54 research outputs found

    Appearance Preserving Rendering of Out-of-Core Polygon and NURBS Models

    Get PDF
    In Computer Aided Design (CAD) trimmed NURBS surfaces are widely used due to their flexibility. For rendering and simulation however, piecewise linear representations of these objects are required. A relatively new field in CAD is the analysis of long-term strain tests. After such a test the object is scanned with a 3d laser scanner for further processing on a PC. In all these areas of CAD the number of primitives as well as their complexity has grown constantly in the recent years. This growth is exceeding the increase of processor speed and memory size by far and posing the need for fast out-of-core algorithms. This thesis describes a processing pipeline from the input data in the form of triangular or trimmed NURBS models until the interactive rendering of these models at high visual quality. After discussing the motivation for this work and introducing basic concepts on complex polygon and NURBS models, the second part of this thesis starts with a review of existing simplification and tessellation algorithms. Additionally, an improved stitching algorithm to generate a consistent model after tessellation of a trimmed NURBS model is presented. Since surfaces need to be modified interactively during the design phase, a novel trimmed NURBS rendering algorithm is presented. This algorithm removes the bottleneck of generating and transmitting a new tessellation to the graphics card after each modification of a surface by evaluating and trimming the surface on the GPU. To achieve high visual quality, the appearance of a surface can be preserved using texture mapping. Therefore, a texture mapping algorithm for trimmed NURBS surfaces is presented. To reduce the memory requirements for the textures, the algorithm is modified to generate compressed normal maps to preserve the shading of the original surface. Since texturing is only possible, when a parametric mapping of the surface - requiring additional memory - is available, a new simplification and tessellation error measure is introduced that preserves the appearance of the original surface by controlling the deviation of normal vectors. The preservation of normals and possibly other surface attributes allows interactive visualization for quality control applications (e.g. isophotes and reflection lines). In the last part out-of-core techniques for processing and rendering of gigabyte-sized polygonal and trimmed NURBS models are presented. Then the modifications necessary to support streaming of simplified geometry from a central server are discussed and finally and LOD selection algorithm to support interactive rendering of hard and soft shadows is described

    Differentiable Subdivision Surface Fitting

    Get PDF
    In this paper, we present a powerful differentiable surface fitting technique to derive a compact surface representation for a given dense point cloud or mesh, with application in the domains of graphics and CAD/CAM. We have chosen the Loop subdivision surface, which in the limit yields the smooth surface underlying the point cloud, and can handle complex surface topology better than other popular compact representations, such as NURBS. The principal idea is to fit the Loop subdivision surface not directly to the point cloud, but to the IMLS (implicit moving least squares) surface defined over the point cloud. As both Loop subdivision and IMLS have analytical expressions, we are able to formulate the problem as an unconstrained minimization problem of a completely differentiable function that can be solved with standard numerical solvers. Differentiability enables us to integrate the subdivision surface into any deep learning method for point clouds or meshes. We demonstrate the versatility and potential of this approach by using it in conjunction with a differentiable renderer to robustly reconstruct compact surface representations of spatial-temporal sequences of dense meshes

    Differentiable Subdivision Surface Fitting

    Get PDF
    In this paper we present a powerful differentiable surface fitting technique to derive a compact surface representation for a given dense point cloud or mesh, with application in the domains of graphics and CAD/CAM. We have chosen the Loop subdivision surface, which in the limit yields the smooth surface underlying the point cloud, and can handle complex surface topology better than other popular compact representations, such as NURBS(Non-uniform rational basis spline). The principal idea is to fit the Loop subdivision surface not directly to the point cloud, but to the IMLS (Implicit moving least squares) surface defined over the point cloud. As both Loop subdivision and IMLS have analytical expressions, we are able to formulate the problem as an unconstrained minimization problem of a completely differentiable function that can be solved with standard numerical solvers. Differentiability enables us to integrate the subdivision surface into any deep learning method for point clouds or meshes. We demonstrate the versatility and potential of this approach by using it in conjunction with a differentiable renderer to robustly reconstruct compact surface representations of spatial-temporal sequences of dense meshes

    BVH์™€ ํ† ๋Ÿฌ์Šค ํŒจ์น˜๋ฅผ ์ด์šฉํ•œ ๊ณก๋ฉด ๊ต์ฐจ๊ณก์„  ์—ฐ์‚ฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2021.8. ๊น€๋ช…์ˆ˜.๋‘ ๋ณ€์ˆ˜๋ฅผ ๊ฐ€์ง€๋Š” B-์Šคํ”Œ๋ผ์ธ ์ž์œ ๊ณก๋ฉด์˜ ๊ณก๋ฉด๊ฐ„ ๊ต์ฐจ๊ณก์„ ๊ณผ ์ž๊ฐ€ ๊ต์ฐจ๊ณก์„ , ๊ทธ๋ฆฌ๊ณ  ์˜คํ”„์…‹ ๊ณก๋ฉด์˜ ์ž๊ฐ€ ๊ต์ฐจ๊ณก์„ ์„ ๊ตฌํ•˜๋Š” ํšจ์œจ์ ์ด๊ณ  ์•ˆ์ •์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์€ ์ตœํ•˜๋‹จ ๋…ธ๋“œ์— ์ตœ๋Œ€ ์ ‘์ด‰ ํ† ๋Ÿฌ์Šค๋ฅผ ๊ฐ€์ง€๋Š” ๋ณตํ•ฉ ๋ฐ”์šด๋”ฉ ๋ณผ๋ฅจ ๊ตฌ์กฐ์— ๊ธฐ๋ฐ˜์„ ๋‘๊ณ  ์žˆ๋‹ค. ์ด ๋ฐ”์šด๋”ฉ ๋ณผ๋ฅจ ๊ตฌ์กฐ๋Š” ๊ณก๋ฉด๊ฐ„ ๊ต์ฐจ๋‚˜ ์ž๊ฐ€ ๊ต์ฐจ๊ฐ€ ๋ฐœ์ƒํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋Š” ์ž‘์€ ๊ณก๋ฉด ์กฐ๊ฐ ์Œ๋“ค์˜ ๊ธฐํ•˜ํ•™์  ๊ฒ€์ƒ‰์„ ๊ฐ€์†ํ™”ํ•œ๋‹ค. ์ตœ๋Œ€ ์ ‘์ด‰ ํ† ๋Ÿฌ์Šค๋Š” ์ž๊ธฐ๊ฐ€ ๊ทผ์‚ฌํ•œ C2-์—ฐ์† ์ž์œ ๊ณก๋ฉด๊ณผ 2์ฐจ ์ ‘์ด‰์„ ๊ฐ€์ง€๋ฏ€๋กœ ์ฃผ์–ด์ง„ ๊ณก๋ฉด์—์„œ ๋‹ค์–‘ํ•œ ๊ธฐํ•˜ ์—ฐ์‚ฐ์˜ ์ •๋ฐ€๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š”๋ฐ ํ•„์ˆ˜์ ์ธ ์—ญํ• ์„ ํ•œ๋‹ค. ํšจ์œจ์ ์ธ ๊ณก๋ฉด๊ฐ„ ๊ต์ฐจ๊ณก์„  ๊ณ„์‚ฐ์„ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•ด, ๋ฏธ๋ฆฌ ๋งŒ๋“ค์–ด์ง„, ์ตœํ•˜๋‹จ ๋…ธ๋“œ์— ์ตœ๋Œ€ ์ ‘์ด‰ ํ† ๋Ÿฌ์Šค๊ฐ€ ์žˆ์œผ๋ฉฐ ๊ตฌํ˜•๊ตฌ๋ฉด ํŠธ๋ฆฌ๋ฅผ ๊ฐ€์ง€๋Š” ๋ณตํ•ฉ ์ดํ•ญ ๋ฐ”์šด๋”ฉ ๋ณผ๋ฅจ ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ตœ๋Œ€ ์ ‘์ด‰ ํ† ๋Ÿฌ์Šค๋Š” ๊ฑฐ์˜ ๋ชจ๋“  ๊ณณ์—์„œ ์ ‘์„ ๊ต์ฐจ๊ฐ€ ๋ฐœ์ƒํ•˜๋Š”, ์ž๋ช…ํ•˜์ง€ ์•Š์€ ๊ณก๋ฉด๊ฐ„ ๊ต์ฐจ๊ณก์„  ๊ณ„์‚ฐ ๋ฌธ์ œ์—์„œ๋„ ํšจ์œจ์ ์ด๊ณ  ์•ˆ์ •์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๊ณก๋ฉด์˜ ์ž๊ฐ€ ๊ต์ฐจ ๊ณก์„ ์„ ๊ตฌํ•˜๋Š” ๋ฌธ์ œ๋Š” ์ฃผ๋กœ ๋งˆ์ดํ„ฐ ์  ๋•Œ๋ฌธ์— ๊ณก๋ฉด๊ฐ„ ๊ต์ฐจ๊ณก์„ ์„ ๊ณ„์‚ฐํ•˜๋Š” ๊ฒƒ ๋ณด๋‹ค ํ›จ์”ฌ ๋” ์–ด๋ ต๋‹ค. ์ž๊ฐ€ ๊ต์ฐจ ๊ณก๋ฉด์€ ๋งˆ์ดํ„ฐ ์  ๋ถ€๊ทผ์—์„œ ๋ฒ•์„  ๋ฐฉํ–ฅ์ด ๊ธ‰๊ฒฉํžˆ ๋ณ€ํ•˜๋ฉฐ, ๋งˆ์ดํ„ฐ ์ ์€ ์ž๊ฐ€ ๊ต์ฐจ ๊ณก์„ ์˜ ๋์ ์— ์œ„์น˜ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋งˆ์ดํ„ฐ ์ ์€ ์ž๊ฐ€ ๊ต์ฐจ ๊ณก๋ฉด์˜ ๊ธฐํ•˜ ์—ฐ์‚ฐ ์•ˆ์ •์„ฑ์— ํฐ ๋ฌธ์ œ๋ฅผ ์ผ์œผํ‚จ๋‹ค. ๋งˆ์ดํ„ฐ ์ ์„ ์•ˆ์ •์ ์œผ๋กœ ๊ฐ์ง€ํ•˜์—ฌ ์ž๊ฐ€ ๊ต์ฐจ ๊ณก์„ ์˜ ๊ณ„์‚ฐ์„ ์šฉ์ดํ•˜๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด, ์ž์œ ๊ณก๋ฉด์„ ์œ„ํ•œ ๋ณตํ•ฉ ๋ฐ”์šด๋”ฉ ๋ณผ๋ฅจ ๊ตฌ์กฐ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์‚ผํ•ญ ํŠธ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ํŠนํžˆ, ๋‘ ๋ณ€์ˆ˜๋ฅผ ๊ฐ€์ง€๋Š” ๊ณก๋ฉด์˜ ๋งค๊ฐœ๋ณ€์ˆ˜์˜์—ญ์—์„œ ๋งˆ์ดํ„ฐ ์ ์„ ์ถฉ๋ถ„ํžˆ ์ž‘์€ ์‚ฌ๊ฐํ˜•์œผ๋กœ ๊ฐ์‹ธ๋Š” ํŠน๋ณ„ํ•œ ํ‘œํ˜„ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ ‘์„ ๊ต์ฐจ์™€ ๋งˆ์ดํ„ฐ ์ ์„ ๊ฐ€์ง€๋Š”, ์•„์ฃผ ์ž๋ช…ํ•˜์ง€ ์•Š์€ ์ž์œ ๊ณก๋ฉด ์˜ˆ์ œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ƒˆ ๋ฐฉ๋ฒ•์ด ํšจ๊ณผ์ ์ž„์„ ์ž…์ฆํ•œ๋‹ค. ๋ชจ๋“  ์‹คํ—˜ ์˜ˆ์ œ์—์„œ, ๊ธฐํ•˜์š”์†Œ๋“ค์˜ ์ •ํ™•๋„๋Š” ํ•˜์šฐ์Šค๋„๋ฅดํ”„ ๊ฑฐ๋ฆฌ์˜ ์ƒํ•œ๋ณด๋‹ค ๋‚ฎ์Œ์„ ์ธก์ •ํ•˜์˜€๋‹ค.We present a new approach to the development of efficient and stable algorithms for intersecting freeform surfaces, including the surface-surface-intersection and the surface self-intersection of bivariate rational B-spline surfaces. Our new approach is based on a hybrid Bounding Volume Hierarchy(BVH) that stores osculating toroidal patches in the leaf nodes. The BVH structure accelerates the geometric search for the potential pairs of local surface patches that may intersect or self-intersect. Osculating toroidal patches have second-order contact with C2-continuous freeform surfaces that they approximate, which plays an essential role in improving the precision of various geometric operations on the given surfaces. To support efficient computation of the surface-surface-intersection curve, we design a hybrid binary BVH that is basically a pre-built Rectangle-Swept Sphere(RSS) tree enhanced with osculating toroidal patches in their leaf nodes. Osculating toroidal patches provide efficient and robust solutions to the problem even in the non-trivial cases of handling two freeform surfaces intersecting almost tangentially everywhere. The surface self-intersection problem is considerably more difficult than computing the intersection of two different surfaces, mainly due to the existence of miter points. A self-intersecting surface changes its normal direction dramatically around miter points, located at the open endpoints of the self-intersection curve. This undesirable behavior causes serious problems in the stability of geometric algorithms on self-intersecting surfaces. To facilitate surface self-intersection computation with a stable detection of miter points, we propose a ternary tree structure for the hybrid BVH of freeform surfaces. In particular, we propose a special representation of miter points using sufficiently small quadrangles in the parameter domain of bivariate surfaces and expand ideas to offset surfaces. We demonstrate the effectiveness of the proposed new approach using some highly non-trivial examples of freeform surfaces with tangential intersections and miter points. In all the test examples, the closeness of geometric entities is measured under the Hausdorff distance upper bound.Chapter 1 Introduction 1 1.1 Background 1 1.2 Surface-Surface-Intersection 5 1.3 Surface Self-Intersection 8 1.4 Main Contribution 12 1.5 Thesis Organization 14 Chapter 2 Preliminaries 15 2.1 Differential geometry of surfaces 15 2.2 Bezier curves and surfaces 17 2.3 Surface approximation 19 2.4 Torus 21 2.5 Summary 24 Chapter 3 Previous Work 25 3.1 Surface-Surface-Intersection 25 3.2 Surface Self-Intersection 29 3.3 Summary 32 Chapter 4 Bounding Volume Hierarchy for Surface Intersections 33 4.1 Binary Structure 33 4.1.1 Hierarchy of Bilinear Surfaces 34 4.1.2 Hierarchy of Planar Quadrangles 37 4.1.3 Construction of Leaf Nodes with Osculating Toroidal Patches 41 4.2 Ternary Structure 44 4.2.1 Miter Points 47 4.2.2 Leaf Nodes 50 4.2.3 Internal Nodes 51 4.3 Summary 56 Chapter 5 Surface-Surface-Intersection 57 5.1 BVH Traversal 58 5.2 Construction of SSI Curve Segments 59 5.2.1 Merging SSI Curve Segments with G1-Biarcs 60 5.2.2 Measuring the SSI Approximation Error Using G1-Biarcs 63 5.3 Tangential Intersection 64 5.4 Summary 65 Chapter 6 Surface Self-Intersection 67 6.1 Preprocessing 68 6.2 BVH Traversal 69 6.3 Construction of Intersection Curve Segments 70 6.4 Summary 72 Chapter 7 Trimming Offset Surfaces with Self-Intersection Curves 74 7.1 Offset Surface and Ternary Hybrid BVH 75 7.2 Preprocessing 77 7.3 Merging Intersection Curve Segments 81 7.4 Summary 84 Chapter 8 Experimental Results 85 8.1 Surface-Surface-Intersection 85 8.2 Surface Self-Intersection 97 8.2.1 Regular Surfaces 97 8.2.2 Offset Surfaces 100 Chapter 9 Conclusion 106 Bibliography 108 ์ดˆ๋ก 120๋ฐ•

    Heterogeneous Computing with Focus on Mechanical Engineering

    Get PDF
    During the past few years there has been a revolution in the design of desktop computers. Most processors today include more than one processor core, allowing parallel execution of programs. Furthermore, most commodity computers include a graphical processor that outperforms the central processor by at least one order of magnitude. Tapping into this vast resource is commonly referred to as heterogeneous computing. The change in hardware invalidates old software-design truths. There is therefore need for new algorithms, and research into adapting existing algorithms to these architectures. Our main focus has been to accelerate algorithms relevant for mechanical engineering. In this dissertation we present four algorithms devoted to take advantage of the computational strengths of heterogeneous architectures. Each work is based on state-of-the-art hardware available at the time the research was performed. First we describe an algorithm for high-quality visualization of parametric surfaces. This is useful in a CAD setting, were an accurate rendering is important for visual validation of model quality. We further describe simulation of shallow-water waves using a state-of-the-art numerical scheme. Our accelerated implementation gave a speedup of up to 40 times compared to an optimized reference implementation. Our implementation features real time simulation and visualization of semi-realistic nonlinear wave effects. Finally we present two algorithms for shape simplification of 3D-models. The algorithms aim at reducing time spent on preparing models for finite element analysis. Finite element analysis is important to determine mechanical properties of objects prior to manufacture. Such analysis can be used to investigate thermal behavior and determine the strengths and weaknesses of physical components. Before the analysis can take place the models must undergo a preparation phase where shape simplification plays an important role. The first work we describe for shape simplification is a hybrid algorithm, using graphics hardware for the computationally demanding operations, and the main processor for maintaining the data structure. Our second work describes a shape simplification algorithm highly suitable for heterogeneous architectures and a reference implementation on the Cell BE

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation

    Visual Data Representation using Context-Aware Samples

    Get PDF
    The rapid growth in the complexity of geometry models has necessisated revision of several conventional techniques in computer graphics. At the heart of this trend is the representation of geometry with locally constant approximations using independent sample primitives. This generally leads to a higher sampling rate and thus a high cost of representation, transmission, and rendering. We advocate an alternate approach involving context-aware samples that capture the local variation of the geometry. We detail two approaches; one, based on differential geometry and the other based on statistics. Our differential-geometry-based approach captures the context of the local geometry using an estimation of the local Taylor's series expansion. We render such samples using programmable Graphics Processing Unit (GPU) by fast approximation of the geometry in the screen space. The benefits of this representation can also be seen in other applications such as simulation of light transport. In our statistics-based approach we capture the context of the local geometry using Principal Component Analysis (PCA). This allows us to achieve hierarchical detail by modeling the geometry in a non-deterministic fashion as a hierarchical probability distribution. We approximate the geometry and its attributes using quasi-random sampling. Our results show a significant rendering speedup and savings in the geometric bandwidth when compared to current approaches

    Optimal shape design with automatically differentiated CAD parametrisations

    Get PDF
    PhD ThesisTypical engineering workflow for aerodynamic design could be considered as a three-stage process: modelling of a new component in a CAD system, its detailed aerodynamic analysis on the computational grid using flow simulations (CFD) and manufacturing of the CAD component. Numerical shape optimisation is becoming an essential industrial method to improve the aerodynamic performance of shapes immersed in fluids. High-fidelity optimisation requires fine design spaces with many design variables, which can only be tackled with gradient-based optimisation methods. Adjoint CFD can efficiently calculate the necessary flow sensitivities on computational grids and ideally, also CAD parametrisation should be kept inside the loop to maintain a consistent CAD model during the optimisation and streamline the design process. However, (i) typical commercial CAD systems do not offer derivative computation and (ii) standard CAD parametrisations may not define a suitable design space for the optimisation. This thesis presents an automatically differentiated (AD) version of the open-source CAD kernel OpenCascade Technology (OCCT), which robustly provides shape derivatives with respect to CAD parameters. Developed block-vector AD mode outperforms commonly used finite difference approaches in both efficiency and accuracy. Coupling of OCCT with an adjoint CFD solver provides for the first time a fully differentiated design chain. Extension of OCCT to perform shape optimisation is demonstrated by using CAD parametrisations based on (a) user-defined parametric CAD models and (b) BRep (NURBS) models. The imposition of geometric constraints, a salient part of the industrial design, is shown for both approaches. Novel parametrisation techniques that can handle components with surface-surface intersections or simultaneously incorporate approaches (a) and (b) for the optimisation of a single component are demonstrated. The CAD-based methodology is successfully applied for aerodynamic shape optimisation of three industrial test cases. Additionally, advantages of the differentiated CAD is showcased for the commonly occurring CAD re-parametrisation and mesh-to-CAD fitting problems
    • โ€ฆ
    corecore