_{i}[1]\right)=0$. For (H4), observe that, by Lemma 3.3(c), $\left(\mu_{1} \ldots \mu_{n-1}\right)^{n-r}$ transforms $\left(E_{1}[1], \ldots, E_{r}[1], E_{r+1}, \ldots, E_{n}\right)$ to $\left(\nu E_{r+1}, \ldots, \nu E_{n}, E_{1}[1], \ldots, E_{r}[1]\right)$. Up to some shifts of degrees, the terms in this exceptional sequence coincide with the summands of Z, which implies (H4).

Now apply the argument from the case that X is in degree zero to $X[-1]$ and the $\operatorname{Hom}_{\leq 0}$-configuration $Z[-1]$.
Theorem 8.5. If \mathcal{I} is a periodic combinatorial configuration, and H is of finite type, then the objects of \mathcal{I} lying inside $\mathcal{D}_{\leq 1}^{(\geq 0)-}$ form a $\mathrm{Hom}_{\leq 0}$-configuration.

Proof. Let X be the direct sum of the objects of \mathcal{I} lying inside $\mathcal{D}_{\leq 1}^{(\geq 0)-}$. We show first of all that X has at least n non-isomorphic indecomposable summands. By the definition of combinatorial configuration, any object in $\bmod H[1]$ admits a nonzero morphism from some object in \mathcal{I}. By degree considerations, such an object must be a summand of X. Thus X generates \mathcal{D}, and therefore contains at least n non-isomorphic indecomposable summands.

It follows from the definition of combinatorial configuration that $\operatorname{Hom}(X, X)$ has as basis the identity maps on the indecomposable summands of X. If A, B are two non-isomorphic indecomposable summands of X, we have that $\operatorname{Ext}^{-1}(A, B) \simeq$ $D \operatorname{Hom}(F(B), A)$ is zero, since $F(B) \in \mathcal{I}$. Further, $\operatorname{Ext}^{t}(A, B)=0$ for $t<-1$ because X is contained in $\mathcal{D}_{\leq 1}^{(\geq 0)-}$. Since H is of Dynkin type, the summands of X are exceptional and also (H4) holds. It follows that the summands of X can be ordered into an exceptional sequence, which means that there are at most n of them, so there are exactly n, and X is a $H_{\leq 0} \leq-$ configuration.

Note that silting objects in $\mathcal{D}_{<1}^{\geq 1}$ naturally correspond to tilting H-modules. Combining Theorems 8.4 and 8.5 with Corollary 7.4 we obtain the following corollary.
Corollary 8.6. Assume that the hereditary algebra H is of Dynkin type. Then there is a natural bijection between the tilting H-modules and the periodic combinatorial configurations.

A bijection between the tilting H-modules and the periodic combinatorial configurations was constructed in type ADE in BLR.

9. Torsion classes in the derived category

Both silting objects and torsion classes play an important role in this paper. Here we point out that there is a close relationship between these concepts.

For an object M in \mathcal{D} we can define (as in [KV]) the subcategory

$$
A(M)=\left\{X \in \mathcal{D} \mid \operatorname{Ext}^{i}(M, X)=0 \text { for } i \geq 1\right\}
$$

In this section we prove that $A(M)$ is preserved under application of $\mu_{\text {rev }}$.
Lemma 9.1. If M is silting, $A(M)$ is a torsion class.
Proof. By AST, Cor. 3.2] (see KV] in the Dynkin case) the smallest suspended subcategory $U(M)$ containing M is a torsion class. We claim that $A(M)=U(M)$. Since $A(M)$ is clearly suspended, we need only to show $A(M) \subset U(M)$. Assume X is in $A(M)$. Since $U(M)$ is a torsion class, there is (see AST, BR]) a triangle

$$
U \rightarrow X \rightarrow Z \rightarrow U[1]
$$

in \mathcal{D} with U in $U(M)$ and with Z in $U(M)^{\perp}$. Since $U[1]$ is in $U(M) \subseteq A(M)$, and $A(M)$ is suspended, we also have that Z is in $A(M)$.

By Lemma 2.2 we have that M is a generator. Since Z is in $U(M)^{\perp}$ and $M[i]$ is in $U(M)$ for $i \geq 0$, we have that $\operatorname{Hom}_{\mathcal{D}}(M, Z[i])=0$ for $i \leq 0$. On the other hand, since Z is in $A(M)$ we have by definition that $\operatorname{Hom}_{\mathcal{D}}(M, Z[i])=0$ for $i>0$. Hence $Z=0$, and $X \simeq U$ is in $U(M)$.

The following can be found in AST.
Proposition 9.2. If A is a torsion class which is $A(Y)$ for some silting object Y, then Y can be recovered as the Ext-projectives of A.

From this we obtain the following direct consequence.
Corollary 9.3. The map $Y \mapsto A(Y)$ is an injection from silting objects to torsion classes.

The following shows that the torsion class associated to an exceptional sequence is not affected by negative mutations.

Proposition 9.4. If μ_{i} is a negative mutation for Y, then $A(Y)=A\left(\mu_{i}(Y)\right)$.
Proof. Consider an approximation triangle

$$
Y_{i+1}^{r}[j] \rightarrow Y_{i}^{*} \rightarrow Y_{i} \rightarrow Y_{i+1}^{r}[j+1]
$$

with j negative. The result follows from the long exact sequence obtained by applying $\operatorname{Hom}(, X)$ to this triangle.

Hence the correspondence described in Section 4 preserves the torsion classes.
Corollary 9.5. If $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ is silting, then $A\left(\mu_{\mathrm{rev}}(Y)\right)=A(Y)$.

Acknowledgements

The third author would like to thank Drew Armstrong, Chris Brav, and David Speyer for helpful conversations. We also thank the referee for his helpful suggestions. Much of the work on this paper was done during several visits by the third author to NTNU. He would like to thank his co-authors and the members of the Institutt for matematiske fag for their hospitality.

References

[Ar] D. Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc. 202 (2009), no. 949. x+159 pp.
[AST] I. Assem, M.J. Souto Salorio and S. Trepode, Ext-projectives in suspended subcategories, J. Pure Appl. Algebra 212 (2008), 423-434.
[ABMW] C. Athanasiadis, T. Brady, J.McCammond and C. Watt, h-vectors of generalized associahedra and noncrossing partitions, Int. Math. Res. Not. (2006), Art. ID 69705, 28pp.
[BR] A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 188 (2007), no. 883, viii+207 pp.
[Be] D. Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. 36 (2003), 647-683.
[Bond] A. I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 25-44; English transl. in Math USSR-Izv. 34 (1990), no. 1, 23-44.
[Bong] K. Bongartz, Tilted algebras, Representations of algebras (Puebla, 1980), pp. 26-38, Lecture Notes in Math., 903, Springer, Berlin-New York, 1981.
[BLR] O. Bretscher, C. Läser, and C. Riedtmann, Self-injective and simply-connected algebras, Manuscripta Math. 36 (1981/82), no. 3, 253-307.
[Br] T. Bridgeland, T-structures on some local Calabi-Yau varieties, J. Algebra 289 (2005), no. 2, 453-483.
[BMRRT] A. B. Buan, R. J. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster combinatorics, Advances in Mathematics 204 (2) (2006), 572-618.
[BRT1] A. B. Buan, I. Reiten and H. Thomas, m-noncrossing partitions and m-clusters, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), Discrete Mathematics and Theoretical Computer Science Proceedings (2009), 145-154.
[BRT2] A. B. Buan, I. Reiten and H. Thomas, Three kinds of mutation, Journal of Algebra, to appear, arXiv:1005.0276
[CHU] F. Coelho, D. Happel and L. Unger, Complements to partial tilting modules, Journal of Algebra 170 (1994), no. 1, 184-205.
[C] W. Crawley-Boevey, Exceptional sequences of representations of quivers, Representations of algebras (Ottawa, ON, 1992), 117-124, CMS Conf. Proc., 14, Amer. Math. Soc., Providence, RI, 1993.
[FR] S. Fomin and N. Reading, Generalized cluster complexes and Coxeter combinatorics, Int. Math. Res. Not. (2005), no. 44, 2709-2757.
[FZ] S. Fomin and A. Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977-1018.
[GK] A. L. Gorodentsev and S. A. Kuleshov, Helix theory, Mosc. Math. J. 4 (2004), no. 2, 377-440, 535.
[H] D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988. x+208 pp.
[HR] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 12, 399-443.
[HU] D. Happel and L. Unger, Almost complete tilting modules, Proc. Amer. Math. Soc. 107 (1989), no. 3, 603-610.
[Hu] A. Hubery, The cluster complex of an hereditary Artin algebra, preprint, arXiv:0812.1475.
[IS] K. Igusa and R. Schiffler, Exceptional sequences and clusters, with an appendix written by the authors and H. Thomas, J. Algebra 323, 8, (2010) 2183-2202.
[IT] C. Ingalls and H. Thomas, Noncrossing partitions and representations of quivers, Compos. Math 145 (2009), no. 6, 1533-1562.
[K] B. Keller On orbit triangulated categories, Doc. Math. 10 (2005), 551-581.
[KV] B. Keller and D. Vossieck, Aisles in the derived category, Deuxième Contact Franco-Belge en Algèbre (Faulx-les-Tombes, 1987). Bull. Soc. Math. Belg. Sér. A 40 (1988), no. 2, 239-253.
[Re] N. Reading, Coxeter sortable elements and noncrossing partitions, Trans. Amer. Math. Soc. 359 (2007), no. 12, 5931-5958.
[Rie1] C. Riedtmann, Representation-finite selfinjective algebras of class A_{n}, Representation theory II (Prof. Second Internat. Conf., Carleton Univ., Ottawa, Ont. 1979), 449-520, Lecture Notes in Math. 832, Springer, Berlin, 1980.
[Rie2] C. Riedtmann, Configurations of $\mathbb{Z} D_{n}$, J. Algebra 82 (1983), no. 2, 309-327.
[RS1] C. Riedtmann and A. Schofield, On open orbits and their complements, J. Algebra 130 (1990), no. 2, 388-411.
[RS2] C. Riedtmann and A. Schofield, On a simplicial complex associated with tilting modules, Comm. Math. Helv. 66 (1991), no. 1, 70-78.
[Rin1] C. M. Ringel, Representations of K-species and bimodules, J. Algebra 41 (1976), no. 2, 269-302.
[Rin2] C. M. Ringel, The braid group action on the set of exceptional sequences of a hereditary Artin algebra, Abelian group theory and related topics (Oberwolfach, 1993), 339-352, Contemp. Math., 171, Amer. Math. Soc., Providence, RI, 1994.
[S] R. C. Simoes, Hom-configurations and noncrossing partitions, preprint, arXiv:1012.1276
[T] H. Thomas, Defining an m-cluster category, J. Algebra 318 (2007), no. 1, 37-46.
[U] L. Unger, Schur modules over wild, finite-dimensional path algebras with three simple modules, J. Pure Appl. Algebra 64 (1990), no. 2, 205-222.
[W] A. Wraalsen, Rigid objects in higher cluster categories, J. Algebra 321 (2009), no. 2, 532-547.
[ZZ] Y. Zhou and B. Zhu, Cluster combinatorics of d-cluster categories, J. Algebra 321 (2009), no. 10, 2898-2915.
[Z] B. Zhu, Generalized cluster complexes via quiver representations J. Algebraic Combin. 27 (2008), no. 1, 35-54.

Institutt for matematiske fag, Norges teknisk-Naturvitenskapelige universitet, N7491 Trondheim, Norway

E-mail address: aslakb@math.ntnu.no
Institutt for matematiske fag, Norges teknisk-naturvitenskapelige universitet, N7491 Trondheim, Norway

E-mail address: idunr@math.ntnu.no
Department of Mathematics and Statistics, University of New Brunswick, Fredericton NB, E3B 1J4 Canada

E-mail address: hthomas@unb.ca

[^0]: Key words and phrases. exceptional objects, noncrossing partitions, clusters, derived categories, generalized Catalan numbers, hereditary algebras.

 All three authors were supported by STOR-FORSK grant 167130 from NFR. A.B.B. and I.R. were supported by grant 196600 from NFR. H.T. was supported by an NSERC Discovery Grant.

