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Abstract

Differentiable Subdivision Surface Fitting

Tianhao Xie

In this paper we present a powerful differentiable surface fitting technique to derive a compact

surface representation for a given dense point cloud or mesh, with application in the domains of

graphics and CAD/CAM. We have chosen the Loop subdivision surface, which in the limit yields

the smooth surface underlying the point cloud, and can handle complex surface topology better than

other popular compact representations, such as NURBS(Non-uniform rational basis spline). The

principal idea is to fit the Loop subdivision surface not directly to the point cloud, but to the IMLS

(Implicit moving least squares) surface defined over the point cloud. As both Loop subdivision and

IMLS have analytical expressions, we are able to formulate the problem as an unconstrained min-

imization problem of a completely differentiable function that can be solved with standard numer-

ical solvers. Differentiability enables us to integrate the subdivision surface into any deep learning

method for point clouds or meshes. We demonstrate the versatility and potential of this approach

by using it in conjunction with a differentiable renderer to robustly reconstruct compact surface

representations of spatial-temporal sequences of dense meshes.
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Chapter 1

Introduction

1.1 Geometric representation

In computer graphics, the representation of the data is important. Three-dimensional geometric

data has many representations depending on the context in which it is used. One such classification

is by the number of parameters or control variables needed to define a 3D surface. One extreme

case would be to use raw geometric data obtained from 3D acquisition in the wild using 3D sensors

or photogrammetric techniques; this is usually represented as a large and unstructured point cloud,

where the sampled points (parameters) are noisy and the geometry is often incomplete. At the

other end of the spectrum, for simulation, CAD, shape optimization, animation, and other modeling

and analysis applications, a compact and precise representation is desired; examples are implicit

algebraic surfaces Bajaj (1992), bi-parametric surfaces using splines and NURBS(Non-uniform ra-

tional basis spline) Bartels, Beatty, and Barsky (1987); Piegl and Tiller (1996) or subdivision sur-

faces DeRose, Kass, and Truong (1998); Montes, Thomaszewski, Mudur, and Popa (2020). These

compact surface representations use a relatively small number of control variables which are ad-

justed to yield a desired surface. In between these two extremes are a wide range of representations,

from point-based surface definitions such as Moving Least Squares (MLS) surfaces, signed distance

functions to standard polygonal meshes endowed with additional properties such as texture, normal

and displacement maps. Conversion between these various representations is fundamental to any

geometric processing pipeline, and many have been developed over the years Berger et al. (2017).

1



1.2 Subdivision Surface

Among all these representations, subdivision surfaces are particularly appealing to many high

level applications such as surface optimization and analysis, simulation, modeling, and anima-

tion DeRose et al. (1998): not only they are very compact, they do not require explicit NURBS

patch decomposition and alignment as NURBS do Sharma et al. (2020), which makes them ideal

to use for fitting more complex surface topology. A subdivision surface is represented by a com-

pact polygonal mesh which gets subdivided by introducing new vertices, using, for example, Loop

subdivision formulation Stam (1998); in the limit, this subdivision process leads to a smooth shape.

With the ubiquity of colour and depth sensing, dense point clouds with very large number of points

have become very easy to acquire, but are difficult to use for a number of reasons, including size,

ambiguity of the underlying surface, shape editing difficulties, etc. Fitting a compact representation,

such as a subdivision surface, would address a number of these problems.

Fitting subdivision surfaces to point clouds has major challenges. For a start, they require an

initial control mesh that is capable of representing the desired surface topology in the limit. This is

difficult to derive and consequently it is usually guessed, unless a mesh is extracted by other means.

Existing fitting methods Cheng et al. (2004); Estellers, Schmidt, and Cremers (2018); Marinov and

Kobbelt (2005) rely on an optimization function that uses iterative point-to-point correspondences.

This optimization function is non-differentiable, is not robust to noise and outliers, and also tends

to fail if the initial guess of the control mesh is too far from the solution, especially in the tangential

direction.

The reason is that this point-to-point fitting strategy is not only non-differentiable but also rigid

and does not easily allow for optimization along the tangent space. Optimization along the tangent

space is particularly important especially when fitting to spatial-temporal data where we must fit a

fixed topology template to spatially and temporally changing point clouds, which are extensively

used in computer animation Mendhurwar et al. (2020); Popa, South-Dickinson, Bradley, Sheffer,

and Heidrich (2010).

Some of these challenges conceptually stem simply from the fact that the gap between these

representations is too large: whereas the subdivision surface represents a smooth continuous surface
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in a very compact way, the point cloud is only a collection of points and associated surface normals,

with no other ordering or structure.

1.3 Contribution

Our principal idea in this work is to help the fitting by bridging this gap using an intermediate

representation such as the implicit moving least square surface (IMLS) Kolluri (2008), which is an

implicit function whose zero surface approximates the underlying surface of the input point cloud.

Thus, instead of fitting the subdivision surface directly to the point cloud, we fit it to the IMLS

surface defined over the point cloud. This bridging approach has several significant advantages.

The IMLS surface plays the important role of an initial fairing operator over the point cloud. It

defines an elegant and robust analytical distance function that replaces the traditional point to point

distance used in previous methods, and one that naturally allows for sliding in the tangent space,

making it ideal for both static and spatial-temporal surface fitting.

Our major contribution in this work is a complete pipeline for fitting a Loop subdivision surface

to a dense point cloud or mesh using the IMLS surface as an intermediate representation. As both

the Loop subdivision surface as well as the IMLS have analytical expressions, we are able to formu-

late the problem as an unconstrained minimization problem of a completely differentiable function

that can be solved with standard numerical solvers. Furthermore, this differentiable surface fitting

provides us with unique capability to integrate the compact subdivision surface representation of

a point cloud into any deep learning method. We demonstrate the versatility and potential of this

approach by using it in conjunction with a differentiable renderer to robustly reconstruct compact

representations of spatial-temporal surface sequences.
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Chapter 2

Background

2.1 Loop Subdivision

Triangular meshes are used in many applications, such as geometry modeling and finite element

simulation. Thus, the ability to define a smooth surface based on a given triangular mesh is im-

portant. In 1987, Charles Loop generalized a recurrence relation between quartic box splines and

triangular mesh Loop (1987). The process of subdivision is done by iteratively apply subdivision

mask, which is a list of the weights, to the mesh to generate new vertices and adjust the position

of old vertices as a weighted average of the neighbor vertices. The mask for the Loop subdivision

scheme are shown in Figure 2.1. In the figure, β can be chosen to be 1
n(

5
8 − (38 + 1

4cos(
2π
n )2).

A example of the subdivision process is shown in Figure 2.2, where the original control mesh is

subdivided twice. By introducing new vertices and adjusting the position of original vertices, the

subdivided mesh become smoother. It is guaranteed that, in the limit of an infinite numbers of

subdivision, the Loop subdivision surface has C2 continuity in regular vertices (valence 6) and C1

continuity in extraordinary vertices.

2.2 Analytical evaluation of Loop subdivision

In Loop (1987), the subdivision surface can be generated by iteratively applying the mask as

shown in Figure 2.1 and Figure 2.2. However, the analytical evaluation of the Loop subdivision is

4



Figure 2.1: Loop subdivision mask: (a) Masks for odd vertices. (b) Masks for even vertices

Figure 2.2: Loop subdivision process: (a) Original control mesh. (b) First level of subdivision. (c)
Second level of subdivision.
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required in some applications, such as surface fitting. In 1998, Jos Stam came up with an analytical

evaluation method of Loop subdivision Stam (1998).

For a triangular mesh, we define the regular face as having three regular vertices and the irregular

face as having more than one extraordinary vertex. The regular face can be parametrized using

triangular Bezier patches derived from box splines Lai (1992). When evaluating a regular face, a

triangular patch which defined by 12 control vertices is needed, as shown in Figure 2.3. The basis

functions corresponding to each of the control vertices are shown in Appendix A. The regular face

(dotted face in Figure 2.3) can be analytically expressed as:

s(v, w) = CT b(v, w), (v, w) ∈ Ω, (1)

where C is a 12× 3 matrix with 12 control vertices of the patch as shown in Figure 2.3. b(v, w) is

the vector of basis functions and it is defined over the barycentric coordinate:

Ω = {(v, w) | v ∈ [0, 1] and w ∈ [0, 1− v]}. (2)

As for the irregular face, we can only evaluate the irregular face with exactly one extraordinary

vertex. An irregular patch with an extraordinary vertex whose valence K = 7 is shown in Figure 2.4.

This irregular patch is defined by N = K + 6 = 13 control vertices. Jos Stam used the projection

of the control points into the eigen space of the Loop subdivision matrix S to evaluate the irregular

face. When the extraordinary vertex’s valence K > 3, the subdivision matrix S is non-defective and

can be diagonalized,

S = V ΛV −1, (3)

where V contains the eigen vectors and Λ is diagonal eigen values. Let C0̂ = V −1C0 be the projec-

tion of initial control vertices C0 into the eigen space of S and Φ(v, w) be the eigenbasis function,

the irregular face (dotted face in Figure 2.4) can be analytically expressed as:

s(v, w) = C0̂
T
Φ(v, w). (4)

The detailed definition of Φ(v, w) is referred to Stam (1998).
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Figure 2.3: A triangular patch to evaluate regular face Stam (1998).
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Figure 2.4: A triangular patch to evaluate irregular face with an irregular vertex whose valence
K = 7 Stam (1998).
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Chapter 3

Literature Review

The subdivision process defines a smooth curve or surface as the limit of a sequence of mesh

refinement steps starting from a control mesh. This makes the final surface to be controlled by

the small number of control vertices in the starting mesh, thus resulting in a very compact surface

representation. Several subdivision schemes have been developed over the years and widely used in

different applications Catmull and Clark (1978); DeRose et al. (1998); Doo and Sabin (1978); Liu

et al. (2021); Loop (1987). In particular, Loop subdivision is a subdivision scheme based on quartic

box spline on triangular meshes Loop (1987). It is guaranteed that, in the limit, the subdivision

surface has C2 continuity in regular vertices (degree 6) and C1 continuity in irregular vertices. In

1998, Jos Stam developed an analytical evaluation method of Loop subdivision Stam (1998), which

was based on conversion from Box splines to B-Nets Lai (1992). This analytical and differentiable

evaluation makes this scheme ideal for differentiable shape optimization and we will use it in our

novel subdivision fitting pipeline.

3.1 Fitting subdivision surface to target shape

It is a common task to fit a smooth surface representation to a target shape in computer graphics.

One typical solution for this task is to fit a piecewise smooth surface to the target, such as a B-spline

surface or a subdivision surface. Considerable work has been done on fitting B-splines to point

clouds by squared distance minimization Wang, Pottmann, and Liu (2006); Zheng, Bo, Liu, and
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Wang (2012). Since our focus in this work is on fitting subdivision surfaces, we will limit our

discussion of related work primarily to subdivision surface fitting.

Hoppe et al. (1994) and Lavoué, Dupont, and Baskurt (2005) fit subdivision surfaces to CAD

models by minimizing the squared distance energy. Litke, Levin, and Schroder (2001) used quasi-

interpolation to fit Catmull-Clark subdivision surface to a given shape within a prescribed tolerance.

Ma, Ma, Tso, and Pan (2002) described a method to fit a Loop subdivision surface to a dense

triangular mesh by linear least square fitting.

The geometric data captured in the wild is almost always in the form of an unstructured point

cloud, with noise, outliers, and missing geometry. A large body of work has focused on fitting

subdivision surfaces to point clouds data Cheng et al. (2004); Estellers et al. (2018); Marinov and

Kobbelt (2005); Mendhurwar et al. (2020). Cheng et al. (2004) fit the subdivision surface by itera-

tively minimizing a quadratic approximant of the squared distance function of a target shape. Their

approach first samples points on the Loop subdivision surface based on a method by Stam Stam

(1998). Then, they solve a linear system of the control mesh variables to minimize the squared

distance between the sample points and target shape. Marinov and Kobbelt (2005) introduced an

algorithm based on exact closest point search on Loop surfaces which combines Newton iteration

and non-linear minimization. In more recent research, Estellers et al. (2018) used second-order

approximation of the squared distance function and the tangent space alignment to achieve robust

fitting of subdivision surface for shape analysis. Similar to methods in Cheng et al. (2004) and

Marinov and Kobbelt (2005), Esteller et al. also sampled the points on the subdivision surface to

establish the error function – error between the subdivision surface and the target shape. These

methods need to solve a sequence of constrained least-squares problems to minimize the error func-

tion. The method in Ilic (2006) could be optimized by gradient-descent method. However, instead

of fitting the limit surface, they could only fit a specific level of subdivision surface to the target

shape. In contrast to many of these methods, our proposed solution frames the fitting problem as an

optimization of a completely differentiable function that can be solved using standard differentiable

optimization methods.

Some learning-based methods to fit a surface to a target shape have also been previously pro-

posed. Most of these approaches fit parametric polynomial surfaces of some form to point clouds.
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Yumer and Kara (2012) used a neural network to generate NURBS from input point sets. Ben-

Shabat and Gould (2020) introduced DeepFit, which incorporated a neural network to learn point-

wise weights for weighted least squares polynomial surface fitting. Sharma et al. (2020) described a

method using neural networks to fit B-spline patches to input point cloud data . Our fitting method

is not deep learning based; however, being differentiable, it can be used to bridge the gap between

deep learning-based methods in a 3D domain and traditional subdivision surface techniques.

3.2 Spatio-temporal surface reconstruction

Reconstructing representations for time-varying 3D data is a common problem in graphics ani-

mation and simulation. A common approach is to fit a template mesh to the consecutive time-series

point cloud or mesh. This is used to reconstruct coherent dynamic geometry from time-varying

point clouds captured by real-time 3D scanning techniques. One widely used method is to recon-

struct meshes for all frames first and then to fit a template mesh to all reconstructed meshes Allen,

Curless, and Popović (2002); Kähler, Haber, Yamauchi, and Seidel (2002); Stoll, Karni, Rössl, Ya-

mauchi, and Seidel (2006); Sumner and Popović (2004). These methods always need additional

markers or landmarks which must be specified by the users. Another method is to generate a tem-

plate from first frame and then fit the template directly to the remaining frames Shinya (2004);

Süßmuth, Winter, and Greiner (2008). Süßmuth et al. (2008) followed the Multi-level Partition of

Unity (MPU) Implicits approach to reconstruct the implicit function that approximates the time-

varying surface defined by the time-varying point cloud and used the As-Rigid-As-Possible con-

straint to the moving of the points. When comparing this approach to our method, 1) it does not fit

a subdivision surface to the 4D data and thus the final resulting surface was not smooth; 2) unlike

our distance field energy, they used an implicit function to represent the point cloud surface, which

must be optimized by solving a sequence of least squares problems.

A few other methods perform template-free reconstruction Mitra et al. (2007); Popa et al.

(2010); Sharf et al. (2008). Mitra et al. (2007) directly compute the motion of the scanned object in

all frames and estimate the time-deforming object by kinematic properties. Sharf et al. (2008) used a

space-time solid incompressible flow prior to reconstruct moving and deforming objects from point

11



data. In Popa et al. (2010) a template is constructed gradually by mapping consecutive frames in

a pyramidal fashion. Wand et al. (2009) reconstructed 3D scanner data by pairwise scanning align-

ment. Tevs et al. (2012) introduced Animation Cartography, an intrinsic reconstruction of shape and

motion, based on robust estimation of dense correspondences under topological noise and landmark

tracking in temporally coherent and incoherent data. In addition, there are also some real-time re-

construction methods for general objects, such as Li, Adams, Guibas, and Pauly (2009); Newcombe,

Fox, and Seitz (2015); Zollhöfer et al. (2014). Our method described next is distinct from all the

above, specifically in our formulation using the IMLS surface as an intermediate for fitting.

12



Chapter 4

Method

4.1 Overview

The input to our pipeline is either a static target shape in the form of a point cloud P or a

temporal sequence of target shapes Si in the form of a set of triangular meshes. We note that we

do not require the triangular meshes to have the same connectivity. For the spatial-temporal case.

we employ meshes as target shapes instead of point clouds only because there are currently no

available reliable differentiable renderers for point clouds. And we need differentiable rendering

since we want to combine it with our differentiable fitting to reconstruct spatial-temporal surfaces.

But we would like to emphasize here that our method poses no conceptual limitations for using

point clouds even for the spatial-temporal case.

The output of our method is a subdivision surface defined by a control mesh M0. For the spatial-

temporal fitting, the vertices of M0 will have different 3D positions in each frame. The overview of

our method is presented in Figures 4.1 and 4.2. From the point cloud we first create an initial control

mesh. We optimize the vertex positions of this control mesh by minimizing the distance between

the subdivision surface defined by this control mesh and the underlying IMLS surface defined by

the target point cloud.

Similar to previous work, we compute this distance by sampling points on the subdivision sur-

face, but in our formulation the sampled points are expressed as a differentiable analytical function

of the control mesh and the distance function used is also a differentiable analytical function. This
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Figure 4.1: Overview of fitting subdivision surface to a static point cloud.

results in an unconstrained optimization problem of a differentiable analytical function that can be

solved efficiently using standard off the shelf numerical methods. For the spatial-temporal case,

we fit the subdivision surface defined by the control mesh iteratively to the temporally changing

sequence of shapes, using the solution from one frame as a initial guess for the subsequent frame.

Although this approach is popular and widely used Mendhurwar et al. (2020), it often fails due to

accumulated drift arising from the inherently local nature of the geometric distance. Consequently,

additional information is used to correct it, usually either in the form of boundary constraints Es-

tellers et al. (2018) or other visual queues such as optical flow Bozic et al. (2020); Popa et al. (2010).

Recently, with the development of differentiable renderers, rendered image difference metrics can

be used to optimize shape Kanazawa, Tulsiani, Efros, and Malik (2018). Adding the image differ-

ence loss from the differential renderer complements our pipeline, adding a global structure to our

local geometric fit thus eliminating the drift and yielding a more accurate fit.
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Figure 4.2: Overview of fitting subdivision surfaces to a spatial-temporal sequence by combining
Implicit Moving Least Squares (IMLS) with differential rendering (DR) optimization

4.2 Acquisition of the template mesh

The first step in our process is to create the control mesh for the Loop subdivision surface

M0(V 0, E0). Although the position of the template mesh vertices will be determined by our opti-

mization, the number of vertices as well as the topology of this mesh must be determined a priori.

For this, we compute an initial triangular mesh that fits the point cloud using existing meshing

methods; we used Screened Poisson Kazhdan and Hoppe (2013) method in MeshLab Cignoni et

al. (2008). We then simplify this triangulation using quadratic edge collapse Garland and Heckbert

(1997) until we obtain the desired number of vertices requested by the user.

There are some limitations for the generated template mesh. First, the template mesh can’t have

non-manifold, which will lead to failure during the subdivision process. Second, in the template

mesh, there shouldn’t have vertices with valence equals to two, which can’t be evaluated by the

algorithm. However, it’s not recommended to remesh the control mesh to get better topology. Ac-

cording to the experiment, the remeshing process always make some vertices far away from the

point cloud that can lead to bad fitting resolution in these areas. To solve this problem, there are

some tools in MeshLab can remove the bad vertices by edge collapse.
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4.3 Analytical derivative of Loop subdivision evaluation

Although Loop subdivision can be evaluated iteratively, for optimization purposes it is desirable

to have an analytical expression of the surface. In chapter 2, we briefly introduce the Jos Stam’s

algorithm of analytical evaluation of the Loop subdivision surface of any point on the control mesh.

For the purpose of optimization, we also need to compute the partial derivative of the Loop subdi-

vision surface for every control point. Based on equation 3 and 4, for every control vertex, we can

compute the partial derivative of the limit surface s(v, w). For regular vertex,

∂s(v, w)

∂p
=

∂CT

∂p
· b(v, w). (5)

For extraordinary vertex,
∂s(v, w)

∂p
=

∂CT

∂p
· (V −1)T · Φ(v, w). (6)

Suppose pj is the jth control vertex in C, ∂CT

∂pj
is a matrix that jth column is ones and all other

entries are zeroes. Since both the evaluations of regular vertex and extraordinary vertex are linear,

the Jacobian matrix of loop evaluation are constant for a certain mesh.

4.4 Limitation of Jos Stam’s algorithm

Jos Stam’s scheme only works on the condition that no two adjacent vertices on the control

mesh are extraordinary vertices (i.e. degree different from six). As it is very difficult to guarantee

this condition especially when the control mesh has thousands of vertices, a solution is to apply just

the first subdivision step obtaining a mesh M1(V 1, E1). Since the subdivision process will isolate

all the extraordinary vertices, M1 satisfies the above condition, however the number of vertices

of M1 are nearly four times as many as in M0 making the representation far more verbose than

desirable. A key observation here is that even though the number of vertices of the mesh obtained

after one level of subdivision M1 is much larger, the added vertices can be computed analytically

from the original mesh M0 thus maintaining the same number of degrees of freedom in controlling

the subdivision surface. Suppose S0 is the subdivision matrix applied to M0, the Jacobian matrix

of M0 is J0 and the Jacobian matrix of M1 is J1. Because of the observation stated before, if we
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Figure 4.3: A schematic view of our optimization process. (a) Control mesh (M0). (b) Control
mesh after one level of subdivision (M1). The vertices of this mesh are the Loop subdivision
control points. (c) Loop subdivision surface. (d) Target point cloud. We optimize for M0 by using
an IMLS fitted to the point cloud and an ARAP regularizer on the control mesh M0.

keep all derivatives of the original control vertices in the top rows of the J1, we can compute the

Jacobian matrix of M0 as

J0 = topRows(S0 · J1). (7)

Therefore, our control mesh for analytical evaluation of the subdivision surface is M1, but we

can only optimize for the vertices of M0. This process is illustrated in Figure 4.3. Given a point

Q̂ on the control mesh M0, in order to compute its position on the final smooth 3D surface we

first compute its position Q̃ on M1 by using the Loop subdivision mask Loop (1987). Then after

adjusting the triangle index and getting new barycentric coordinates, we follow it by computing

the position on the limit surface as per Stam Stam (1998). This operator L(·) that maps the point

Q̂ on the control mesh to the point Q onto the final subdivision surface is both analytical and

differentiable.
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Chapter 5

Subdivision Surface Fitting

5.1 Fitting a static model

Given a point cloud P = {Pi} with associated normals N = {Ni}, we fit our template control

mesh M0(V 0, E0) using the following optimization:

min
V 0

Edist(L(M
0, Q̂)) + α · Ereg(M

0,M0¯ ) (8)

where Edist(·) is the IMLS fit energy Öztireli, Guennebaud, and Gross (2009) (eq. 11), L(·) is the

3D position on the subdivision surface of a set of points Q̂ sampled from the control mesh, M0
¯ is

the undeformed control mesh, EReg(·) is the ARAP regularizer Sorkine and Alexa (2007) (eq. 12)

and α is the weight of the regularizer term. The overview of the fitting model is shown in Figure 4.1.

5.1.1 IMLS fitting energy

Öztireli et al. (2009) introduced an Implicit Moving Least Squares(IMLS) surface, which gave

us a definition for the point cloud surface

f(x) =

∑︁
nT
i (x− xi)ϕi(x)∑︁

ϕi(x)
(9)
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where ϕ is a locally supported kernel function that vanishes beyond the cut-off distance h. h is the

radius we search for neighbor points and needs to be manually selected.

ϕ(r) = (1− r2

h2
)4, (10)

However, especially in real captured data, the point cloud density is always not similar everywhere.

To avoid searching failure when h is fixed, if we can’t get enough neighbor points on target point

cloud, then h will increase from the h0, until we get enough neighbours or arrive at the threshold.

Larger values of h0 will lead to surface smoothing while lower values of h0 will give more details.

The selection of h0 will depend on the scale, density level and noise level of the point cloud.

We can use the implicit surface definition in equation 9 to derive a fit energy Montes et al.

(2020)

Edist =
∑︂
i

(

∑︁
k N

T
k (Qi − Pk)ϕ(∥Qi − Pk∥)∑︁

k ϕ(∥Qi − Pk∥)
)2, (11)

where Pk and Nk are the 3D positions and normals of points in the input point cloud (Figure 4.3d)

and Qi are points on the subdivision surface sampled from the control mesh (Figure 4.3a-c). For

simplicity, in all our examples we only use the vertices of the control mesh, but we analyse the pros

and cons of using more sampled points in the following sections and illustrated in figure 6.4.

5.1.2 Differentiation of IMLS fitting energy

As shown in equation 11, the analytical derivative of the IMLS energy is obviously difficult to

derive. Thus, to make sure the derivative correct, we actually apply an auto-differentiation algorithm

to compute the derivative in our code. By using the chain rule, the complex formula is decomposed

to basic arithmetic operation and without having the analytical derivative, we can get the numerical

value of the derivative at every point.

For easy to replicate our work, we also derived the analytical derivative of IMLS energy in the

Appendix B.
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5.1.3 Regularizer

We experimented with several reguralizers and the As-Rigid-As-Possible (ARAP) regularizer

Sorkine and Alexa (2007) yields the best results. The ARAP regularizer allows local rotations, but

it penalizes local stretch. More specifically:

Ereg =
∑︂
i

∑︂
j∈N(i)

wij∥(V 0
i
¯ − V 0

j
¯ )−Ri(V

0
i − V 0

j )∥2, (12)

where N(i) is the set of vertices adjacent to V 0
i , V 0

i is the initial vertex position and Ri is the

local estimation rotation matrix for the one ring of vertices around vertex i. wij is the standard

cotangent Laplacian weight Meyer, Desbrun, Schröder, and Barr (2003). At every iteration Ri

can be computed analytically using SVD decomposition on the local co-variance matrix Umeyama

(1991).

For the purpose of optimization, we also need to compute the derivative of ARAP energy,

∂Ereg

∂V 0
i

=
∑︂

j∈N(i)

4wij

[︃
(V 0

i
¯ − V 0

j
¯ )− 1

2
(Ri +Rj)(V

0
i − V 0

j )

]︃
. (13)

The details are shown in Appendix C.

5.1.4 Optimization

The optimization of the control mesh vertex positions V 0 is a non-linear optimization problem,

which can be solved by using a non-linear solver, such as Google Ceres solver Agarwal, Mierle,

and Others (n.d.). However, it will be slow if the size of the control mesh is large (i.e. thousands

of vertices). In that case, we use gradient descent method, which is widely used in learning-based

problem optimization.

After having the derivatives of the Loop evaluation(equation 7), IMLS energy(equation 19)

and the regularizer(equation 13), the total energy function 8 can be optimized by the gradient,

∂Etotal

∂M0
=

∂Edist(L(M
0), Q̂)

∂L(M0)
· J0 + α · ∂Ereg(M

0,M0¯ )

∂M0
, (14)
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where J0 is the Jacobian matrix of the Loop evaluation, which can be computed as shown in chapter

4.

5.2 Fitting a spatial-temporal model

5.2.1 Differentiable rendering

The emergence of differentiable rendering (DR) Laine et al. (2020); Ravi et al. (2020) paved the

way for a new set of tools in 2D to 3D surface reconstruction. It allows 3D shape optimization and

modeling from rendered 2D images Kanazawa et al. (2018); Kato et al. (2020); Kato and Harada

(2019); Ravi et al. (2020). In image space, DR based optimization can give us a global loss energy

when fitting to a mesh, which is complementary to our local geometric IMLS loss. Inspired by this,

we introduce a new pipeline for fitting subdivision surface to spatial-temporal (4D) mesh data by

combining our method with DR.

5.2.2 Optimization

Similar to the static case, given a control mesh M0 and a sequence of spatial-temporal target

meshes Si, we are sequentially fitting the control mesh to each target mesh, using the solution of

the current frame as an initial guess for the next one. Optimizing using only the geometric energy

functionals described above leads to temporal drift as it can be seen in Figure 6.8 (a). Instead we

add a image loss term that provides a global stabilization of the optimization, eliminating the drift

as can be seen in Figure 6.8 (b).

In every iteration’s forward pass, we use the silhouette DR with to render the target mesh in

different camera positions k which give us target images IkTARGET . As shown in Figure 5.1, we

use silhouette DR with 20 different camera positions which cover the 360◦ of the space to render a

T-shirt mesh.

At same time, we use the same DR to render the limit surface of the template mesh which

gives us predicted images IkPRED in same camera positions as used for rendering the target images.
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Figure 5.1: Target images rendered by silhouette DR in different camera positions

Suppose the number of pixels for rendered images is N , we compute image loss limage by

limage =
∑︂
k

(IkPRED − IkTARGET )
2

N
. (15)

As for the geometric loss, we compute it by the same method for computing energy provided in

chapter 4. Thus, the total loss ltotal is

ltotal = Edist(L(M
0), Q̂) + α · Ereg(M

0,M0¯ ) + β · limage. (16)

In our implementation we use the DR available in PyTorch3D Ravi et al. (2020) and for the

backward pass, we use the gradient descent method, Adam optimizer Kingma and Ba (2014), to

optimize the control mesh.
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Chapter 6

Results and Discussion

6.1 Static surface fitting

We used our method to fit a number of synthetic models (the Stanford Bunny and Lucy, see

Figures 6.1 and 6.2 as well as a point cloud acquired using the Microsoft Azure Kinect device (a

Koala toy) Figure 6.3.

The starting searching radius h0 and weight of ARAP regularizer α were selected manually. An

automatic increasing scheme for h0 are applied in the case that neighbors searched are not enough,

as detailed in chapter 5. We scaled the point clouds to a unit box before fitting, to increase the

numerical stability of the optimization. For the Stanford Bunny and Lucy, we used h0 = 0.0005.

For the toy Koala, we used h0 = 0.05. As for the α, it depends on the noise level of the point cloud.

When the point cloud is noisy, you need a bigger weight, such as 0.1. When the point cloud is

very clean, α should be set to very small, such as 0.01. For the Stanford Bunny and Lucy, we set

α = 0.01. For the toy Koala, we set α = 0.1.

For the bunny(Figure 6.1) the original point cloud has 72, 027 vertices and the reconstructed

mesh using Screened Poisson Kazhdan and Hoppe (2013) has 155, 008 vertices. We demonstrate

two reconstructions. The first one with a template mesh of 4667 vertices (Figure 6.1 (c)) that shows

no visual difference to the original, but uses only around 3% of the Screened Poisson reconstruction.

The second one uses only 314 vertices, or only 0.2% of the Screened Poisson reconstruction (Figure

6.1 (f)). While a number of details are lost, the main shape is still reconstructed fairly well.
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Figure 6.1: Stanford (n.d.) Bunny:(a) Point cloud with 72,027 vertices. (b) Optimized control mesh
with 4667 vertices. (c) Subdivision surface of (b). (d) Screened Poisson reconstructed mesh with
155,008 vertices. (e) Optimized control mesh with 314 vertices. (f) Subdivision surface of (e).

For the more detailed and complicated Lucy model (Figure 6.2), with only 3% of the Screened

Poisson reconstruction vertices, we could retain most of the intricate objects and folds.

In Figure 6.3 we show the reconstruction of a koala toy. The physical scanned model is furry so

while the original reconstruction is very detailed it also contained a lot of noise. With only 0.2% of

the original number of vertices and 0.8% of Screened Poisson reconstruction vertices, we provide a

reconstruction that retains the shape and many of the important details.

The performance of the IMLS distance depends on the number of sampled points on the subdi-

vision surface that we use in the computation. By default in all our examples we only use the points

in the control mesh. However, it is possible to select more samples. Figure 6.4 shows this trade off.

Figure 6.4 (a) is the reconstruction of the Lucy model using only the vertices in the original control

mesh. Figure 6.4 (b) is the reconstruction using the vertices obtained after one level of subdivision

(i.e. four times more). The result is slightly improved, some areas contain more detail, but the

optimization takes about three times as long.
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6.2 Spatial-temporal fitting

We tested our spatial-temporal method on two sequences: a synthetic sequence generated using

a cloth simulation of a T-Shirt in Blender Hess (2010), and a spatial-temporal capture of a cow

toy using a multi-view stereo setup Bradley, Popa, Sheffer, Heidrich, and Boubekeur (2008). Both

sequences have 30 frames and, in both cases, we made a template from the first frame. The results

for both sequences are shown in Figure 6.5, where the yellow mesh with wireframe is the template

and the pink mesh is the fitted subdivision surface for spatial-temporal sequences.

For the cloth sequence we used for simulation a mesh of 2000 vertices that we randomly re-

sampled in every frame to simulate a real capture to 100, 000 vertices . The template mesh has 2046

vertices(or 2% of the total vertices). For the puppet sequence the target mesh has around 123, 000

vertices and the template mesh of 1252 vertices (1% of the total vertices).

The settings for the DR are adapted from the PyTorch3D Ravi et al. (2020) tutorial. We used

Soft Silhouette shader whose image size is 256× 256, blur radius is log(1/(1e−4 − 1) ∗ 1e−4) and

faces per pixel is 100. When rendering the target shape, we had 20 different camera views in total.

However, in every iteration, we only randomly select 2 views to render the images of template

to reduce unnecessary rendering time. The T-Shirt sequence has a lot of geometric details that is

well preserved in the reconstruction. In contrast, the puppet sequence has less detail and in some

cases some reconstruction artifacts (see Figure 6.7 (f)) stay fixed in the reconstruction due to the

continuity properties of the subdivision surfaces.

In Figures 6.6 and 6.7 we compare the IMLS fitting scheme with the DR fitting scheme. Using

the DR fitting scheme by itself results in the loss of a lot of details: Figures 6.6 (e), 6.7 (e), (i) This

is not unexpected as we only use the silhouette loss. However, the geometric detail between IMLS

and IMLS+DR is very similar (Figures 6.6 (c), (d), Figures 6.7 (c), (d), Figures 6.7 (g), (h)). The

main gain from adding the DR term is the reduced drift (Figure 6.8). We also perform a quantitative

evaluation using the Hausdorff distance between the target mesh and the subdivision surface. For the

subdivision surface, we computed the Hausdorff distance using 3 iterations of subdivision. Results

are presented in Figure 6.9. The combination of IMLS + DR largely outperforms either of them

used separately. Figure 6.10 shows the execution time of our method.
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6.3 Implementation detail

This project was implemented in 4 main function modules: Loop subdivision evaluation, En-

ergy(IMLS and ARAP) function, Auto-differentiation and differentiable rendering. Given an input

template mesh, the Loop subdivision evaluation module compute the limited position of the input

mesh and compute the constant Jacobian matrix of the input mesh. The energy function module

was used to compute the energy in every iteration during the optimization process and the deriva-

tive of the energy was computed by the auto-differentiation module. These three modules were

implemented by C++. We used Libigl Jacobson, Panozzo, et al. (2018) to do some basic geometry

processing, such as generating Loop subdivision matrix and the cotangent matrix. When computing

IMLS energy, we need to search for the neighbor points, which was done by libANN, a library for

approximate nearest neighbor searching Arya and Mount (1998). What’s more, we used Eigen as

our basic matrix operation library Guennebaud, Jacob, et al. (2010).

Since the DR we used is from PyTorch3D which implemented by python, we used the torch C++

interface to achieve the interaction between our main C++ code and the Differentiable rendering

module. We used the CustomClassHolder in torch library to write an interface file, which can be

compiled as a PyTorch library that the function in it can be called in PyTorch. Now, we can call the

Loop subdivision evaluation, Energy(IMLS and ARAP) function and Auto-differentiation modules

in PyTorch to work with DR and optimized by the PyTorch Adam optimizer.

As for the results, the code has been run on a computer with a CPU i9 12900 and GPU is

RTX3060 Ti.

6.4 Other application of the Loop subdivision module

As shown in section 4.3, we modified Jos Stam’s scheme to apply differentiable loop subdi-

vision for meshes having adjacent extraordinary vertices, which is normal in real captured mesh.

This subdivision surface evaluation module was also be applied in a text-to-mesh mesh genera-

tion pipeline. In Khalid et al. (2022), we presented a technique for zero-shot generation of a 3D

model using only a target text prompt which called CLIP-Mesh. Without a generative model or

any 3D supervision our method deforms a control shape of a limit subdivided surface along with
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a texture map and normal map to obtain a 3D model asset that matches the input text prompt and

can be deployed into games or modeling applications. The overview of this method is shown in

Figure 6.11. Since the limited surface of Loop subdivision was guaranteed to be smooth, the gener-

ated results was improved visually by applying loop subdivision module. The comparison between

generated mesh with and without limit subdivision module is shown in Figure 6.12, the generated

mesh with subdivision module has less self-intersection and better continuity. The experiments also

showed that adding the limit subdivision module can improve the quantative metric efficiently for

all datasets Khalid et al. (2022).
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Figure 6.2: Stanford (n.d.) Lucy:(a) Point cloud with 49,987 vertices. (b) Optimized control mesh
with 8002 vertices. (c) Subdivision surface of (b). (d) Screened Poisson reconstructed mesh with
262,909 vertices. (e) Optimized control mesh with 20,002 vertices. (f) Subdivision surface of (e).
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Figure 6.3: Kinect scanned koala:(a) Point cloud with 1,018,126 vertices. (b) Screened Poisson
reconstructed mesh with 276,529 vertices. (c) Optimized control mesh with 2,465 vertices. (d)
Subdivision surface of (c).

Figure 6.4: Comparison between (a) using only the control mesh vertices to compute the IMLS fit,
and (b) using the vertices after one level of subdivision.
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Figure 6.5: Results for spatial-temporal fitting, Top:T-shirt sequence. Bottom: Capture of a cow toy
sequence.

Figure 6.6: Fitting result for t-shirt simulation: (a) Optimized control mesh of using both IMLS and
DR. (b) Simulation result from Blender Hess (2010). (c) Fitting result by only IMLS energy(Chapter
4). (d) Fitting result by combining IMLS and DR(section 5.2.1). (e) Fitting result by only DR.
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Figure 6.7: Fitting result for real scanned puppet. (a) Template control mesh with 1,252 vertices.
(b) Reconstructed mesh with 123,234 vertices for start frame. (c)Fitted subdivision surface using
IMLS energy(chapter 4) for start frame. (d) Fitted subdivision surface using combination of IMLS
energy and DR(section 5.2.1) for start frame. (e) Fitting result only using DR for start frame. (f)
Reconstructed mesh with 123,234 vertices for end frame. (g) Fitted subdivision surface using IMLS
energy for end frame. (h) Fitted subdivision surface using combination of IMLS energy and DR for
end frame. (i) Fitting result only using DR for end frame.

Figure 6.8: Comparison between the result of T-shirt data fitting. Brown color is the target. Green
(a) using the geometric IMLS fit. Red (b) combining the geometric IMLS fit together with the image
loss from the differential renderer. Note the drift in (a) at the bottom of the T-Shirt.
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Figure 6.9: Hausdorff distance between fitting result and target shape(w.r.t bounding box diagonal)

Figure 6.10: Running time (in seconds) for fitting subdivision surface to static model and fitting
subdivision surface to spatial-temporal sequence(30 frames)
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Figure 6.11: An overview of CLIP-Mesh Khalid et al. (2022)
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Figure 6.12: Comparison between generated mesh with and without limit subdivision mod-
ule Khalid et al. (2022): (a)Generated Fruit Basket with subdivision module. (b)Generated Fruit
Basket without subdivision module. (c)Topology of the generated mesh with subdivision module.
(d)Topology of the generated mesh without subdivision module.
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Chapter 7

Conclusion, Limitations and Future

work

In this paper, we present a novel differentiable method to fit a Loop subdivision surface to a point

cloud. Because our fitting method is differentiable, it can be easily integrated into deep learning-

based methods for different applications. We demonstrate our method on several static point clouds

as well as spatial-temporal shape sequences. The results show that our method does well in preserv-

ing surface detail while still being very compact, requiring only a small fraction (between 1% and

3%) of the data, in comparison to reconstruction methods such as Screened Poisson.

However, our method has some limitations. The spatial-temporal reconstruction relies on a

differentiable renderer and the ones currently available only support mesh format. Therefore, for

the spatial-temporal examples, we had to reconstruct a triangular mesh from each static point cloud.

Since the IMLS energy is based on nearest neighbor search, the optimization may fail when the

distance between template control mesh and the target shape is too large or there are some holes

in the point cloud. Thus, especially in the case of spatial-temporal examples, the frame-to-frame

motion of the data must be relatively small. For the spatial-temporal fitting, if some frames have

holes, sometimes the subdivision surface will be fitted to the wrong surface because of the wrong

neighbors searched. Other than that, if the IMLS can’t be built around the holes’ areas due to the

lack of enough neighbors, this area will keep same with the template. In the future, we would like
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to explore a fitting energy can be applied even when template control mesh is far away the target

shape.

Since we focused on geometric fitting, we selected an image loss based on silhouette only.

In the future, it would be of interest to explore other image losses and point based differentiable

renderers. What’s more, we can also improve our method by using more accurate implicit surface

reconstruction techniques from point-clouds such as the one proposed by Liu et al. (2021).

As for the implementation of our method, because the Loop subdivision evaluation, Energy(IMLS

and ARAP) function and Auto-differentiation modules are implemented by C++, these modules

can’t be accelerated by GPU. Since the DR need to be ran on GPU, this leads to a wasting of trans-

ferring data between CPU and GPU. In the future, we would be interested in implementing the Loop

subdivision evaluation module by CUDA, which can be accelerated by Nvidia GPU, to decrease the

data transferring between CPU and GPU. What’s more, the parallel structure of CUDA may give

our method a great speed up.
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Appendix A

Basis functions

bT (v, w) =
1

12
(u4 + 2u3v,

u4 + 2u3w,

u4 + 2u3w + 6u3v + 6u2vw + 12u2v2 + 6uv2w + 6uv3 + 2v3w + v4,

6u4 + 24u3w + 24u2w2 + 8uw3 + w4 + 24u3v + 60u2vw + 36uvw2+

6vw3 + 24u2v2 + 36uv2w + 12v2w2 + 8uv3 + 6v3w + v4,

u4 + 6u3w + 12u2w2 + 6uw3 + w4 + 2u3v + 6u2vw + 6uvw2 + 2vw3,

2uv3 + v4,

u4 + 6u3w + 12u2w2 + 6uw3 + w4 + 8u3v + 36u2vw + 36uvw2 + 8vw3+

24u2v2 + 60uv2w + 24v2w2 + 24uv3 + 24v3w + 6v4,

u4 + 8u3w + 24u2w2 + 24uw3 + 6w4 + 6u3v + 36u2vw + 60uvw2+

24vw3 + 12u2v2 + 36uv2w + 24v2w2 + 6uv3 + 8v3w + v4,

2uw3 + w4,

2v3w + v4,

2uw3 + w4 + 6uvw2 + 6vw3 + 6uv2w + 12v2w2 + 2uv3 + 6v3w + v4,

w4 + 2vw3),

(17)
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where u = 1− v − w.
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Appendix B

Derivative of IMLS fitting energy

If we denote rk = ∥Qi − Pk∥, ωk =
∑︁

k Nk(Qi − Pk)ϕ(rk), the partial derivative of equation

11 can be expressed as:

∂edist
∂Pi

= 2
∑︂
i

∑︂
k

ωk

ϕ(rk)

∂ωk
∂Pi

· ϕ(rk)− ωk · ∂ϕ(rk)
∂Pi

ϕ(rk)2
. (18)

When we computing the ∂Edist
∂Pi

, the ∂Edist
∂xi

, ∂Edist
∂yi

and ∂Edist
∂zi

are computed separately, where

(xi, yi, zi) is the Cartesian coordinate of Pi. In that case, the ∂ωk
∂xi

and ∂ϕ(rk)
∂xi

can be expressed as,

∂ωk

∂xi
=

∑︂
k

Nx
k · ϕ(rk) +

∑︂
k

Nk · (Pi −Qk) ·
∂ϕ(rk)

∂xi
, (19)

where Nx
k is the x coordinate of Nk.

∂ϕ(rk)

∂xi
= − 8

h2
· (1−

r2k
h2

)3 · (x−Qx
k), (20)

where Qx
k is the x coordinate of Qk. Similar to coordinate x, we can compute the derivative for y

and z easily.
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Appendix C

Solution for rotation matrix R and the

derivative of Ereg

Suppose Si is the co-variance matrix of the cell i, whose formula is:

Si =
∑︂
N(i)

wijeijeij
T , (21)

where eij is mesh edge(i, j). The SVD decomposition of Si is

Si = UiΣiΛ
T
i . (22)

Then the rotation matrix Ri can be estimated as,

Ri = ΛiU
T
i . (23)
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After we get the rotation matrix R, the partial derivative of Ereg needed to be derived,

∂Ereg

∂V 0
i

=
∂

V 0
i

(
∑︂

j∈N(i)

wij∥(V 0
i
¯ − V 0

j
¯ )−Ri(V

0
i − V 0

j )∥2

+
∑︂

j∈N(i)

wji∥(V 0
i
¯ − V 0

j
¯ )−Rj(V

0
i − V 0

j ))∥2)

=
∑︂

j∈N(i)

2wij

[︂
(V 0

i
¯ − V 0

j
¯ )−Ri(V

0
i − V 0

j )
]︂

−
∑︂

j∈N(i)

2wji

[︂
(V 0

j
¯ − V 0

i
¯ )−Rj(V

0
j − V 0

i )
]︂
.

(24)

Because the cotangent matrix is symmetric, wij = wji, the derivative can be expressed as,

∂Ereg

∂V 0
i

=
∑︂

j∈N(i)

4wij

[︃
(V 0

i
¯ − V 0

j
¯ )− 1

2
(Ri +Rj)(V

0
i − V 0

j )

]︃
. (25)
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