

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Surface Intersections with Bounding Volume

Hierarchy and Osculating Toroidal Patches

BVH와 토러스 패치를 이용한 곡면 교차곡선 연산

2021년 8월

서울대학교 대학원

컴퓨터공학부

박 영 진

Abstract

We present a new approach to the development of efficient and stable al-

gorithms for intersecting freeform surfaces, including the surface-surface-

intersection and the surface self-intersection of bivariate rational B-spline

surfaces. Our new approach is based on a hybrid Bounding Volume Hier-

archy(BVH) that stores osculating toroidal patches in the leaf nodes. The

BVH structure accelerates the geometric search for the potential pairs

of local surface patches that may intersect or self-intersect. Osculating

toroidal patches have second-order contact with C2-continuous freeform

surfaces that they approximate, which plays an essential role in improv-

ing the precision of various geometric operations on the given surfaces.

To support efficient computation of the surface-surface-intersection

curve, we design a hybrid binary BVH that is basically a pre-built Rectangle-

Swept Sphere(RSS) tree enhanced with osculating toroidal patches in

their leaf nodes. Osculating toroidal patches provide efficient and robust

solutions to the problem even in the non-trivial cases of handling two

freeform surfaces intersecting almost tangentially everywhere.

The surface self-intersection problem is considerably more difficult

than computing the intersection of two different surfaces, mainly due to

the existence of miter points. A self-intersecting surface changes its nor-

mal direction dramatically around miter points, located at the open end-

points of the self-intersection curve. This undesirable behavior causes se-

rious problems in the stability of geometric algorithms on self-intersecting

surfaces. To facilitate surface self-intersection computation with a stable

detection of miter points, we propose a ternary tree structure for the

hybrid BVH of freeform surfaces. In particular, we propose a special rep-

resentation of miter points using sufficiently small quadrangles in the

parameter domain of bivariate surfaces and expand ideas to offset sur-

faces.

We demonstrate the effectiveness of the proposed new approach us-

ing some highly non-trivial examples of freeform surfaces with tangential

intersections and miter points. In all the test examples, the closeness of

geometric entities is measured under the Hausdorff distance upper bound.

Keywords: Surface Surface Intersection, Surface Self Intersection, Bound-

ing Volume Hierarchy, Rectangle Swept Sphere, Osculating Toroidal Patches,

Miter Point

Student Number: 2016-21202

ii

Contents

Abstract . i

Contents iii

List of Figures vii

List of Tables xiii

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Surface-Surface-Intersection 5

1.3 Surface Self-Intersection 8

1.4 Main Contribution . 12

1.5 Thesis Organization . 14

Chapter 2 Preliminaries 15

2.1 Differential geometry of surfaces 15

iii

2.2 Bézier curves and surfaces 17

2.3 Surface approximation 19

2.4 Torus . 21

2.5 Summary . 24

Chapter 3 Previous Work 25

3.1 Surface-Surface-Intersection 25

3.2 Surface Self-Intersection 29

3.3 Summary . 32

Chapter 4 Bounding Volume Hierarchy for Surface Inter-

sections 33

4.1 Binary Structure . 33

4.1.1 Hierarchy of Bilinear Surfaces 34

4.1.2 Hierarchy of Planar Quadrangles 37

4.1.3 Construction of Leaf Nodes with

Osculating Toroidal Patches 41

4.2 Ternary Structure . 44

4.2.1 Miter Points . 47

4.2.2 Leaf Nodes . 50

4.2.3 Internal Nodes 51

4.3 Summary . 56

iv

Chapter 5 Surface-Surface-Intersection 57

5.1 BVH Traversal . 58

5.2 Construction of SSI Curve Segments 59

5.2.1 Merging SSI Curve Segments with G1-Biarcs . . . 60

5.2.2 Measuring the SSI Approximation Error Using G1-

Biarcs . 63

5.3 Tangential Intersection 64

5.4 Summary . 65

Chapter 6 Surface Self-Intersection 67

6.1 Preprocessing . 68

6.2 BVH Traversal . 69

6.3 Construction of Intersection Curve Segments 70

6.4 Summary . 72

Chapter 7 Trimming Offset Surfaces with Self-Intersection

Curves 74

7.1 Offset Surface and Ternary Hybrid BVH 75

7.2 Preprocessing . 77

7.3 Merging Intersection Curve Segments 81

7.4 Summary . 84

Chapter 8 Experimental Results 85

v

8.1 Surface-Surface-Intersection 85

8.2 Surface Self-Intersection 97

8.2.1 Regular Surfaces 97

8.2.2 Offset Surfaces 100

Chapter 9 Conclusion 106

Bibliography 108

초록 . 120

vi

List of Figures

Figure 1.1 Venn diagram of Boolean operations. 1

Figure 1.2 Boolean operation in Shapr3D 3

Figure 1.3 A CSG tree example. 4

Figure 1.4 (a)-(c) Intersection curve of two freeform surfaces. 5

Figure 1.5 Intersection examples of two cylinders in 3ds Max.

The rotation angle is 10◦, 1◦, 0.1◦, and 0.01◦, re-

spectively. 7

Figure 1.6 Tangential intersection of two almost identical cylin-

ders: (a)–(c) from Heo et al. [1], (d)–(f) from our

approach. 8

Figure 1.7 An example of surface with self-intersection curve

and miter points: (a) in the Euclidean xyz-space,

(b) in the (u, v)-parameter domain. 9

vii

Figure 1.8 An example taken from Galligo and Pavone [2].

There are serious robustness issues near the miter

points. 10

Figure 1.9 The quadrangle Q is mapped into a very tiny sur-

face patch in the Euclidean XYZ-space. It is to-

tally contained in an ε-ball. 12

Figure 2.1 Example of Bézier Surfaces 19

Figure 2.2 Bézier surface approximation using a hierarchy of

quad meshes . 20

Figure 2.3 Torus with point T (0, 0) and point T (0, π) . . . 23

Figure 4.1 Example of bicubic Bézier surface and its bilinear

surface . 36

Figure 4.2 Sphere-swept bounding volumes for a Bézier sur-

face patch Ŝij: (a) tetrahedron-swept sphere (TSS),

(b) quadrangle-swept sphere (QSS), (c) rectangle-

swept sphere (RSS), and (d) rectangle-swept sphere

(RSS) made tigher; in the first row, the surface

patch Ŝij is shown together with each bounding

volume, and in the second row, only the bounding

volumes are shown for a better visual comparison

of their tightness. 40

viii

Figure 4.3 Construction of osculating toroidal patches and

their trimming for surface matching. 42

Figure 4.4 a bicubic Bézier surface and set of osculating toroidal

patches. 43

Figure 4.5 Recursive self-intersections: (a) in S1 and S2 shar-

ing a common boundary curve, (b) in S1, Sm, S2

with Sm covering the common boundary, and (c)

in S1, Sm, S2, followed by global intersections. . . 44

Figure 4.6 Miter points on a surface self-intersection curve:

(a)–(b) in the Euclidean xyz-space, (c) in the (u, v)-

parameter domain, and (d) bounding a miter point

using a quadrangle. 48

Figure 4.7 Initial guess for miter quadrangles with ratio of

normal to position in u-direction (a), and v-direction

(b). 49

Figure 4.8 Converting Sij to an internal node. 51

Figure 4.9 Binary and ternary BVH structure. 53

Figure 4.10 Grid sizes for the subpatches generated by the ver-

tical and horizontal splits. 55

Figure 5.1 Three types of SSI curve segment. 61

ix

Figure 5.2 Intersection curves of toroidal patches which may

have X-junctions or multiple branches; the exam-

ple on the left is a pair of (convex, convex) patches

and on the right is a pair of (concave, concave)

patches. 66

Figure 6.1 Arrangement of solution curves: (a) when the lo-

cal self-intersection curve has no intersection with

Skl, and (b) when the local self-intersectio n curve

has a global intersection with Skl. 72

Figure 7.1 Blue surface is a progenitor surface, and red sur-

faces are offset surfaces. 76

Figure 7.2 Toroidal patch and their offsets. 77

Figure 7.3 Offset surface with normal flipping. 79

Figure 7.4 (a) Solution curve with transversal intersections;

(b) expand solutions with instant osculating toroidal

patch matching; (c) final solution curve with con-

touring constant curvature. 80

Figure 7.5 (a) Build toroidal patch instantly with endpoint

of solution curve; (b) Project the result back to

the parameters and repeat the procedure. 82

x

Figure 8.1 (a) Two almost overlapping surfaces, and (b)–(c)

two saddle surfaces. 87

Figure 8.2 Examples from Grandine and Klein [3]; the left-

most column shows the results of intersecting two

freeform surfaces and the rightmost two columns

show the intersection curves in the parameter do-

mains of the red and blue surfaces, respectively. . 93

Figure 8.3 Tangential intersection of two almost identical cylin-

ders, where their two axes make a small angle

θ = 0.01◦, 0.001◦, 0.0001◦, and 0.00002◦, from left

to right; the same tolerance δ = 10−8 was used for

all test examples. 94

Figure 8.4 Rotating bicubic polynomial Bézier surfaces ap-

proximating (within a maximum error bound ε =

10−10) the red cylinder by angle 45◦ about the axis

of the cylinder and then intersecting with the blue

cylinder, using the angles θ = 0.1◦, 0.01◦, 0.001◦, and0.0001◦. 95

Figure 8.5 Tangential intersection of a saddle surface with

its rotation about a normal line by a small angle

θ = 0.01◦, 0.001◦, 0.0001◦, and 0.00002◦. 96

xi

Figure 8.6 Examples of self-intersecting surfaces; the left col-

umn shows the results of self-intersecting a freeform

surface and the right column shows the intersec-

tion curves in the parameter domains of the sur-

faces, respectively. 102

Figure 8.7 Examples of self-intersecting surfaces with miter

point(s) on their intersection curves; the left col-

umn shows the results of self-intersecting a freeform

surface and the right column shows the intersec-

tion curves in the parameter domains of the sur-

faces and zoom-in areas around the miter points,

respectively. 103

Figure 8.8 Examples of local self-intersection curve near the

miter point. 104

Figure 8.9 Self-intersection curves in the xyz-space and in

the uv-domain. 105

xii

List of Tables

Table 8.1 BVH storage for a bicubic Bézier surface (in MB). 86

Table 8.2 Construction time for complete BVH trees of H =

6 (in seconds). 87

Table 8.3 Tree traversal time using BVH trees of H = 6 (in

ms), and pairs of overlapping leaf nodes in complete

BVH traversal with H = 4. 88

Table 8.4 Pairs of overlapping leaf nodes for two cylinders

with H = 9. 92

Table 8.5 BVH construction, traversal, and surface intersec-

tion time (in ms) and the number of pairs of over-

lapping leaf nodes. 97

Table 8.6 BVH construction, traversal, and surface intersec-

tion time of offset surface examples (in seconds). . 100

xiii

Chapter 1

Introduction

1.1 Background

Boolean operations have been used in many science and engineering dis-

ciplines such as set theory, electronic circuits, programming languages,

search engines(e.g. Google search), geometry, solid modeling, etc. Set the-

ory is one of the most fundamental areas in mathematics, where Boolean

(a) Union (b) Difference (c) Intersection

Figure 1.1: Venn diagram of Boolean operations.

1

operations such as union(A∪B), difference(A−B), and intersection(A∩

B) often define more complex and structured sets than A and B. Log-

ical circuits are designed by combining Boolean operators with electric

signals, and the circuits are the basic components for smartphones, com-

puters, and many other electronic devices. In search engines, when we

want to search for ‘Beethoven Symphony’ but do not want to listen to

Karajan’s direction, we type in ‘Beethoven Symphony − Karajan’ to the

Google engine. This expression can be translated to the following Boolean

operation: ‘Beethoven’ AND ‘Symphony’ NOT ‘Karajan’.

Back to the set theory, Venn diagrams are used to represent the

Boolean operations on sets intuitively. In Figure 1.1, there are Venn dia-

grams for Boolean operations. In order to illustrate a Boolean operation

using a Venn diagram, it is necessary to delineate the boundary curve of

the region corresponding to the Boolean operation.

In geometric and solid modeling, Boolean operations do the same roles

in other areas. Given two solid models, Boolean operations combine the

two models(union), subtract one from the other(difference), and create a

new overlapping model between the two models(intersection) [4]. Boolean

operations thus support the construction of complex solid models starting

from simple ones. Typical commercial CAD softwares provide Boolean

operations. For example, in AutoCAD, SolidWorks, Rhino, Shapr3D, and

game engines such as Unreal Engine and Unity, one can find some forms of

2

Figure 1.2: Boolean operation in Shapr3D

Boolean operations in their basic facilities. In order to perform Boolean

operations, these software systems compute the boundary surface for

the model corresponding to the Boolean operations under consideration,

which is implemented by computing the intersection curve between the

boundary surfaces of the two models under consideration. There are two

major representation schemata used in solid modeling: Constructive Solid

Geometry(CSG) and Boundary-representation(B-rep) [5].

In Constructive Solid Geometry(CSG), a solid model is represented

by an expression tree of geometric transformations and Boolean opera-

tions on primitive objects, typically including cylinders, cones, spheres,

tori, blocks, etc. In Figure 1.3, the top model is the result of Boolean

operations on these primitives. CSG has long been used since the early

days of CAD/CAM systems. There are many good reasons for the popu-

larity: Using less memory, it is simple, valid, and easy to modify [6]. For

Boolean operations for CSG models, the operation has to find the in-

tersection curve(s) among the primitives and then leave or remove some

3

Figure 1.3: A CSG tree example.

fragments of trimmed surface patches that fit to each Boolean operation.

Since simple equations are used in representing primitives, it is rela-

tively easy to construct the intersection curves of primitives. However,

there are certain limitations. CSG models rely heavily on the primitives

first chosen. Design limitations also exist depending on the primitives

offered by the modeling system. CSG also has limitations in representing

various different solid models with pure CSG operations only. Boundary-

representation is often used in parallel to support hybrid representations

in recent CAD/CAM systems.

4

(a) (b) (c)

Figure 1.4: (a)-(c) Intersection curve of two freeform surfaces.

In Boundary representation(B-rep), a solid model is designed with a

set of freeform surfaces surrounding the model. It is more complex, while

consuming more memory space. Moreover, it is difficult to guarantee the

validity of model. On the other hand, it can represent general solid models

of various different complexities. For Boolean operations for two general

B-rep models, we need to compute the intersection curves of general

freeform surfaces in a highly stable way, which is the main goal of this

thesis work.

1.2 Surface-Surface-Intersection

The problem of intersecting two freeform surfaces reliably is one of the

main technical challenges in geometric and solid modeling. [5, 7, 8, 9].

Unfortunately, in the last decade, there have been only a few publications

5

in this fundamental research area [10, 11], because of its difficulties. For

example, according to Bèzout’s Theorem, the degree of intersection curve

of two bicubic freeform surfaces is more than 300 [5, 12].

On the other hand, the problem of intersecting two surfaces appears

in many different forms as the solution of non-linear geometric con-

straints [13, 14, 15], where the constraints are often represented or auto-

matically generated as rational freeform curves, surfaces, and multivari-

ate volumes. Consequently, it is still extremely important to develop new

techniques that can handle the surface-surface-intersection (SSI) problem

efficiently and reliably, even if input surface is highly non-trivial case (for

example, intersect tangentially almost everywhere).

A natural question arises: what makes revisiting this problem worth-

while for some meaningful technical advancements? To answer this ques-

tion in a positive perspective, we would like to mention the recent de-

velopments of spatial data structures (such as BVH) for freeform curves

and surfaces, which have made possible the acceleration of many impor-

tant geometric algorithms, including collision detection, the minimum

and Hausdorff distance computations, offset curve trimming, Minkowski

sum computation, medial axis and Voronoi diagram construction, convex

hull computation, etc [16, 17, 18, 19, 20].

In Chapter 5, we present an efficient and robust algorithm for surface-

surface-intersection of freeform surfaces, using a BVH with osculating

6

Figure 1.5: Intersection examples of two cylinders in 3ds Max. The

rotation angle is 10◦, 1◦, 0.1◦, and 0.01◦, respectively.

toroidal patches in their leaf nodes. The internal nodes contain rectangle-

swept spheres as their bounding volume, and the leaf nodes contain os-

culating toroidal patches. The bounding volume of the internal nodes

accelerates the geometric search for the potential pairs of surface patches

that may generate some curve segments in the SSI, and the osculat-

ing toroidal patches provide reasonable approximate solutions to the SSI

problem thanks to the higher approximation order [21].

We demonstrate the effectiveness and robustness of our new approach,

by using some highly non-trivial examples of freeform surfaces, which

intersect tangentially almost everywhere. In Figure 1.6, two almost iden-

tical cylinders are intersected, one cylinder is rotated version of the other

cylinder with angle θ. In Figure 1.6(a)–(c), with Heo et al. [1] method,

the X-junctions of intersection curve are slightly missed at a small an-

gle θ = 0.1◦, and then completely missed at a smaller angle θ = 0.01◦.

In Figure 1.5, Even the latest version of Autodesk 3ds Max does not

7

(a) θ = 1◦ (b) θ = 0.1◦ (c) θ = 0.01◦

(d) θ = 0.01◦ (e) θ = 0.001◦ (f) θ = 0.0001◦

Figure 1.6: Tangential intersection of two almost identical cylinders:

(a)–(c) from Heo et al. [1], (d)–(f) from our approach.

compute the intersection curve properly. On the other hand, in Figure

1.6(d)–(f), our new approach can detect x-junctions correctly, even the

rotation angle is much smaller.

1.3 Surface Self-Intersection

In the majority of previous algorithms for SSI, the input surfaces are

usually assumed to be self-intersection-free. However, there are some

cases where we need to consider the possibility of self-intersecting in-

put surfaces, particularly when the surfaces are given as offset or sweep

8

(a) (b)

Figure 1.7: An example of surface with self-intersection curve and miter

points: (a) in the Euclidean xyz-space, (b) in the (u, v)-parameter do-

main.

surfaces [22, 23]. The self-intersection of a freeform surface S(u, v) is

formally defined as the following set:

SI = {S(u, v) | S(u, v) = S(s, t), (u, v) 6= (s, t)} , (1.1)

which contains all surface locations S(u, v) shared with some other-

parameter points S(s, t) of the same surface. The required condition for

different parameters, (u, v) 6= (s, t), makes the self-intersection problem

considerably more difficult than the usual case of intersecting two non-

identical surfaces. The difficulty is mainly due to the existence of miter

points, in the neighborhood of which the two different parameters can be

arbitrarily close to each other [2, 24, 25].

For example, Galligo and Pavone [2] constructed the self-intersection

9

Figure 1.8: An example taken from Galligo and Pavone [2]. There are

serious robustness issues near the miter points.

curve using a triangular mesh approximation to the freeform surface.

As shown in Figure 1.8, the curve approximation near a miter point is

highly unstable, producing a curve approaching a miter point in a zigzag

fashion.

Figure 1.7(a) shows an example of two miter points (in black) on

the self-intersection curve of a freeform surface. They appear (in this

example) as the terminal endpoints of the self-intersection curve. In Fig-

ure 1.7(b), the corresponding points in the parameter domain are shown

(in black) as the common endpoints of two curve segments (in red and

blue). These two (u, v) and (s, t)-parameter curves are the solution curves

for the surface self-intersection problem: S(u, v) = S(s, t). When we glue

the two parameter curves together, according to the same-location con-

dition: S(u, v) = S(s, t), the final result will be the self-intersection curve

10

in the Euclidean xyz-space. Moreover, the folding endpoints (in the glue

operation) correspond to the two miter points.

In another physical analogy, we assume a walking along the loop

composed of the red and blue solution curves. When we walk along the

blue (or red) curve counterclockwise in the parameter space, the self-

intersection curve in the xyz-space is traced in the rightward (or leftward)

direction. In the right half of the loop, walking from the blue curve below

to the red one above passing through the black dot on the right, the

corresponding tracing on the self-intersection curve (in the xyz-space)

approaches to the miter point on the right in a slower and slower speed,

finally stops at the miter point momentarily, and then suddenly flips to

the opposite direction and moves away from the miter point gradually

speeding up the tracing. The miter points are thus non-regular on a

freeform surface [26].

In Chapter 6, we present an efficient and robust algorithm for sur-

face self-intersection of freeform surfaces with a stable detection of miter

points. We use a ternary hierarchy structure for BVH, make a self-

intersection problem to a rather conventional problem of intersecting

two non-adjacent subpatches of the same surface S(u, v), the solution of

which is known to be relatively stable. We take a practical approach to

the detection of miter point locations by osculating toroidal patches, and

bound the miter point with small quadrangle in the parameter domain.

11

Figure 1.9: The quadrangle Q is mapped into a very tiny surface patch

in the Euclidean XYZ-space. It is totally contained in an ε-ball.

Then the exact location of the miter point is bounded by a tiny ε-ball

in the Euclidean space. Using the ε-ball, we can control the influence of

miter points within certain error bounds.

1.4 Main Contribution

The main contributions of our approach to the surface-surface-intersection

problem can be summarized as follows:

• We propose a new BVH-based algorithm for computing the SSI

curves for freeform surfaces, which outperforms other conventional

algorithms in computing speed and robustness by computing the

BVH structure in a preprocessing time.

• The improvement is based on the high approximation order of os-

culating toroidal patches to the freeform surfaces and the geometric

12

simplicity of toroidal patches in supporting primitive operations.

• The main advantage of our SSI algorithm is in handling the degen-

erate case of (almost) tangential surface intersections, where the

conventional subdivision methods have difficulty pruning a large

number of potentially overlapping pairs of small surface patches.

The main contributions to the surface self-intersection problem can

be summarized as follows:

• We propose a new representation scheme for miter points using

small quadrangles (in the parameter domain), each of which can be

mapped to a tiny surface patch (in the Euclidean xyz-space) totally

contained in an ε-ball, where the approximation error bound ε > 0

is typically taken as 10−5, 10−6, depending on each application.

• Using osculating toroidal patches, we develop a stable method

for detecting and bounding miter points, where the degeneracy of

toroidal patches is used as a signal for the existence of miter points.

• We modify the conventional BVH structures so that the leaf nodes

containing miter points are represented and processed properly.

This modification is also an important step for the extension of

many other geometric algorithms so that they can handle input

surfaces that may self-intersect.

13

• In Section 6.3, we solve a non-trivial self-intersection problem be-

tween a small neighborhood of miter point and other parts of the

surface, by converting it to a simple line-surface intersection. This

is based on an observation that the self-intersection curve has an

almost linear shape near miter points.

1.5 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents some

preliminary material on differential geometry, Bézier representation, sur-

face approximation and torus. Chapter 3 reviews related previous work

on surface-surface-intersection and surface-self-intersection. Chapter 4

presents a Bounding Volume Hierarchy for freeform surfaces, a binary

tree structure for the surface-surface-intersection problem, and a ternary

tree structure for the surface self-intersection problem. Chapter 5 presents

a surface-surface-intersection algorithm with the hybrid BVH using rect-

angle swept-spheres in the nodes and osculating toroidal patches in their

leaf nodes. Chapter 6 presents a surface self-intersection algorithm based

on a regional representation scheme for miter points and Chapter 7 shows

our surface self-intersection algorithm can be applied to offset surface. Fi-

nally, Chapter 8 presents experimental results and Chapter 9 concludes

this thesis.

14

Chapter 2

Preliminaries

2.1 Differential geometry of surfaces

In this thesis, the algorithm to be described later can be applied to any

tensor product surfaces to an arbitrary degree. However, for the conve-

nience of representation, we only consider Bézier surfaces as an original

surface. Therefore, we briefly review the differential geometry of sur-

faces, Bézier curve, Bézier surfaces, and torus in the following sections.

For more details, please see [26, 27, 28, 29]. A parametric surface is a

surface defined by a parametric equation with (usually) two parameters,

S : U → R3 such that

S(u, v) = (x(u, v), y(u, v), z(u, v)), (2.1)

15

where U is a subset of R2. When tangent planes exist for all points on a

surface, or satisfy the following constraints for all (u, v) ∈ U :

Su(u, v)× Sv(u, v) 6= 0. (2.2)

A unit normal vector to the parametrized surface at a regular point is

defined as follows:

N =
Su(u, v)× Sv(u, v)

|Su(u, v)× Sv(u, v)|
6= 0. (2.3)

The Gauss map of S(u, v) is defined by the map N : S → S2, where S2

is a unit sphere.

The first fundamental form of regular surface are defined as follows:

E = 〈Su(u, v), Su(u, v)〉 (2.4)

F = 〈Su(u, v), Sv(u, v)〉 (2.5)

G = 〈Sv(u, v), Sv(u, v)〉 , (2.6)

where 〈·, ·〉 is a dot product. The second fundamental form of regular

surface are defined as follows:

e = 〈Suu(u, v),N〉 (2.7)

16

f = 〈Suv(u, v),N〉 (2.8)

g = 〈Svv(u, v),N〉 . (2.9)

The normal curvature κn of surface S(u, v) for arbitrary direction v =

aSu + bSv, a
2 + b2 = 1 is defined as follows:

κn =
ea2 + 2fab+ gb2

Ea2 + 2Fab+Gb2
. (2.10)

The minimum value κ1 and the maximum values κ2 of the normal curva-

ture κn are the principal curvature, and the direction v of the principal

curvature is the principal directione1 and e2. The Gaussian curvature K

and the mean curvature H of S(u, v) are defined as follows:

K =
eg − f 2

EG− F 2
= κ1κ2 (2.11)

H =
eG− 2fF + gE

2(EG− f 2)
=
κ1 + κ2

2
. (2.12)

2.2 Bézier curves and surfaces

A Bernstein basis polynomial is a polynomial function defined as follows:

Bn
i (t) =

(
n

i

)
(1− t)n−iti. (2.13)

17

A bézier curve of degree n, parametrized by u in [0, 1] is defined as follows:

C(u) =
n∑
i=0

biB
n
i (u), (2.14)

where bi are control points of the curve, form the Bézier polygon of the

curve. The k-th order derivative of a Bézier curve is defined as follows:

dkc(u)

duk
=

n!

(n− k)!

n−k∑
i=0

∆kbiB
n−k
i (u), (2.15)

where ∆kbi = ∆k−1bi+1 −∆k−1bi.

Bézier curves are used in the most CAD/CAM systems, because of

following properties.

• Endpoint interpolation: The start and end points of the curve are

the same as the start and end points of the control point. For

example, in a cubic Bézier curve, c(0) = b0 and c(1) = b3.

• Symmetry : The two control points pairs, b0...bn and bn..b0 make

same Bézier curve, but the direction of movement according to

parameter is the opposite.

• Convex hull property : Every point on the curve belongs to the con-

vex hull of control points of the curve.

18

Figure 2.1: Example of Bézier Surfaces

• Invariance under affine maps : If an affine map is applied to the

control points of the curve, the curve is mapped by the same map.

A Bézier surface is a A natural dimension-extension of a Bézier curve. A

Bézier surface of degree m× n, parametrized by u and v in [0, 1]× [0, 1]

is defined as follows.

S(u, v) =
m∑
i=0

n∑
j=0

bi,jB
m
i (u)Bn

j (v), (2.16)

where bi,j are control points of the surface, Bm
i (u) are Bernstein basis

polynomials of degree m, and Bn
j (v) are Bernstein basis polynomials of

degree n.

2.3 Surface approximation

Taking uniform samples along each parameter direction, S
(
i

2H
, j
2H

)
, where

i, j = 0, · · · , 2H , the BVH structure for a bicubic Bézier surface S(u, v),

(0 ≤ u, v ≤ 1), can be represented in about the same way as that for

the quadtree (of height H) for regular quad meshes (Figure 2.2). The

19

Figure 2.2: Bézier surface approximation using a hierarchy of quad

meshes

main difference is in the internal nodes containing bounding volumes

slightly thicker than those for a regular quad mesh. The extra thickness

is needed for bounding the difference between a surface S(u, v) and the

quad mesh approximation (interpreted as a rectangular array of bilinear

surface patches or pairs of triangles).

The surface approximation error can be bounded using a simple for-

mula developed by Filip et al. [28]. (Krishnamurthy et al. [30, 20] also

use this formula to construct various BVH trees for freeform surfaces.)

Using a 2D array of size (1 + 2H) × (1 + 2H), where the x, y, z coordi-

nates of S
(
i

2H
, j
2H

)
are stored in each element, we can encode the BVH

20

structure of the surface S(u, v) in a compact way, where the thickness of

the internal nodes at a level h (≤ H) can be estimated by the formula of

Filip et al. [28]:

‖Sij(u, v)−Qij(u, v)‖ ≤
√

3 (‖Suu‖∞ + 2‖Suv‖∞ + ‖Svv‖∞)

8
= ε̂ij,

where ‖v‖∞ = max{|vx|, |vy|, |vz|} for a vector v = (vx, vy, vz). (This

is because the higher level h approximates the surface S(u, v) using

a coarser quad mesh with vertices taken at S
(
i
2h
, j
2h

)
, where i, j =

0, · · · , 2h.

2.4 Torus

Torus is a surface created by rotating a circle of radius r on an axis of

a straight line on the plane including the circle and at a distance R > r

away from the center of the circle [26]. The torus T (u, v) parametrized

by u and v in [0, 2π)× [0, 2π) is defined as follows:

T (u, v) = ((R + r cos v) cosu, (R + r cos v) sinu, r sin v), (2.17)

21

where R is a major radius, and r is a minor radius of the torus. An

implicit equation of the torus is

(
√
x2 + y2 −R)2 + z2 = r2. (2.18)

The partial derivatives and the second order partial derivatives of

torus are defined as follows:

Tu(u, v) = (−r cosu sin v,−r sinu sin v, r cos v) (2.19)

Tv(u, v) = (−(R + r cos v) sinu, (R + r cos v) cosu, 0) (2.20)

Tuu(u, v) = (−r cosu cos v,−r sinu cos v,−r sin v) (2.21)

Tuv(u, v) = (r sinu sin v,−r cosu sin v, 0) (2.22)

Tvv(u, v) = (−(R + r cos v) cosu,−(R + r cos v) sinu, 0). (2.23)

From these, we can obtain the first fundamental form E,F,G, the second

22

Figure 2.3: Torus with point T (0, 0) and point T (0, π)

fundamental form e, f, g, and the Gaussian curvature K of a torus [26]:

E = 〈Tu, Tu〉 = r2 (2.24)

F = 〈Tu, Tv〉 = 0 (2.25)

G = 〈Tv, Tv〉 = (R + r cos v)2 (2.26)

e = 〈N, Tuu〉 = r (2.27)

f = 〈N, Tuv〉 = 0 (2.28)

g = 〈N, Tvv〉 = cos v(R + r cos v) (2.29)

K = (eg − f 2)/(EG− F 2) =
cos v

r(R + r cos v)
(2.30)

where 〈·, ·〉 is a dot product and N is the normal vector of the torus.

A Torus is a regular surface, and torus has a full range of Gaussian

23

curvature, not only positive and negative, but also zero curvature (along

the parallels v = π
2

and v = 3π
2

). In Figure 2.3, the positive curvature

of the torus is shown in red, the negative curvature in blue, and zero in

purple.

2.5 Summary

In this chapter, we briefly introduce differential geometry of regular sur-

faces, Bèzier curve, and surface, which is used as an input of our al-

gorithm. We also introduce the surface approximation method based on

uniform sampling and the differential geometry of torus. With the surface

approximation method and toroidal patches, we can perform geometric

operations fast and robust. We introduce our new surface intersection

algorithms with BVH and osculating toroidal patches on their leaf nodes

in the following chapters, and show that it solves the problem previously

considered impossible.

24

Chapter 3

Previous Work

3.1 Surface-Surface-Intersection

A comprehensive introduction to the problem of intersecting freeform

curves and surfaces can be found in the Chapter 12 of Hoschek and

Lasser [7], where early methods are explained in great details, including

algebraic, subdivision, embedding, discretization, and tracing methods.

In a survey article (published in 1993), Patrikalakis [31] reviews the SSI

algorithms developed in the period of 1988–1992, which are then classi-

fied into four main categories: analytic, lattice evaluation, marching, and

subdivision methods. Farin [32] compiled an SSI bibliography of 50 ref-

erences, containing algorithms developed in the period of 1968–1990. On

the other hand, Patrikalakis and Maekawa [8, 33] introduce an extensive

25

body of SSI literature (with more than 100 references), including new

results developed in the late 90’s, in particular, some techniques that can

deal with the robustness issues using interval arithmetics. Since then,

there have been relatively few publications in the SSI research. New re-

sults are often those for special types of surfaces such as torus [10, 11] or

sweep surfaces [34, 22], or algorithms [35, 36] dealing with special cases

that had been overlooked in the previous work.

The GPU-based SSI approach of Krishnamurthy et al. [30] generates

the BVH structures for freeform surfaces (partially and dynamically on

the fly). Because of the non-flexibility of GPU implementation, Krishna-

murthy et al. [30] constructed only AABB (Axis-Aligned Bounding Box)

trees; nevertheless, their basic approach can be applied to the generation

of other BVH structures for the SSI problem (including CPU-based im-

plementations). The BVH-based approach belongs to the category of the

subdivision method. (The subdivisions are often made globally all over

the surface in a preprocessing stage of the BVH construction.)

At the end of the BVH traversal for the SSI computation, a tracing

method is then needed for the local construction of intersection curve

segments. At the curve tracing stage, our approach is different from the

conventional BVH-based algorithms for intersecting two mesh models,

where the intersection of two triangles typically produces a line seg-

ment [37, 38, 39, 40]. (In some degenerate cases, two triangles may overlap

26

in a convex polygon only when they are contained in the same plane.)

On the other hand, the intersection of two toroidal patches can be more

complex (as shown in Figure 5.2).

For the resolution of the SSI curve topology in space, Sederberg et

al. [41, 9] developed methods for detecting closed loops in the SSI curve by

comparing the Gauss maps of the two surface patches to be intersected.

When there is no overlap in their Gauss maps, the SSI curve has (at

most) a single branch (not forming a closed loop). Otherwise, we can

recursively subdivide the surfaces into smaller patches until the Gauss

maps have no overlap. Nevertheless, in the degenerate case of (almost)

tangential surface intersections, we need a long sequence of recursive

subdivisions and at some point we have to deal with the SSI curve with

multiple branches and/or closed loops. Even in these non-trivial cases,

the osculating toroidal patches provide good approximate solutions to

the tangential SSI problem, thanks to their geometric simplicity and high

approximation order to the surface.

Regarding the robustness issue, the bounding volumes may be inter-

preted as a geometric version of the interval arithmetics (in the sense that

intervals are one-dimensional AABBs) or a simplified version of other con-

servative techniques such as the convex hulls of control points for surface

patches. The BVH-based SSI approach is thus a generalization of conven-

tional SSI methods, where the main difference is in that the subdivisions

27

are done globally in a preprocessing stage, to a certain high resolution

such as 512× 512. The traversal in the hierarchy of surface subdivisions

(and their bounding volumes) is about the same as the conventional SSI

approach of subdivision methods.

When two regular surfaces intersect tangentially, Ye and Maekawa [42]

determine the topology of SSI curve using the Dupin indicatrices of the

two surfaces. The osculating toroidal patches in the leaf nodes can serve

for the same purpose as they capture the same second order local sur-

face properties such as curvature. The simplicity of toroidal patches also

makes the implementation of primitive geometric operations easy and

robust.

The G1-continuous biarc approximation to planar freeform curves was

shown to be very useful not only in the acceleration of many geometric

algorithms but also in the improvement of their robustness [43, 44, 45].

Liu et al. [21] employed the second order osculating torus approximation

to freeform surfaces for the acceleration of point-projection algorithm. In

recent work, Son et al. [16] accelerated the minimum distance compu-

tation between two surfaces of revolution using the osculating toroidal

patches, which are generated by rotating the G1-biarc approximation to

the profile curves of the rotational surfaces. In this thesis, we consider the

SSI problem using the osculating toroidal patches. The main advantage

of using toroidal patches is in the simplicity of finding all binormal lines

28

between two tori by computing the real roots of a polynomial equation of

degree 8, which is also the main source of acceleration for the minimum

distance algorithm of Son et al. [16].

3.2 Surface Self-Intersection

There is a rich body of literatures (including some extensive survey arti-

cles) on the surface-surface-intersection (SSI) problem [32, 7, 31, 8, 33, 46,

47, 48, 49, 50]; however, the majority of previous results are on the inter-

section of two different surfaces. The special case of intersecting an iden-

tical surface with itself has received much less research attention than the

general SSI problem. Nevertheless, this does not necessarily mean that

the surface self-intersection is less important. On the contrary, the spar-

sity of previous work is mainly due to technical difficulties handling the

self-intersection case. For example, it is not easy to deal with trivial so-

lutions: (u, v) = (s, t), in the self-intersection problem: S(u, v) = S(s, t),

which should not be included in the solution set, because of the non-

equality constraint: (u, v) 6= (s, t). Consider the intersection test for two

adjacent subpatches that share a common boundary curve along an iso-

parametric curve: u = s or v = t. A good solution to this problem can

be used for the elimination of trivial solutions, and vice versa. The issue

is how to accelerate the computing speed for a large number of overlap

29

tests among nearby subpatches, which is often considerably larger than

those for intersecting two different surfaces.

As a method of choice for symbolically eliminating the redundant

factors (u − s) and (v − t) from the constraint equations for S(u, v) =

S(s, t), many previous algorithms took an algebraic approach [51, 52]. In

the univariate case of the curve self-intersection problem: C(u) = C(s),

Pekerman et al. [53] removed the redundant factor (u − s) from each

constraint equation for the solution set. Nevertheless, in the bivariate

case of freeform surfaces, simple factors such as (u−s), (v−t), [(u−s)2+

(v−t)2], do not always appear in the constraint equations directly drived

from each coordinate of S(u, v) = S(s, t). To deal with this problem,

Elber et al. [52] formulated a different set of constraint equations by

combining the coordinate functions of F (u, v, s) and G(v, s, t), where

S(u, v)−S(s, v) = (u− s) F (u, v, s), S(s, v)−S(s, t) = (v− t) G(v, s, t),

and thus S(u, v) − S(s, t) = (u − s) F (u, v, s) + (v − t) G(v, s, t). Busé

et al. [51] proposed a different algorithm based on resultant techniques.

Regarding the main technical issue of the current work, the detection and

representation of miter points, the elimination-based algebraic approach

has a clear limitation. The miter points are characterized by the triviality

condition: (u, v) = (s, t), the detection of which becomes more difficult

after the elimination of all trivial solutions. Thus we focus on geometric

approaches that gradually reduce the given self-intersection problem to

30

relatively simple subproblems.

Volino and Thalmann [54, 55] presented a subdivision-based algo-

rithm for computing the self-intersection of triangular meshes. The self-

intersection-free condition developed in this approach is quite similar to

the normal cone test traditionally used in the SSI algorithms [41, 9]. Ho

and Cohen [24, 25] detected the miter point locations based on a neces-

sary condition: Su × Sv = 0, where Su and Sv are the partial derivatives

of S(u, v). They improved the solution curve, in particular, the locations

of miter points, by carefully controlling the speed of curve tracing near

miter points.

Galligo and Pavone [2] used a triangular mesh approximation and

reported certain limitations of the mesh-based approach in the neigh-

borhoods of miter points because the approximating triangles become

almost coplanar. Hong et al. [56] considered the self-intersection problem

for offset surfaces, where osculating toroidal patches are used for a stable

curve tracing near the miter points. They have observed that the location

of a miter point in the xyz-space is stable; however, the corresponding

location in the parameter domain is numerically unstable to detect in a

high precision. They also have observed that the self-intersection curve

takes a local shape of line segment with an open endpoint at the miter

point location.

The detection and elimination of self-intersections in an offset surface

31

has long been an important problem with applications in NC toolpath

generation [57, 58, 59, 60, 61]. The offset self-intersection curves are often

traced using numerical techniques (such as Runge-Kutta methods) ap-

plied to differential equations [57, 59, 61]. The offset trimming technique

of Seong et al. [60] is based on the approximation of offset surfaces using

rational freeform surfaces, in which subtle geometric details such as miter

point locations can be changed to something else.

3.3 Summary

In this chapter, we briefly introduce previous studies on the surface in-

tersection problem studied for a long time. Many surface intersection

algorithms were introduced in the survey articles, and many papers are

mentioned and cited. Since then, there have been relatively few publi-

cations in the research, and new results were shown for special types of

surfaces. On the other hand, recent developments of BVH for freeform

surfaces make geometry algorithm efficient, and second order osculat-

ing toroidal patches give a high precision of surface approximation [21].

This evidence is worth a revisit the surface intersection problem to solve

some highly non-trivial surface intersection problems. We introduce a

new data structure algorithm to solve the surface intersection problem

in the following chapters.

32

Chapter 4

Bounding Volume Hierarchy for
Surface Intersections

4.1 Binary Structure

In this section, we demonstrate how to construct a Bounding Volume

Hierarchy(BVH) for a bicubic Bézier surface. For the sake of simplicity

in the representation, we consider bicubic Bézier surfaces only. Our BVH

structure can easily extend to any tensor product surfaces to an arbitrary

degree. The input freeform surface S(u, v) is first approximated by a rect-

angular array of bilinear surfaces Lij(u, v), (u, v) ∈ [ui−1, ui]× [vj−1, vj],

for i, j = 1, · · · , 2H , where ui = i
2H

and vj = j
2H

. Each bilinear surface

Lij(u, v) is then approximated by a planar quadrangle Qij(u, v). The ap-

proximation error between Qij(u, v) and the subpatch Sij(u, v) = S(u, v),

33

on the subdomain [ui−1, ui]× [vj−1, vj], is bounded by εij > 0. Expanding

the quadrangle Qij by the distance εij, in all three dimensions, a bound-

ing volume Vij is generated for the rectangular subpatch Sij. Starting

from the bounding volumes Vij at the leaf level nodes at the height H,

we construct the BVH for the surface S(u, v), in a bottom-up fashion.

4.1.1 Hierarchy of Bilinear Surfaces

For an efficient generation of the bicubic Bézier surface

S(u, v) =
3∑

α=0

3∑
β=0

bαβB
3
α(u)B3

β(v),

for 0 ≤ u, v ≤ 1, where bαβ are the Bézier control points, we save the

cubic Bézier basis function values precomputed at the uniform sample

parameters ui = i
2H

and vj = j
2H

and reuse them repeatedly as needed

in the rest of the SSI construction:

B3
α(ui) =

3!

(3− α)!α!
(1− ui)α(ui)

3−α,

for α = 0, 1, 2, 3, and i = 0, · · · , 2H . These function values are reused for

both B3
α(ui) = B3

α(i/2H) and B3
β(vj) = B3

β(j/2H).

The precomputation of Bézier basis functions accelerates the uni-

form sampling of the surface S(u, v) at the parameters (ui, vj), for

34

i, j = 0, · · · , 2H . Each subpatch Sij(u, v) = S(u, v), on the subdomain

[ui−1, ui]× [vj−1, vj], can be approximated by a bilinear surface Lij(u, v)

that interpolates the four corner points of Sij(u, v), which are among the

uniform sampling points of S(u, v):

Lij(u, v) =

(
u− ui−1

2H

)(
v − vj−1

2H

)
S(ui−1, vj−1)

+

(
ui − u

2H

)(
v − vj−1

2H

)
S(ui, vj−1)

+

(
u− ui−1

2H

)(
vj − v

2H

)
S(ui−1, vj)

+

(
ui − u

2H

)(
vj − v

2H

)
S(ui, vj). (4.1)

The above uniform sampling points S(ui, vj) also include the sampling

points of S(u, v) at lower resolutions. For example, when we replace the

maximum height H by a smaller value h, the corresponding uniform

sample parameters ûi = i
2h

and v̂j = j
2h

also belong to the original

(1 + 2H) sample parameters:

ûi =
i

2h
=
i · 2H−h

2H
= ui·2H−h ,

v̂j =
j

2h
=
j · 2H−h

2H
= vj·2H−h .

Consequently, there is no need of further resampling of the surface points

S(ûi, v̂j), for the approximation of S(u, v) at lower resolutions.

35

Figure 4.1: Example of bicubic Bézier surface and its bilinear surface

The Bézier surface S(u, v) is approximated by a hierarchy of bilin-

ear surfaces, for a sequence of heights h = 0, · · · , H. Filip et al. [28]

showed that the bilinear approximation has a quadratic convergence,

which means that the approximation error is reduced by 4-times each

time we increase the height h by one, to h+ 1.

In a similar way, we can approximate the surface normal N(u, v) =

Su × Sv by a hierarchy of bilinear normal surfaces. The Gauss map of

S(u, v), on the subdomain [ui−1, ui] × [vj−1, vj], can be approximated

by a spherical quadrangle with four corners N̂(ui−1, vj−1), N̂(ui−1, vj),

N̂(ui, vj−1), N̂(ui, vj), on the unit sphere S2, where

N̂(u, v) =
N(u, v)

‖N(u, v)‖
(4.2)

. Expanding the spherical quadrangle slightly by an amount estimated by

Filip et al. [28], we can bound the Gauss map of S(u, v) on the subdomain

[ui−1, ui]× [vj−1, vj].

36

4.1.2 Hierarchy of Planar Quadrangles

The bilinear surfaces Lij(u, v) are quadrics in general. The interference

test and the distance computation between two bilinear surfaces are more

time-consuming than the case of two planar polygons in general position

(i.e., two polygons not contained in the same plane). Moreover, the point-

projection to bilinear surfaces (i.e., quadrics) is more difficult to compute

than to planes. We approximate each quadratic surface patch Lij(u, v)

by a planar quadrangle Qij(u, v) and then by a rectangle Rij(u, v), so as

to make the overlap test between two bounding volumes easier and thus

faster. (The details of the overlap test will be discussed in Chapter 5.)

Given a bilinear surface Lij(u, v) of Equation (4.1) with four corners,

the best plane approximation to Lij(u, v) is the tangent plane of Lij(u, v)

at the midpoint:

L

(
ui−1 + ui

2
,
vj−1 + vj

2

)
=
S(ui−1, vj−1) + S(ui, vj−1) + S(ui−1, vj) + S(ui, vj)

4
. (4.3)

Moving two corner points S(ui−1, vj−1) and S(ui, vj) by

d =
−S(ui−1, vj−1) + S(ui, vj−1) + S(ui−1, vj)− S(ui, vj)

4
,

37

to

3S(ui−1, vj−1) + S(ui, vj−1) + S(ui−1, vj)− S(ui, vj)

4
,

and

−S(ui−1, vj−1) + S(ui, vj−1) + S(ui−1, vj) + 3S(ui, vj)

4
,

and similarly moving the other corner points S(ui, vj−1) and S(ui−1, vj)

by −d, we construct the quadrangle Qij(u, v) contained in the tangent

plane at the midpoint of Lij(u, v).

Filip et al. [28] showed that the distance between the planar quadran-

gle Qij(u, v) (which is also a parallelogram) and the subpatch Sij(u, v)

can be bounded as follows:

‖Sij(u, v)−Qij(u, v)‖ (4.4)

≤

√
3
(
‖Ŝûû‖∞ + 2‖Ŝûv̂‖∞ + ‖Ŝv̂v̂‖∞

)
8

= ε̂ij,

where ‖v‖∞ = max{|vx|, |vy|, |vz|} for a vector v = (vx, vy, vz), and

Ŝûû, Ŝûv̂, Ŝv̂v̂ are the second partial derivatives of a Bézier surface

Ŝij(û, v̂), (û, v̂) ∈ [0, 1] × [0, 1], obtained by reparameterizing the sub-

38

patch Sij(u, v), (u, v) ∈ [ui−1, ui]× [vj−1, vj], as follows:

Ŝij(û, v̂) = S

(
ui−1 + û · i

2H
, vj−1 + v̂ · j

2H

)
, (4.5)

for 0 ≤ û, v̂ ≤ 1. By expanding the planar quadrangle Qij(u, v) by ε̂ij > 0,

we can construct a bounding volume for the subpatch Sij(u, v).

Figure 4.2(a) shows a sphere-swept volume over the tetrahedron made

of the four corners of the subpatch Sij(u, v), where ε̂ij is the radius of

the sweeping sphere. A similar sphere-swept volume over the quadran-

gle Qij(u, v) is shown in Figure 4.2(b). As one can easily notice in Fig-

ure 4.2(b), the upper bound ε̂ij is often larger than the maximum de-

viation of the Bézier surface Ŝij from the quadrangle Qij, which can be

bounded by the maximum distance of the control points of Ŝij to the pla-

nar quadrangle Qij. Moreover, we can construct even a simpler bounding

volume by replacing the planar quadrangle Qij by a rectangle Rij (as

shown in Figure 4.2(c)). For this purpose, let Pij denote the plane of Qij,

and P+
ij and P−ij denote the parallel planes of Pij that tightly bound the

control points of Ŝij from both sides of Pij.

39

(a
)

(b
)

(c
)

(d
)

F
ig

u
re

4
.2

:
S
p
h
er

e-
sw

ep
t

b
ou

n
d
in

g
vo

lu
m

es
fo

r
a

B
éz

ie
r

su
rf

ac
e

p
at

ch
Ŝ
ij

:(
a)

te
tr

ah
ed

ro
n
-s

w
ep

t
sp

h
er

e

(T
S
S
),

(b
)

q
u
ad

ra
n
gl

e-
sw

ep
t

sp
h
er

e
(Q

S
S
),

(c
)

re
ct

an
gl

e-
sw

ep
t

sp
h
er

e
(R

S
S
),

an
d

(d
)

re
ct

an
gl

e-
sw

ep
t

sp
h
er

e
(R

S
S
)

m
ad

e
ti

gh
er

;
in

th
e

fi
rs

t
ro

w
,

th
e

su
rf

ac
e

p
at

ch
Ŝ
ij

is
sh

ow
n

to
ge

th
er

w
it

h
ea

ch
b

ou
n
d
in

g

vo
lu

m
e,

an
d

in
th

e
se

co
n
d

ro
w

,
on

ly
th

e
b

ou
n
d
in

g
vo

lu
m

es
ar

e
sh

ow
n

fo
r

a
b

et
te

r
v
is

u
al

co
m

p
ar

is
on

of

th
ei

r
ti

gh
tn

es
s.

40

Now, let Ro
ij denote an optimal rectangle that bounds all projected

control points of Ŝij to the plane Pij. By projecting Ro
ij to the parallel

planes P+
ij and P−ij , we get two rectangles R+

ij and R−ij, which form two

opposite faces of an OBB (Oriented Bounding Box) for the Bézier surface

Ŝij. When we continuously shrink the OBB by moving all six faces inward

simultaneously, the whole volume will collapse to a rectangle Rij. Now,

we measure the maximum distance of the control points of Ŝij to the

rectangle Rij, which is often contained in the mid-plane between two

parallel planes P+
ij and P−ij , but of a smaller size than the bounding

rectangle Ro
ij. The rectangle-swept volume by the maximum distance

is the bounding volume for the Bézier surface Ŝij, which is shown in

Figure 4.2(d).

4.1.3 Construction of Leaf Nodes with

Osculating Toroidal Patches

Each node of our BVH contains a bounding sphere and a rectangle-swept

sphere for a surface patch that corresponds to the node. In addition

to these bounding volumes, each leaf node also contains an osculating

toroidal patch determined by the curvature of the Bézier surface Ŝij at

the midpoint Ŝij
(
1
2
, 1
2

)
. Depending on the surface curvature at the mid-

point, we take either the outer part or the inner part of the torus for

approximating the surface of positive or negative curvature [21].

41

The osculating toroidal patch is taken sufficiently large enough to

cover both the positions and the normal directions of the Bézier surface

Ŝij(u, v), (u, v) ∈ [0, 1] × [0, 1]. Moreover, we take the boundary of the

toroidal patch as the meridian and parallel circular arcs, which greatly

simplifies geometric operations on the toroidal patch (Figure 4.3). For ex-

ample, the Gauss map of such a toroidal patch is bounded by four circular

arcs on the Gaussian sphere. Taking larger toroidal patches bounded by

circular arcs, it is easy to test the non-overlap condition for their Gauss

maps, which also implies a similar condition for the two Bézier surface

patches approximated by the toroidal patches.

We can trim the osculating toroidal patches Tij using non-circular

boundary curves so that the Hausdorff distance between the trimmed

patch and the Bézier surface Ŝij(u, v) is within a given error bound ε > 0.

This can be done by projecting the four corner points of Ŝij(u, v) to the

toroidal patch and connecting the projected points to a quadrangle in

Figure 4.3: Construction of osculating toroidal patches and their trim-

ming for surface matching.

42

Figure 4.4: a bicubic Bézier surface and set of osculating toroidal

patches.

the parameter space of the torus.

By reparameterizing the quadrangle bilinearly, we can represent the

trimmed toroidal patch as T̂ij(u, v). Based on this parameter match-

ing, we can bound the Hausdorff distance between Ŝij and T̂ij by

max(u,v) ‖Ŝij(u, v)− T̂ij(u, v)‖. If the bound is larger than the given error

bound ε > 0, we can repeat the same procedure recursively by subdivid-

ing the Bézier surface Ŝij(u, v) into four pieces. Finally, we get a union of

toroidal patches T̂ij, which may not even be connected to each other, but

whose Hausdorff distance with the given Bézier surface S(u, v) is guar-

anteed to be within an error bound ε > 0. By intersecting the toroidal

patches, we approximate the SSI curve of the given freeform surfaces

using the parameter matching between Ŝij(u, v) and T̂ij(u, v).

43

(a) (b) (c)

Figure 4.5: Recursive self-intersections: (a) in S1 and S2 sharing a com-

mon boundary curve, (b) in S1, Sm, S2 with Sm covering the common

boundary, and (c) in S1, Sm, S2, followed by global intersections.

4.2 Ternary Structure

For surface self-intersection problem, the binary BVH structure is quite

problematic. As shown in Figure 4.5(a), when we split a surface S into

two smaller pieces S = S1 ∪ S2, the self-intersection of S can be com-

puted by the recursive self-intersections of S1 and S2, followed by a global

intersection between S1 and S2. There is one serious problem in this sim-

ple approach – the global intersection S1 ∩ S2 may include the common

boundary of S1 and S2 in the solution, which is different from what

we have intended to compute. It is computational expensive to decide

whether the two surfaces S1 and S2 are smoothly connected or locally

intersecting along their common boundary. The conventional subdivision-

based intersection algorithms are usually slowed down by recursively sub-

44

dividing the surface into smaller and smaller pieces along the common

boundary.

Therefore, we follow the basic guideline of binary BVH (designed for

SSI problem), but make some changes to the BVH structure. A simple

(but incomplete) remedy may be to include the self-intersection test for

a marginal surface Sm that covers the common boundary curve (Fig-

ure 4.5(b)). And then we may replace the global intersection S1 ∩ S2 by

a new version of (S1 \ Sm) ∩ (S2 \ Sm). (But, this is incomplete as there

are some parts missing from the solution – (S1 \ Sm) ∩ (S2 ∩ Sm) and

(S1∩Sm)∩ (S2 \Sm) should also be included.) A correct version (suitable

for a BVH-based implementation) is a bit more complicated. As shown in

Figure 4.5(c), we can split the surface S into three pieces S = S1∪Sc∪S2,

where the boundary curve is replaced by a surface patch Sc in the center.

The marginal surface Sm now covers Sc, again with some overlaps with

S1 and S2. Then we do recursive self-intersections on S1, S2, and Sm. The

global intersections are then computed for S1 ∩ S2, (S1 \ Sm) ∩ Sc, and

Sc ∩ (S2 \ Sm).

The recursive subdivision of a surface into three smaller pieces means

that each internal node of our BVH structure would have three child

nodes: the left, middle, and right nodes. The middle node should be

responsible for the recursive self-intersection of Sm, and thus it is the root

of the subtree for Sm. The BVH structure is ideal for handling the overlap

45

parts of Sm with S1 and S2. Instead of recursively constructing three

other subtrees for smaller surfaces: (S1 \ Sm), Sc, and (S2 \ Sm), we can

implicitly represent these subtrees by restricting the parameter domains

of the subtrees for S1, Sm, and S2. For example, in the construction of

three child nodes of Sm, their bounding volumes are generated for three

surfaces (Sm)1, (Sm)m, and (Sm)2. It is clear that the union of these three

volumes also bounds the surface Sc, which is smaller than Sm. The BVH

for Sm can also serve as a BVH for Sc, even though it is not an optimal

one for Sc. Some internal nodes of the BVH for Sm may not bound any

part of Sc when they represent some marginal areas in (Sm \Sc). We can

treat these nodes as empty when the BVH is used for the smaller surface

Sc.

In the global intersection steps, we need to process smaller surfaces

(S1 \ Sm), Sc, and (S2 \ Sm) than those stored in the left, middle, and

right subtrees of the BVH tree. By using the parameter domains for

surfaces to be intersected, we can deal with smaller surfaces using the

BVH for a larger surface. When the parameter domain of a child node

is outside the domain of a surface, we can simply treat the node as an

empty subtree and stop further recursive search down to that direction.

One disadvantage of this approach is in the duplication of the overlap

area (Sm \ Sc) in different subtrees, which may cause the detection of

some self-intersections in the overlap areas multiple times. Nevertheless,

46

by controlling the thickness of the strips, we can reduce the number of re-

peated detections. The self-intersection curve is constructed for the pairs

of leaf nodes after all redundant duplications are filtered out. Accord-

ing to our experimental results, the computational advantage from the

overlap region is far more beneficial than the duplication problem.

4.2.1 Miter Points

We start with a uniform subdivision of a surface S(u, v) into subpatches

Sij, (i, j = 1, · · · , 128). (The following construction scheme also works

for a grid structure of size 8M × 8N , as discussed in Section 4.2.3.) Each

subpatch Sij is then tightly approximated by an osculating toroidal patch

Tij based on the construction steps discussed in Section 4.1. When the

deviation of normal directions at Sij(u, v) and Tij(u, v) is larger than a

certain threshold, we consider this failure of approximation as a signal

for the detection of a miter point in Sij.

As shown in Figure 4.6, a non-isolated miter point is the junction

point of two corresponding solution curves (represented as (u, v)- and

(s, t)-curves in the parameter space) for the self-intersection curve (in

the Euclidean space), given by the relation: S(u, v) = S(s, t). We search

the two branches of these solution curves in the 1-ring neighborhood of

Sij. In the example of Figure 4.6(b), the domains for Si,j+1 and Si,j−1 have

the corresponding branches, which are computed by intersecting the two

47

Figure 4.6: Miter points on a surface self-intersection curve: (a)–(b)

in the Euclidean xyz-space, (c) in the (u, v)-parameter domain, and (d)

bounding a miter point using a quadrangle.

osculating toroidal patches Ti,j+1 and Ti,j−1, which is more stable than

intersecting the surface S(u, v) with itself near a miter point. (In fact,

we iteratively improve the intersection result by recomputing Ti,j+1 and

Ti,j−1 at the corresponding solution points and incrementally walking

along the self-intersection curve in small steps.)

We extend the (u, v)- and (s, t)-solution curves simultaneously from

Si,j+1 and Si,j−1 so that they can meet at a miter point inside Sij. The

miter point location is computed by solving Su × Sv = 0 [34], or we can

initial guess of location of the miter point with ratio of normal to position.

In Figure 4.7, logarithm of ratio of normal to position is appeared in

red to blue color scale. The numerical tracing along the solution curves

works only up to a certain pair of solution points. Using the positions

and tangent directions of the two solution curves at these points, we

guess the remaining solution curves by interpolating a Bézier curve to

48

(a) (b)

Figure 4.7: Initial guess for miter quadrangles with ratio of normal to

position in u-direction (a), and v-direction (b).

these data. The Bézier curve is then bounded by a quadrangle Q (in

the parameter space of S(u, v)) as a regional representation for the miter

point. The quadrangle Q is then represented as a bilinear surface Q(α, β),

(0 ≤ α, β ≤ 1), in the uv-parameter domain. The composite surface

S(Q(α, β)) in the Euclidean xyz-space will be a very tiny surface patch

containing the miter point of Sij. When this small surface patch is totally

contained in an ε-ball, we are done. Otherwise, we reduce the size of Q

so as to improve the approximation result.

What if all these tests fail in the detection of Q or the bounding of

S(Q(α, β)) in an ε-ball? Then we increase the resolution of uniform sub-

division in the 1-ring neighborhood of Sij, and repeat the same procedure

in this restricted domain. We also need to take this approach when there

is no branch or only one branch in the 1-ring neighborhood of Sij. We

may have the same problem repeatedly even with higher and higher res-

49

olutions; then, we make the following decisions: (i) the no-branch case as

an isolated miter point, and (ii) the one-branch case as a signal for the

failure of our algorithm in separating two almost identical branches from

each other. In the one-branch case, it would also be possible to have a

small self-intersection loop or no self-intersection curve yet but about to

start one if the surface shape is slightly changed. Thus it is reasonable

to consider this case as an isolated miter point as well.

4.2.2 Leaf Nodes

The quadrangle Q is usually contained inside the domain of Sij. In some

cases, there may be overlap with two adjacent domains or three/four

domains with a common corner. We slightly expand the domain (and

the corresponding subpatch) with maximum overlap and shrink other

domains. This works under the assumption that Q is much smaller than

the domain of Sij. Otherwise, Q may contain multiple miter points, and

the construction of Q should be repeated more carefully with higher

precision for possible detection of multiple miter points if there are some.

Now, as shown in Figure 4.8, we convert the leaf node for Sij to an

internal node by splitting it into three child nodes. The vertical bounding

slab for Q is taken as the middle child node, from which we go one more

step down the BVH tree by adding three child nodes. This time, the

horizontal bounding slab for Q is the middle one. Let R denote the middle

50

Figure 4.8: Converting Sij to an internal node.

leaf node, which is a minimal AABB for Q. In case the composite surface

S(R(u, v)) can be bounded in an ε-ball, we replace Q with the rectangle

R. Otherwise, the middle leaf node contains Q and four triangles, one for

each edge of Q.

4.2.3 Internal Nodes

The uv-parameter domain [0, 1]× [0, 1] of the surface S(u, v) is first split

vertically, then horizontally, and alternating the two directions in the rest

of the BVH construction. In Figure 4.5(c), the three subpatches S1, Sm,

S2 are made of the same size, having width 3/8 and height 1. (The width

of Sc is 2/8, and each of the overlaps S1∩Sm and S2∩Sm has width 1/16.)

They become the three child nodes for the root of the BVH tree. Each

child then becomes an internal node by splitting horizontally in the same

ratio. Starting with a uniform grid of 128× 128 subpatches Sij, the first

row of Figure 4.10 shows the grid sizes of these intermediate subpatches

51

in the vertical and horizontal splits. Repeating the same procedure one

more time to each uniform grid of 48×48, each internal node of the BVH

at this level will cover a grid of size 18×18. After that, we have to change

the ratio of splits so that the split lines always go through the boundary

curves of some Sij but never through the interiors of some subpatches.

(Otherwise, the width or height of an overlap region S1∩Sm at this level

will be 18/16 of the size of Sij, and the boundary of Sm will go through

the interior of some subpatch Sij .)

In the grid of 18× 18, we set the widths of S1, Sc, S2 to 8, 2, 8, and

that of Sm to 4. The horizontal splits are also made in the same way.

(The second row of Figure 4.10 shows the grid sizes of the correspond-

ing intermediate subpatches.) In the remaining lower levels of the BVH

construction, we leave no overlap region by making Sm = Sc. Thus, the

size 8 will be split to 8 = 3 + 2 + 3, and the size 4 will be 4 = 2 + 0 +

2. At this stage, the self-intersection test results are explicitly recorded

in the BVH nodes by doing the test in a preprocessing stage for small

windows of 3×3 or 2×2 subpatches. In Section 6.1, we have more details

of the preprocessing computations. (In fact, we do this test for each 3×3

windows of the total grid of size 128× 128, in a preprocessing step, and

store the results in the grid structure. The tests for 2 × 2 windows can

be done as a part of the tests for 3× 3 windows containing them.) If the

recorded test result is no self-intersection, we can save computing time by

52

Figure 4.9: Binary and ternary BVH structure.

skipping the self-intersection test. Otherwise, we should be ready for the

detection of miter points and the construction of solution curves for the

surface self-intersection. This is done in the BVH subtree, with its root

at the corresponding internal node. From the internal nodes of size 3× 3

or 2×2, we go down to the lower levels (in two more steps) using the split

ratios of 3 = 1 + 1 + 1 and 2 = 1 + 0 + 1, where the number 0 in the

middle means that there is no middle child from the node of size 2 × 2.

At this stage, all leaf nodes are at the same level 10. Some leaf nodes

are converted to an internal node as discussed above when they contain

miter points and their regional representation as a small quadrangle Q.

Remark: We can also construct a ternary BVH tree for a grid of

8N × 8N subpatches Sij. For example, when the grid size is 256 × 48,

the vertical splits are made twice to generate nodes of size 96× 48, and

53

then of size 36 × 48. After that, the horizontal splits produce nodes of

size 36 × 18. Now, 36 and 18 are not multiples of 8, and we need to

use different ratios for the splits. The basic rule is to build a balanced

ternary BVH tree at high levels and at the same time to provide some

gaps between two subpatches to be intersected for global intersections.

The split ratio 8 = 3 + 2 + 3 is intended for this purpose. At low levels

of the BVH tree, we have to compromise. The grids of small sizes make

the split business more difficult, often leaving no more overlap regions.

On the other hand, the local self-intersections become relatively easier

to check for small windows of adjacent subpatches. The self-intersection

test results can be pre-computed and recorded in the grid structure for

later usage. We discuss more details in Chapter 6.

54

F
ig

u
re

4
.1

0
:

G
ri

d
si

ze
s

fo
r

th
e

su
b
p
at

ch
es

ge
n
er

at
ed

b
y

th
e

ve
rt

ic
al

an
d

h
or

iz
on

ta
l

sp
li
ts

.

55

4.3 Summary

In this chapter, we introduce a new BVH data structure for surface inter-

sections. First, the binary structure for surface-surface-intersection prob-

lem is the same as the typical BVH structure that has been used for a

long time. However, the BVs are consist of rectangle-swept-sphere(RSS),

and the leaf nodes additionally have a second-order contact osculating

toroidal patches. The binary structure becomes a problem for surface self-

intersection problems because the child nodes necessarily have a common

boundary. The surface intersection algorithm recursively subdivides the

surface into smaller and smaller pieces along the common boundary, it

takes considerably more computing time, and the advantage of using

BVH is lost. Therefore, we introduce a ternary structure, accelerating

the decision procedure and avoiding the common boundary problem.

56

Chapter 5

Surface-Surface-Intersection

Our surface-surface-intersection algorithm is based on traversing the bi-

nary BVH tree demonstrated in Section 4.1. The BVH-based SSI algo-

rithm proceeds by traversing the BVHs for the two freeform surfaces

and detecting all pairs of leaf nodes whose bounding volumes overlap.

For each pair of overlapping leaf nodes, we first intersect their osculating

toroidal patches. When the two toroidal patches have no overlap in their

Gauss maps, their SSI curve may have at most one branch with no bi-

furcation. Otherwise, the two surfaces may have tangential intersections,

and we need further steps to determine the topological type of the SSI

curve segments. In the final stage, we connect all the SSI curve segments

thus constructed, in a correct topology.

57

5.1 BVH Traversal

Given two bicubic Bézier surfaces SA(u, v) and SB(s, t), let A and B

denote their respective BVHs. The traversal of A and B is about the

same as the sequence of subdivisions of SA and SB in the conventional SSI

algorithms (that belong to the category of subdivision method). Instead

of testing the overlap between the convex hulls of control points for the

two surface patches to be intersected, we test the overlap between the

bounding volumes stored in the interior nodes of A and B that correspond

to the two surface patches.

When there is no overlap between the two bounding volumes, there is

no intersection between the two surface patches under consideration. In

the case of overlap, when A’s bounding volume is larger than B’s, we go

down to the child nodes of A and compare them with the current node

of B; otherwise, we switch the roles of A and B. At a leaf node of A or

B, we also switch the roles of A and B. When we are at the leaf nodes

of both A and B, we move to the next stage of constructing SSI curve

segments using the osculating toroidal patches stored in the leaf nodes

of A and B.

58

5.2 Construction of SSI Curve Segments

Given two leaf nodes of A and B and their osculating toroidal patches,

it is easy to construct their Gauss maps and to test their overlap. When

the Gauss maps have no overlap, the toroidal patches may have at most

one branch in their SSI curve. In the case of having one branch, each end-

point of the SSI curve segment is located on the boundary of one toroidal

patch [41, 9]. As discussed in Section 4.1.3, the osculating toroidal patches

have their boundaries as circular arcs. By intersecting each of the bound-

ary circular arcs against the other toroidal patch, we can find the two

endpoints of the SSI curve branch. The SSI curve interior can then be ap-

proximated by a numerical tracing technique [62, 63, 64] or a specialized

algorithm [34, 65, 11] for torus.

The intersection curve segments between two toroidal patches are

then projected to the uv-parameter domain of the surface SA(u, v), using

the parameter matching between Ŝij(u, v) and T̂ij(u, v) discussed at the

end of Section 4.2. (The projection to the st-domain of the other surface

SB(s, t) can be done in the same way.) There is one technical problem

to consider here. Two adjacent trimmed toroidal patches T̂i−1,j(u, v) and

T̂ij(u, v) are not connected and they share no common boundary. (On

the other hand, their counterparts Ŝi−1,j(u, v) and Ŝij(u, v) are smoothly

connected on the same Bézier surface SA(u, v).) This means that the

59

projections of the SSI curve segments from T̂i−1,j(u, v) and T̂ij(u, v) to

the uv-domain may not be connected across their common boundary line

u = ui. In the next subsection, we discuss how to deal with this problem

by constructing a connected sequence of G1-continuous biarcs in the uv-

domain. The projected curve segments are approximated by G1-biarcs

within a given error bound ε > 0.

5.2.1 Merging SSI Curve Segments with G1-Biarcs

Each SSI curve segment in the uv-domain is usually given as a sequence of

points pk, (k = 0, · · · , N), representing a polyline. Figure 5.1 represents

three typical forms of SSI curve segment. For the sake of simplicity, we

consider the construction of a G1-continuous u-monotone curve segment

on a subdomain [ui−1, ui] × [vj−1, vj]. We assume that the first point p0

is located on the left boundary u = ui−1 and the last point pN is on

the line u = ui. There may be a slightly different point q0 (on the same

line u = ui) as a starting point for the next SSI curve segment on the

subdomain [ui, ui+1] × [vj−1, vj] on the right. Thus we need to relocate

pN to p∗N , simply by averaging p∗N = (pN + q0)/2, or for better, by

numerically solving S1(ui, v) = S2(s, t). Then, we set q∗0 = p∗N . The

relocation p∗0 is computed in a similar way.

When the SSI curves are generated, the tangent directions vk at the

SSI points pk are also computed in the solution process. Using these vk,

60

Figure 5.1: Three types of SSI curve segment.

we compute the tangent direction v∗N at the new location p∗N , simply by

averaging the directions for pN and q0, or as a byproduct of the solution

for p∗N . In a similar way, we get a new direction v∗0 at the new starting

point p∗0.

We construct a G1-biarc that interpolates the two boundary condi-

tions: (p∗0,v
∗
0) and (p∗N ,v

∗
N) [66, 67], and measure the maximum deviation

of the intermediate points pk, (k = 1, · · · , N − 1). When the maximum

deviation is larger than a given tolerance ε > 0, we repeat the approxi-

mation using two G1-biarcs by interpolating an additional point pm and

its tangent vector vm. The point pm is taken, simply as the middle point,

or for better, as the point of maximum deviation from the G1-biarc ap-

proximation. We relocate pm to a more accurate position p∗m and the

corresponding tangent direction v∗m. After that, we repeat the G1-biarc

constructions recursively in two subproblems.

In general, we need to consider the G1-biarc construction for various

61

different cases such as: (i) from a boundary point p∗0 to an X-junction

point pN , or the other way around, (ii) from the leftmost point p∗0 of a

closed loop to the rightmost point p∗N of the same loop, and then back to

p∗0 around the other side of the loop, and so on. The one branch condition

(on two transversally intersecting surface patches) greatly simplifies the

ordering of the SSI points pk, and thus the G1-biarc approximation of

these ordered points. Nevertheless, the ordering problem becomes more

difficult when the surfaces intersect (almost) tangentially.

Even under the one branch condition, there is one serious technical

problem in our approach – the osculating toroidal patches may not inter-

sect even though their counterparts Ŝij(u, v) have a branch of intersec-

tion curve. (This is because the one branch condition does not necessarily

guarantee the existence of one branch.) For example, the sequence of SSI

points pk, (k = 0, · · · , N), may not be connected to another sequence of

points ql, (l = 0, · · ·), in the subdomain on the right. Nevertheless, start-

ing with the information (p∗N ,v
∗
N), we can do the conventional numerical

curve tracing [62, 63, 64] on the SSI curve: S1(u, v) = S2(s, t). But then,

what if the whole loop is missing, by bad luck, without leaving any in-

formation (p∗,v∗) to start with? Though the chance of missing a whole

loop is extremely low, we may have (almost) tangential intersections of

two surfaces when their Gauss maps overlap. We have not discussed this

non-trivial case, yet.

62

The bottom line is that, regarding the issues of robustness and topo-

logical guarantees, we can do as much as other conventional methods do.

The BVH-based approach can work with any other subdivision-based SSI

methods, while incorporating their apparatus (such as ensuring at least

one point on each branch or loop), and at the same time, improving the

performance by using the pre-built subdivision structures for freeform

surfaces. Thus, in the rest of this work, instead of trying to fill small

gaps for the completeness of a typical SSI work, we focus on the main

computational features that can be made possible using the precompu-

tation of osculating toroidal patches and the nice geometric properties of

G1-biarc spline curves.

5.2.2 Measuring the SSI Approximation Error Using

G1-Biarcs

The G1-biarc spline curve (u(θ), v(θ)) is only an approximate solution to

the SSI curve, where the parameter θ means an arc-length parameteriza-

tion of the biarc spline curve. To test if the approximation error is within

a given error bound ε > 0, we need to bound the maximum deviation of

the curve-on-surface SA(u(θ), v(θ)) from the other surface SB(s, t). For

this purpose, using a similar G1-biarc approximation of the SSI curve

in the st-domain of SB(s, t), we match pairs of circular arcs from both

the uv and st-domains and estimate the upper bound for the squared

63

distance function:

d2(θ) = ‖SA(u(θ), v(θ))− SB(s(θ), t(θ))‖2,

by sampling on the angles θk of the matching arcs and adding an error

term η > 0 estimated from Filip et al. [28] to the maximum of the sampled

function values, max d2(θk).

When the bounding condition: max d2(θk)+η < ε2, is met, each of the

matching SSI curves, SA(u(θ), v(θ)) and SB(s(θ), t(θ)), is guaranteed to

be within a given tolerance ε > 0 from the other surface. The matching

pair (SA(u(θ), v(θ)), SB(s(θ), t(θ))) is considered to be an acceptable ap-

proximate solution to the SSI computation problem. Otherwise, we need

to refine the G1-biarc SSI curves in the uv and st-parameter domains by

sampling some more points in the SSI curves if necessary.

5.3 Tangential Intersection

When two surfaces intersect tangentially at a point, they share the same

normal line (i.e., their binormal line) at the point. The location of an

X-junction or a near X-junction can be detected by computing the bi-

normal lines to the two surfaces and checking the signed distance between

the corresponding binormal-surface intersection points. Depending on the

sign, we can decide which type of (almost) tangential intersection curve

64

the two surfaces have. For example, in Figure 5.2, when measured along

the normal direction of the blue torus, the binormal-surface intersection

point of the red torus is located at a signed distance of zero, negative,

and positive, respectively, in each of the three rows. Osculating toroidal

patches greatly simplify this test by converting the distance computation

to a much simpler problem of solving a polynomial equation of degree

8 [68, 16]. The polynomial equation can be solved considerably faster

than the general case of computing binormal lines for two bivariate sur-

faces, where we need to deal with a system of four equations in four

variables.

5.4 Summary

In this chapter, we have presented a new approach to the SSI prob-

lem for freeform surfaces, which is based on a pre-built rectangle-swept

sphere(RSS) tree with osculating toroidal patches stored in the leaf nodes.

RSS tree accelerates the geometric search for the potential pairs of surface

patches that may generate some curve segments in the surface-surface-

intersection. The high approximation order of osculating torus was shown

to be an effective geometric tool for handling non-trivial cases of two

freeform surfaces tangentially intersecting almost everywhere.

65

Figure 5.2: Intersection curves of toroidal patches which may have X-

junctions or multiple branches; the example on the left is a pair of (con-

vex, convex) patches and on the right is a pair of (concave, concave)

patches.

66

Chapter 6

Surface Self-Intersection

Our surface self-intersection algorithm is based on traversing the ternary

BVH tree demonstrated in Section 4.2. In a hash table, we store the

pairs of leaf nodes whose bounding volumes overlap. In the insertion pro-

cess to the hash table, we can filter out duplicated copies of the same

pair already stored. For each pair of leaf nodes stored in the hash table,

we compute their intersection curves only when the corresponding sub-

patches intersect each other. The (u, v) and (s, t) solution curve segments

are recorded in the parameter domain of the surface. In the final step,

they are connected in a correct topology.

67

6.1 Preprocessing

It is convenient to store surface local details in a simple grid structure

of uniformly subdivided subpatches Sij, (i, j = 1, · · · , 128). Tij is the

osculating toroidal patch of Sij computed at the mid-parameter point of

Sij, properly parameterized and trimmed so that ‖Sij(u, v)−Tij(u, v)‖ <

εT , for all (u, v) in the domain of Sij, and some error bound εT > 0 [28, 21].

Their surface normals also satisfy a similar condition by increasing the

number of subpatches in the uniform grid structure if necessary. However,

for the subpatches containing miter points, the normal bounding fails

repeatedly even if we reduce the size of Sij, we should handle differently.

For non-miter subpatches, the Gauss map of Sij can be bounded by

adding some margin to that of Tij, based on which we can tell that Sij

is self-intersection-free if the Gauss map of Tij is sufficiently small and

totally contained in a unit hemisphere. Using a higher resolution for the

grid structure if necessary, we assume that each non-miter subpatch Sij

has no self-intersection. Next, we check if 2×2 and 3×3 windows of these

non-miter subpatches are self-intersection-free. When the Gauss maps of

Tij in the window cover an area than a unit hemisphere, we record this

information to the upper-left corner of a 2× 2 window and to the center

of a 3×3 window. The windows near a miter subpatch have some chances

of being classified as this class.

68

6.2 BVH Traversal

Starting from the BVH root for a freeform surface S(u, v), we recursively

compute the self-intersection curve for each of the three child nodes: S1,

Sm, and S2. (When the child node is empty or a leaf node, we stop the

recursion.) After that, we recursively compute the global intersections

for three pairs: (S1, S2), (S1 \ Sm, Sc), and (S2 \ Sm, Sc), where Sc =

Sm \ (S1∪S2). In the global intersection for a pair (SA, SB), we swap the

two nodes, (i) when SB is larger than SA in the domain size, or (ii) when

SA is a leaf node and SB is an internal node.

Algorithm 1: Self-Intersection of a Freeform Surface

Result: Surface Self-Intersection Curve
input: S: the root of a BVH tree for a freeform surface patch
if S is either empty or a leaf node then

return
end
S1, Sm, S2: the left, middle, right child nodes for S;
Self-Intersect(S1); Self-Intersect(Sm); Self-Intersect(S2);
Sc = Sm \ (S1 ∪ S2);
Intersect(S1, S2); Intersect(S1 \ Sm, Sc); Intersect(S2 \ Sm, Sc);

We stop the recursion when either node is empty or both are leaf

nodes. The pair of leaf nodes is then inserted to a hash table for all

pairs to be intersected. In the insertion process, duplications of the same

pair are filtered out. Moreover, we also stop the recursion when the two

bounding volumes for SA and SB have no overlap. In principle, we may

69

use any bounding volumes for freeform surfaces. In the current work,

we also use Rectangle Swept Spheres(RSS) for the overlap test as same

as surface-surface-intersection problem. One exception is an ε-ball, for

bounding the composite surface S(Q(α, β)) for a miter-quadrangle Q.

Algorithm 2: Intersection of Two Surfaces

Result: Intersection of Two Surfaces
input: SA, SB: Two surfaces to be intersected
if SA is empty or SB is empty then

return
else if SB is larger than SA then

Swap SA and SB;
end
if SA is a leaf node then

Compute-SSI-Curve(SA,SB);
else if SA and SB have no overlap in their bounding volumes
then

return
else

S1, Sm, S2: the left, middle, right child nodes for SA;
Intersect(S1, SB); Intersect(Sm, SB); Intersect(S2, SB);

end

6.3 Construction of Intersection Curve Segments

The intersection of two surface patches Sij and Skl from non-miter leaf

nodes can be constructed using a conventional SSI algorithm. Thus we

focus on the pair of nodes, where one contains a miter point. (The chance

of both being miter nodes is extremely low; thus we skip this highly

70

unusual case in the following discussions.) The center of an ε-ball for

S(Q(α, β)) can be projected to the subpatch Skl of the other node [21].

Based on the result, we can decide on which side of Skl the miter point

(approximated by the ε-ball center) is located, including the case of lying

on the subpatch.

The self-intersection curve (in the xyz-space) near the miter point

is an almost linear segment with the miter point at its open end. By

intersecting the line segment against the subpatch Skl, we can decide the

planar lution curves in a neighborhood of the miter-quadrangle Q. Note

that the solution curves for a local self-intersection (meeting at the miter

point as shown in Figure 4.6) are constructed in a preprocessing step and

stored in the grid structure of subpatches. To complete the construction

of self-intersection curves, we need to add an additional solution curve

from a global self-intersection of Skl against the neighborhood of Q.

When the line segment has no intersection with Skl, the solution

curves (meeting at the miter point) for a local self-intersection and the

solution curve for a global self-intersection also have no intersection (see

Figure 6.1(a)). On the other hand, if there is an intersection with Skl,

the intersection point should be of the form S(u∗, v∗) = S(s∗, t∗), where

the two locations (u∗, v∗) and (s∗, t∗) are on their respective (u, v) and

(s, t) solution curves. In this case, as shown in Figure 6.1(b), the solution

curve for a global self-intersection with Skl will intersect the (u, v) and

71

(a) (b)

Figure 6.1: Arrangement of solution curves: (a) when the local self-

intersection curve has no intersection with Skl, and (b) when the local

self-intersectio n curve has a global intersection with Skl.

(s, t) solution curves for the local self-intersection.

The illustration in Figure 6.1 corresponds to the example of Fig-

ure 8.8(a), with a hyperbolic type solution curve. In Figure 8.8(b), an

elliptic type solution curve produces an 8-figured self-intersection curve

in the Euclidean space. In a similar way, a parabolic type solution curve

produces a self-intersection curve of ∝ shape. The type of each solution

curve can be determined by the number of branches in the 1-ring neigh-

borhood of Sij. We skip the details of the case analysis.

6.4 Summary

Surface self-intersection is the collection of all points where two different

surface parameters map to the same location in the Euclidean space. The

72

miter points make the surface self-intersection problem more difficult

because there is an almost tangential self-intersection and the surface

normal directions change dramatically around each miter point, located

at the open endpoints of the self-intersection curve.

We have presented a new approach to the self-intersection problem for

freeform surfaces, using a regional representation of miter points in the

parameter space. Nevertheless, the self-intersection curve near a miter

point has an almost linear shape in the Euclidean space. The geometric

uncertainty can be confined to the miter quadrangles in the parameter

space. Based on this observation, we can decide a local topology of the

self-intersecting surfaces at miter points.

73

Chapter 7

Trimming Offset Surfaces with
Self-Intersection Curves

In order to use offset surfaces meaningfully in CAD/CAM applications,

we must trim off the self-intersection and redundancies of offset sur-

faces. Detecting the self-intersection of an offset surface is an important

research issue, but it has long been considered one of the most chal-

lenging problems because the offset of a rational surface is non-rational

in general [58, 69]. Furthermore, global and local singularities such as

isolated points, cusps, ridges, and self-intersection curves make the off-

set surface trimming problem considerably more difficult [70], because

they introduce serious numerical instability in associated geometric com-

putations. As the result, many conventional methods [71, 70, 72] are

74

based on approximation techniques and they computed the offset self-

intersection curves for O(u, v) = O(s, t) in the (u, v, s, t)-space by ap-

plying Runge–Kutta iterations to certain differential equations derived

from the self-intersecting offset surfaces. Unfortunately, they often in-

clude large error in the solution in the vicinity of singularities. In this

chapter, we introduce how we overcome these computational difficulties

by using ternary hybrid BVH tree and osculating toroidal patches.

7.1 Offset Surface and Ternary Hybrid BVH

Given a regular freeform surface S(u, v), the offset surface O(u, v) is

defined as follows:

O(u, v) = S(u, v) + d ·N(u, v), (7.1)

where d is a positive or negative offset distance value and N(u, v) is a

unit normal vector of S(u, v):

N(u, v) =
Su(u, v)× Sv(u, v)

‖Su(u, v)× Sv(u, v)‖
. (7.2)

In Figure 7.1, the blue progenitor surface makes the left red offset sur-

face with a positive offset radius and makes the right red offset surface

with a negative offset radius. As our surface self-intersection algorithm

75

Figure 7.1: Blue surface is a progenitor surface, and red surfaces are

offset surfaces.

with the hybrid BVH with ternary structure (for S(u, v)) works reason-

ably well, we can expect it would also work in an efficient and robust

way as well in the offset surface. We start with the bounding volume

technique for a hybrid BVH. From the hierarchy of bilinear surfaces, we

approximate S(u, v), mainly using the four corner points of each surface

subpatch. Given u and v, we calculate four corner points of a subpatch of

O(u, v) (Oi,j(u, v)) by Equation 7.1, and also build a ternary hybrid BVH

tree for O(u, v). As discussed in Section 4.2, there are osculating toroidal

patches on the leaf nodes of BVH. Simply saying, the osculating toroidal

patch for a leaf node can be constructed using the principal curvatures

of Oi,j(u, v). However, this is non-trivial in case of singularity. Using the

geometric properties of torus, we compute a toroidal patch that approxi-

mates Oi,j(u, v) while avoiding this problem. The offset of a torus can be

computed simply by adding offset radius d to the minor radius r of the

76

Figure 7.2: Toroidal patch and their offsets.

torus. Furthermore, since we build an osculating toroidal patch using the

principal curvatures of Si,j(u, v), the surface normal at (u, v) is the same

as that of the toroidal patch. This means that the offsets of the osculating

toroidal patch for Si,j(u, v) approximates Oi,j(u, v). In Figure 7.2, a red

toroidal patch T oi,j(u, v) is the offset of a blue toroidal patch Ti,j(u, v).

7.2 Preprocessing

To build a ternary hybrid BVH tree, we first make uniform subdivision

of an offset surface O(u, v) into subpatches Oij, (i, j = 1, · · · , 144). Note

that we take 144 as our 8N × 8N rule in Section 4.2, which can be

extended to 1024, using split ratios 1024 = 384 + 256 + 384 and 384 =

77

144 + 96 + 144. After the subdivision for leaf nodes, we need to check all

leaf nodes to deal with the singularities with two conditions, normal flips

and near singular. Hong et al. [56] simplified the equation of determining

the normal flipping of the offset surface as follows:

f(u, v) =

(
κ1 −

1

d

)(
κ2 −

1

d

)
, (7.3)

where κ1 and κ2 are the principal curvatures of S(u, v). When f(u, v)

is negative, the normal vector of O(u, v) is opposite to the normal of

S(u, v). With this geometric condition, we can categorize leaf nodes to

three types:

• Fully flipped : f(u, v) < 0 for the whole region of a leaf node; the

normal of leaf node flips from the progenitor surface.

• Partially flipped : f(u, v) has both positive and negative values;

some regions of leaf node is flipped but the others are not.

• Not flipped : f(u, v) > 0 for the whole region of a leaf node; the

normal of the leaf node is the same as the progenitor surface.

Fully flipped leaf nodes must be excluded and not included in the trimmed

offset surface [23], so we can ignore them in the offset surface self-

intersection, which often appear in a large area on the surface (u, v)-

domain. Moreover, when an internal node of the BVH tree contains all

78

Figure 7.3: Offset surface with normal flipping.

fully flipped regions, we do not need to generate children nodes and stop

recursive subdivision, which makes the self-intersection algorithm faster.

Not flipped leaf nodes are ordinary nodes, so they are ready to execute

an intersection algorithm. In Figure 7.3, there is an offset surface with-

out trimming redundancies. Fully flipped region is shown in blue, and

not flipped region is shown in red. The problem is partially flipped leaf

nodes. They are located near the boundary of fully flipped leaf nodes.

Not flipped regions in the partially flipped leaf nodes can be used for

an tracing an intersection curve. However, prebuilt osculating toroidal

patches can not bound its normal correctly and maybe invalid, because

the angle of the normal vector of partially flipped leaf node increases by

more than 180◦. Even if the approximation is done reasonably well, the

79

(a) (b) (c)

Figure 7.4: (a) Solution curve with transversal intersections; (b) ex-

pand solutions with instant osculating toroidal patch matching; (c) final

solution curve with contouring constant curvature.

parameter matching between the toroidal patch and the surface subpatch

may go awry, so we store partially flipped leaf nodes separately.

Unit normal vector N(u, v) is well-defined for a regular surface S(u, v)

as the u and v-partial derivatives Su(u, v) and Sv(u, v) are non-parallel,

and the vector Su(u, v) × Sv(u, v) never vanishes. Even if the surface

S(u, v) is given as a regular surface, the offset surface O(u, v) may have

certain areas where the partial derivatives Ou(u, v) and Ov(u, v) become

almost parallel. This singularity occurs generically around the area where

the surface S(u, v) has curvature close to 1
d
, and the offset is taken to

the concave side of the surface [70]. Therefore, we need to check all leaf

nodes, where the corresponding progenitor surface has curvature close to

1
d
. We store them separately as near-singular.

80

7.3 Merging Intersection Curve Segments

After collecting not flipped leaf node pairs whose bounding volumes are

colliding, we can compute self-intersection solution curve(s) by doing

torus-torus-intersection on the osculating toroidal patches. Since all in-

tersections that occur in this process are transversal intersections, our

algorithm for surface self-intersection can be used. Intersection results

are usually given as a set of open curve segments in the (u, v)-domain.

As we separate partially flipped and near-singular leaf nodes, the solution

curves are constructed only partially. In Figure 7.4(a), the solution curves

are shown as a red (u, v)-solution curve and a blue (s, t)-solution curve

and their construction is terminated at the boundary of a fully flipped

region, shown in yellow. In general, the solution curves encounter a par-

tially flipped nodes before near-singular. In this case, we make osculating

toroidal patches forO(u, v) andO(s, t) on the fly, instead of using prebuilt

osculating toroidal patches. Since the osculating toroidal patch is made

with the curvature information at the endpoint of an intersection curve

segment, it approximates the surface locally better than the prebuilt

toroidal patches in the limited area of Figure 7.5(a). After computing

their intersection in the xyz-space for a short curve segment, we project

the result back to the corresponding segments in the (u, v) and (s, t)-

domains. When the parameter matching (x, y, z)−(u, v)−(s, t) is correct

81

(a)

(b)

Figure 7.5: (a) Build toroidal patch instantly with endpoint of solu-

tion curve; (b) Project the result back to the parameters and repeat the

procedure.

with the osculating toroidal patches on the fly, we accept the result to

the solution curve and continue the same process (in Figure 7.5(b)). Note

that the current endpoint’s principal curvature is sufficiently close to 1
d
.

We finally reach to the near-singular region (shown in red in Fig-

ure 7.4(b)) where local self-intersections occur almost everywhere and the

parameter matching between (u, v) and (s, t) becomes highly unreliable,

82

and the toroidal patch matching method becomes not useful anymore.

The near-singular region in the xyz-space is very tiny (usually < 10−5 in

our examples), so we can consider this region as a miter quadrangle (or a

miter tube). In such a small neighborhood, we need to connect solution

curve segments in a correct topology.

To trace the intersection curve through the singularities, we contour

the constant principal curvature of 1
d
[8]. We first do super-sampling in the

region between the parameters of endpoints, (u, v) to (s, t), and perform

a curvature analysis of progenitor surface. When the principal curvatures

of sample points are close enough to 1
d

(ε < 10−8), we trace these sampled

points. In most cases, however, the principal curvatures at sample points

perpendicular to the direction of the solution curve is positive on one

side and negative on the other. Then we pick two sample points where

the sign changes between them and perform a binary search until we

get ε < 10−8. After finishing the contouring of the constant principal

curvature, we obtain a set of parameters, but the (u, v)− (s, t) matching

has not been made yet. From the perspective of the minimum Hausdorff

distance computation, we match the (u, v)− (s, t) parameters and decide

a miter point (in Figure 7.4(c)). Finally, we get all self-intersection points.

At the end of the intersection algorithm, we approximate these segments

using G1-biarcs and measure the approximation error.

83

7.4 Summary

The self-intersection computation for offset surfaces is essential for many

important geometric applications. However, it is more complex to deal

with than the progenitor surface. Even when the progenitor surface is

regular, the offset surface can be singular. We overcome this difficulty by

categorizing the near-singular region and normal flipped region and han-

dling them separately. By separating the singularity regions in a prepro-

cessing stage, we have eliminated the step to create a bounding volume

and build a hierarchy structure for the redundant areas. It makes our

algorithm more efficient and robust. We construct a solution curve not

only using prebuilt toroidal patches with ternary structure, but also con-

structing toroidal patches on the fly at the endpoint of solution curves.

Even when local self-intersections occur almost everywhere, we contour

the constant curvature line and decide a correct local topology in a reli-

able way.

84

Chapter 8

Experimental Results

8.1 Surface-Surface-Intersection

We have implemented the proposed SSI construction algorithm in C++,

on an Intel Core i9-9900KF 3.6GHz Windows PC with a 64GB main

memory. To demonstrate the effectiveness of the BVH-based approach,

we have tested the SSI algorithm on a large set of examples, including

those of intersecting two almost identical surfaces.

The BVH construction on a bicubic Bézier surface typically takes

less than one second in the preprocessing step, when the resolution of

64 × 64 is used for sampling the uv-parameter domain of the surface.

The construction time increases quadratically as we take finer resolutions

along both u, v-directions. Thus the BVH construction would take less

85

Table 8.1: BVH storage for a bicubic Bézier surface (in MB).

Height Convex AABB RSS Tori
4 1.599 0.112 0.142 0.157
5 6.374 0.447 0.493 0.605
6 25.414 1.792 2.217 2.334
7 101.899 7.137 9.123 9.395
8 413.189 28.724 36.548 37.773

than one minute even for a high resolution of 512 × 512. Nevertheless,

there is a certain limitation on the maximum resolution, mainly due to

the fixed memory space of a hardware system. On the other hand, the

SSI computation takes far less time than the BVH construction.

Table 8.1 reports the memory size for storing BVH trees for a bicubic

Bézier surface, where the leaf level contains a total of 2H × 2H nodes,

for the tree heights H = 4, · · · , 8. The convex hull tree contains, in each

node, the convex hull boundary for the Bézier control points, which is

stored as a triangular mesh. The exact number of triangles in each convex

hull changes depending on the shape of a Bézier subpatch. On the other

hand, the sizes of AABB and RSS trees are fixed, depending only on

the height of each BVH tree. The convex hull tree takes much more

memory space than others. In principle, the osculating toroidal patches

can be used for any type of BVH tree for freeform surfaces. Their sizes

are reported separately in the rightmost column of Table 8.1, providing

information on additional memory costs in case they are adapted to a

BVH structure.

86

Table 8.2: Construction time for complete BVH trees of H = 6 (in seconds).

Surfaces # Béziers Convex AABB RSS Tori
GK 1 578 227.7 50.9 142.3 31.4
GK 2 578 212.7 50.6 140.6 35.0
GK 3 578 258.0 51.2 136.6 38.1
GK 4 2 0.6 0.2 0.5 0.1
GK 5 305 101.7 27.0 71.8 21.2
GK 6 273 106.8 23.9 64.5 18.0

Overlap 8 3.4 0.9 2.0 0.5
Saddle 1 2 0.7 0.2 0.5 0.1
Saddle 2 2 0.7 0.2 0.5 0.1

Table 8.2 reports the BVH construction time for the surfaces in the

test examples of Figures 8.2–8.1. The convex hull tree is also the most

expensive in the construction time as well. We have measured the com-

puting time using only one CPU, which seems to produce more stable

timing results than using multi-core CPUs.

Figure 8.2 shows the results from testing our BVH-based algorithm

on six examples of Grandine and Klein [3]. (We have not included the

(a) (b) (c)

Figure 8.1: (a) Two almost overlapping surfaces, and (b)–(c) two saddle

surfaces.

87

Table 8.3: Tree traversal time using BVH trees of H = 6 (in ms), and pairs
of overlapping leaf nodes in complete BVH traversal with H = 4.

Surfaces # Béz Pairs
Traversal time Overlapping pairs

Convex AABB RSS Convex AABB RSS
GK 1 (289,289) 134.07 39.14 44.35 12,008 71,533 16,367
GK 2 (289,289) 107.99 27.31 32.18 6,834 20,284 7,941
GK 3 (289,289) 102.45 26.31 29.25 3,547 6,276 5,034
GK 4 (1,1) 0.06 0.01 0.02 17 34 19
GK 5 (16,289) 6.85 1.89 1.77 1,228 4,009 1,748
GK 6 (81,192) 16.58 4.91 4.74 572 2,042 618

Overlap (4,4) 2.64 0.48 0.80 522 1,049 572
Saddle 1 (1,1) 0.57 0.07 0.20 111 284 251
Saddle 2 (1,1) 0.89 0.08 0.20 125 286 250

other four examples of [3], where one surface is given as a simple plane.)

The almost overlapping example of Figure 8.1(a) is taken from Choi [73],

which is generated by gradually scaling down two intersecting surfaces

along the vertical z-direction until they become almost (visually) indis-

tinguishable. In this scaling process, all points on the SSI curves preserve

the same xy-coordinates and the SSI topology is thus invariant. Two ex-

amples of intersecting almost tangential saddle surfaces are shown in two

other examples of Figure 8.1, where the last example of Figure 8.1(c) is

the case of missing an X-junction only slightly and thus forming two sep-

arate branches in an orthogonal direction to those of the second example

in Figure 8.1(b).

Table 8.3 reports the time taken in the BVH tree traversal for each

example of Figures 8.2–8.1. The convex hull tree is again the worst in the

88

traversal time. Nevertheless, we have yet to compare the total tracing

time for constructing all SSI curve segments. Table 8.3 also may give

some idea on the relative tracing time of each method by comparing the

number of pairs of overlapping leaf nodes when the BVH tree traversal is

made all the way to the leaf level (i.e., without checking the one branch

condition in the internal nodes). This way of complete traversal may

produce a larger number of pairs than necessary, which is the reason why

we check only with the height H = 4, until then not many early exits

would be made at the higher levels h = 1, 2, 3. Though the AABB tree is

often faster in the tree traversal (mostly for simple test examples) than

the RSS tree, it is mainly due to the simple AABB overlap test, which

takes less time than comparing two rectangles in general orientations in

the xyz-space.

According to Table 8.3, the convex hull tree generates the tightest

overlap tests, which saves much time wasted for unnecessarily checking

the potential overlaps among surface subpatches. Though the RSS tree

generates more redundant pairs than the convex hull tree, the overlap

test for toroidal patches is simpler than for freeform surface patches.

Considering all these, the RSS tree (combined with osculating toroidal

patches) provides a good compromise for both space and time efficiency

in the SSI computation for freeform surfaces.

Now, we consider a more serious issue, the robustness of our method,

89

by generating some highly non-trivial test examples of freeform surfaces

which intersect tangentially almost everywhere. Heo et al. [1] report some

interesting results from such a test, where two almost coaxial cylinders

were intersected, with the angle between the two cylinders being θ =

10◦, 1◦, 0.1◦, and 0.01◦. In Figure 9 of Heo et al. [1], the X-junctions are

slightly missed at a small angle θ = 0.1◦, and then completely missed at

a smaller angle θ = 0.01◦. We repeat the same test using our method.

Figure 8.3 reports the test results, including some more challenging tests

with θ = 0.0001◦, and 0.00002◦. The first row of Figure 8.3 shows a red

cylinder approximated (within an error bound ε = 10−10) by four bicubic

polynomial Bézier surfaces, where the parallel lines are degree-elevated

to cubic Bézier curves. Rotating the cylinder axis by angle θ, we have

generated blue cylinders for more and more difficult test examples. Two

cylinders of the same radius intersect while sharing two exact tangential

intersection points. In these test results, the tangential intersection curves

are shown as yellow patches. The second row shows only the boundary

curves of the yellow patches in the tangential intersection regions, and

the zoomed views on their X-junctions are given in the third row. In

Figure 8.4, a tiny shape change is made to the blue cylinders by rotating

their bicubic Bézier surfaces about the axis of the cylinder by angle 45◦.

(Note that the maximum error in the Bézier surface approximation occurs

at the almost tangential intersection points.) After that, we repeat the

90

same tests, but the results are shown for a different set of angles θ.

Table 8.4 reports the number of overlap pairs of leaf nodes in each of

the cylinder examples shown in Figure 8.3. (The performance of AABB

is highly dependent on the orientation of cylinder, which may explain

the unusual result for the case of angle θ = 0.00002◦. In this experi-

ment, we mitigate the influence of orientation by taking the average of

three tests using the axis directions along (1, 0, 0), (1, 1, 0), (1, 1, 1).) The

AABB tree seems impractical in most of these test cases. On the other

hand, the RSS tree looks impractical only after the angle gets smaller

than θ = 0.0001◦, where the overlap occurs almost everywhere in the two

cylinders. Nevertheless, even in the case of θ = 0.00002◦, using the oscu-

lating toroidal patches, we were able to detect the branching structure

of the intersection curve reliably as shown in the rightmost example of

Figure 8.3.

In theory, the convex hull tree might have generated a smaller number

of overlap pairs; nevertheless, due to the large memory space required

for the construction of intermediate convex hulls, we have experienced

difficulty generating the convex hull tree for H = 9. As we have made

some success in the challenging case of θ = 0.00002◦, with more than

5M overlap pairs, any BVH tree combined with the osculating toroidal

patches would also work for this test.

The yellow patches in Figure 8.3 are ideally the surface subpatches

91

Table 8.4: Pairs of overlapping leaf nodes for two cylinders with H = 9.

Angles AABB RSS
0.01◦ 2,667,043 35,572
0.001◦ 2,806,193 242,521
0.0001◦ 3,062,665 2,005,799
0.00002◦ 4,376,814 5,483,794
0.00001◦ 5,807,194 5,510,081

which are within a certain one-sided Hausdorff distance δ > 0 to the other

surface, the exact computation of which would require the intersection of

a surface with the ±δ-offsets of the other surface. This problem seems to

be more difficult than the problem of intersecting two regular surfaces. In

the current work, we take uniform samples from the osculating toroidal

patch of one node to the osculating torus of the other overlap node,

and collect those within a tolerance δ = 10−8 to the torus. The cylinder

example is somewhat artificial as the cylinder is a simple surface by itself.

In Figure 8.5, we repeat the same robustness test to a saddle surface taken

from the examples of Figure 8.1.

92

Figure 8.2: Examples from Grandine and Klein [3]; the leftmost column

shows the results of intersecting two freeform surfaces and the rightmost

two columns show the intersection curves in the parameter domains of

the red and blue surfaces, respectively.

93

F
ig

u
re

8
.3

:
T

an
ge

n
ti

al
in

te
rs

ec
ti

on
of

tw
o

al
m

os
t

id
en

ti
ca

l
cy

li
n
d
er

s,
w

h
er

e
th

ei
r

tw
o

ax
es

m
ak

e
a

sm
al

l
an

gl
e
θ

=
0.

01
◦ ,

0.
00

1◦
,0
.0

00
1◦

,
an

d
0.

00
00

2◦
,

fr
om

le
ft

to
ri

gh
t;

th
e

sa
m

e
to

le
ra

n
ce
δ

=
10
−
8

w
as

u
se

d
fo

r
al

l
te

st
ex

am
p
le

s.

94

F
ig

u
re

8
.4

:
R

ot
at

in
g

b
ic

u
b
ic

p
ol

y
n
om

ia
l

B
éz

ie
r

su
rf

ac
es

ap
p
ro

x
im

at
in

g
(w

it
h
in

a
m

ax
im

u
m

er
ro

r

b
ou

n
d
ε

=
10
−
1
0
)

th
e

re
d

cy
li
n
d
er

b
y

an
gl

e
45
◦

ab
ou

t
th

e
ax

is
of

th
e

cy
li
n
d
er

an
d

th
en

in
te

rs
ec

ti
n
g

w
it

h
th

e
b
lu

e
cy

li
n
d
er

,
u
si

n
g

th
e

an
gl

es
θ

=
0.

1◦
,0
.0

1◦
,0
.0

01
◦ ,
a
n
d
0.

00
01
◦ .

95

F
ig

u
re

8
.5

:
T

an
ge

n
ti

al
in

te
rs

ec
ti

on
of

a
sa

d
d
le

su
rf

ac
e

w
it

h
it

s
ro

ta
ti

on
ab

ou
t

a
n
or

m
al

li
n
e

b
y

a
sm

al
l

an
gl

e
θ

=
0.

01
◦ ,

0.
00

1◦
,

0.
00

01
◦ ,

an
d

0.
00

00
2◦

.

96

Table 8.5: BVH construction, traversal, and surface intersection time (in ms)
and the number of pairs of overlapping leaf nodes.

Examples Construction Traversal Intersection # Overlap pairs
(A) 3,635 392 1,084 599
(B) 1,902 260 1,133 773
(C) 1,872 257 1,251 662
(D) 11,113 1,111 6,960 3,629
(E) 10,980 1,238 5,133 4,858

(Miter-A) 3,616 451 45,610 1,730
(Miter-B) 1,986 257 11,400 774
(Miter-C) 1,828 296 28,522 1,374

8.2 Surface Self-Intersection

8.2.1 Regular Surfaces

We have implemented the proposed self-intersection algorithm in C++,

on an Intel Core i7-10700K 3.8GHz Windows PC with a 128GB main

memory. To demonstrate the effectiveness of the proposed approach,

we have tested the algorithm on several test examples, including three

freeform surfaces with miter points on their self-intersection curves.

Figure 8.6 shows five freeform surfaces, each with the self-intersection

curve (in yellow line) in the Euclidean xyz-space and the corresponding

(u, v) and (s, t)-solution curves (in red and blue lines) in the parameter

domain. These five surfaces contain no miter point. Consequently, the

construction of their self-intersection curves is essentially reduced to the

problem of computing global self-intersections.

97

More challenging test examples are given in Figure 8.7, where three

surfaces are shown with miter point(s) on their self-intersection curves.

The miter points are shown as black dots located at the tips of the self-

intersection curves in the Euclidean space. In the parameter domain, the

miter points (also represented as black dots) appear as the junction points

where the corresponding red and blue solution curves meet. The regional

representations of some miter points are also shown as green rectangles.

Table 8.5 reports some statistics on the self-intersection curve con-

struction for the eight example surfaces in Figures 8.6–8.7. In the mid-

dle three columns, the computing times are given in milliseconds, for

the BVH construction, the BVH tree traversal for overlap tests, and the

handling of overlapping leaf nodes for the construction of self-intersection

curves. The rightmost column reports the number of pairs of overlapping

leaf nodes, actually processed in the final intersection stage. Compared

with the surfaces with no miter points, the self-intersection with miter

points takes considerably (approximately 10–40 times) more computing

time. The extra computational effort will eventually pay off when we deal

with non-trivial geometric decision problems near the miter points, an

example of which we briefly discuss below.

In Figure 8.8, two local surface patches are extracted from small

neighborhoods of the miter points, which are on the (Miter-B) and

(Miter-C) surfaces of Figure 8.7. Each patch is intersected with three par-

98

allel planes as shown in the left, middle, and right columns of Figure 8.8.

The top surface of Figure 8.8(a) intersects in two separate branches (as

shown on the left and right), or in an X-shaped self-intersecting curve (in

the middle) as the result of a tangential intersection at the miter point

(of the (Miter-B) surface in Figure 8.7). Regarding the three topological

types of the plane-surface intersection curve, as discussed in Section 6.3,

a correct classification can be made based on the result of intersecting the

plane against a short line segment (with the miter point at an endpoint).

The plane intersections with the (Miter-C) surface of Figure 8.7

produce even more interesting results. The plane-surface intersection

curves are 8-figures, the miter point, or empty, depending on whether

the plane intersects the short line segment (approximating the surface

self-intersection curve near the miter point) at an interior point, tan-

gentially at the miter point, or at no point. Note that the plane-surface

intersection appears as a closed loop in the parameter space, which turns

into an 8-figured self-intersecting space curve in the Euclidean space, as

the result of gluing the two locations (u∗, v∗) and (s∗, t∗) to the same

point S(u∗, v∗) = S(s∗, t∗) in the xyz-space.

Though we have considered the intersection of a small surface patch

(containing a miter point) against parallel planes (which may not be from

the same surface), the basic principle works for the self-intersection with

some other parts of the surface. Because of the tiny size of the ε-balls, it

99

Table 8.6: BVH construction, traversal, and surface intersection time of offset
surface examples (in seconds).

Examples Construction Traversal Intersection
(A) 7.97 0.87 3.52
(B) 5.87 0.56 1.38
(C) 5.73 0.64 1.68

is quite cumbersome to generate an example of generic surface that has a

global intersection of a miter neighborhood with some other parts of the

same surface. Nevertheless, in some degenerate cases, we need to deal

with this special case, a reliable solution with deciding a correct local

topology based on the techniques we have introduced in this thesis.

8.2.2 Offset Surfaces

We have implemented the proposed offset surface self-intersection algo-

rithm in the same environment as regular surfaces. To demonstrate the

effectiveness of the proposed approach, we have tested the algorithm on

three test examples. Figure 8.9 shows three offset surfaces with the pa-

rameter domain, and the (u, v) and (s, t)-solution curves (in red and blue

lines). Example (A) has no miter point, and the other two have miter

points. The miter points are shown as black dots. In the parameter do-

main, the miter points appear as the junction points in the same way as

the miter points for the regular self-intersection surfaces. Table 8.6 re-

ports the computing times for computing offset surface self-intersection

100

curves. Note that the Example (A) is a B-spline surface, which needs

to be converted to a set of Bézier surfaces and thus requires more com-

puting time than the other two examples. Compared with the result of

Hong et al. [23], where multivariate equation solver took about 30 min-

utes to compute the self-intersection curves for the same examples, our

new approach completed the whole computation within 10 seconds.

101

(A)

(B)

(C)

(D)

(E)

Figure 8.6: Examples of self-intersecting surfaces; the left column shows

the results of self-intersecting a freeform surface and the right column

shows the intersection curves in the parameter domains of the surfaces,

respectively.

102

(Miter-A)

(Miter-B)

(Miter-C)

Figure 8.7: Examples of self-intersecting surfaces with miter point(s)

on their intersection curves; the left column shows the results of self-

intersecting a freeform surface and the right column shows the intersec-

tion curves in the parameter domains of the surfaces and zoom-in areas

around the miter points, respectively.

103

(a)

(b)

Figure 8.8: Examples of local self-intersection curve near the miter

point.

104

(A)

(B)

(C)

Figure 8.9: Self-intersection curves in the xyz-space and in the uv-

domain.

105

Chapter 9

Conclusion

We have presented a new approach to the intersection of freeform sur-

faces, including surface-surface-intersection, surface self-intersection, and

offset surface self-intersection. Using a hybrid BVH, where the internal

nodes contain rectangle-swept spheres(RSS) and the leaf nodes contain

osculating toroidal patches, we developed an efficient and robust algo-

rithm for computing the SSI curves. The bounding volumes of internal

nodes accelerate the geometric search for the potential pairs of local sur-

face patches that may intersect. Even in highly non-trivial cases, we have

shown that the osculating toroidal patches provide stable solutions to the

SSI problem.

106

We have also proposed a new approach to the surface self-intersection

problem using a ternary hybrid BVH structure and a regional represen-

tation of miter points. We bound miter points with small quadrangles

in the parameter domain of the surface. Moreover, the exact location of

each miter point is bounded by a tiny(10−5 or 10−6) ball in the Euclidean

space. The self-intersection curve near a miter point often has an almost

linear shape in the Euclidean space, and the geometric uncertainty can

be confined to the miter quadrangle in the parameter space. Based on

this observation, we can decide a local geometry of the self-intersecting

surfaces at miter points.

We have demonstrated that our new approach, using a hybrid BVH

and osculating toroidal patches, is quite effective in handling the surface

intersection problems. In fact, the proposed approach has great poten-

tial in solving other geometric problems that are more general than the

surface intersection problems, such as 3D Voronoi diagram construction,

convex hull computation, real-time ray tracing, and so on. In the future

work, we plan to extend the proposed approach to other geometric opera-

tions, solving some non-trivial geometric challenges previously considered

extremely difficult.

107

Bibliography

[1] H.-S. Heo, M.-S. Kim, and G. Elber, “Ruled/ruled surface intersec-

tion,” Computer-Aided Design, vol. 31, pp. 33–50, 1999.

[2] A. Galligo and J. P. Pavone, “Self intersections of a Bézier bicu-

bic surface,” in Proc. of the Int’l Symp. on Symbolic and Algebraic

Computation, 2005, pp. 148–155.

[3] T. Grandine and F. Klein, “A new approach to the surface inter-

section problem,” Computer Aided Geometric Design, vol. 14, p.

111–134, 1997.

[4] A. Requicha and H. Voelcker, “Boolean operations in solid modeling:

Boundary evaluation and merging algorithms,” Proceedings of the

IEEE, vol. 73, no. 1, pp. 30–44, 1985.

[5] C. M. Hoffmann, Geometric and Solid Modeling. San Mateo, CA:

Morgan Kaufmann, 1989.

108

[6] H. Chiyokura, Solid modeling with DESIGNBASE: theory and im-

plementation. Boston, MA: Addison-Wesley Longman Publishing

Co. Inc., 1988.

[7] J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geo-

metric Design. Wellesley, MA: AK Peters, 1993.

[8] N. Patrikalakis and T. Maekawa, Shape Interrogation for Computer

Aided Design and Manufacturing. Springer, 2002.

[9] T. Sederberg, H. Christiansen, and S. Katz, “An improved test

for closed loops in surface intersections,” Computer-Aided Design,

vol. 21, pp. 505–508, 1989.

[10] K.-J. Kim, “Circles in torus-torus intersections,” J. of Computa-

tional and Applied Mathematics, vol. 236, pp. 2387–2397, 2012.

[11] X.-M. Liu, C.-Y. Liu, J.-H. Yong, and J.-C. Paul, “Torus/torus in-

tersection,” Computer-Aided Design & Applications, vol. 8, pp. 465–

477, 2011.

[12] T. Sederberg, D. Anderson, and R. Goldman, “Implicit representa-

tion of parametric curves and surfaces,” Computer Vision, Graphics,

and Image Processing, vol. 28, no. 1, pp. 72–84, 1984.

109

[13] M. Barton and G. Elber, “Spiral fat arcs–bounding regions with

cubic convergence,” Graphical Models, vol. 73, no. 2, pp. 50–57, 2011.

[14] G. Elber and M.-S. Kim, “Geometric constraint solver using multi-

variate rational spline functions,” in Proc. of the 6th ACM Sympo-

sium on Solid Modeling and Applications, ser. SMA ’01. New York,

NY: Association for Computing Machinery, 2001, p. 1–10.

[15] I. Hanniel and G. Elber, “Subdivision termination criteria in sub-

division multivariate solvers,” Computer-Aided Design, vol. 39, pp.

369–378, 2007.

[16] M.-S. K. S. Son, S.-H. Yoon and G. Elber, “Efficient minimum dis-

tance computation for solids of revolution,” Computer Graphics Fo-

rum, vol. 39, pp. 535–544, 2020.

[17] A. K. I. Hanniel and S. McMains, “Computing the Hausdorff dis-

tance between NURBS surfaces using numerical iteration on the

gpu.” Graphical Models, vol. 74, pp. 255–264, 2012.

[18] Y.-J. Kim, Y.-T. Oh, S.-H. Yoon, M.-S. Kim, and G. Elber, “Pre-

cise Hausdorff distance computation for planar freeform curves using

biarcs and depth buffer,” The Visual Computer, vol. 26, pp. 1007–

1016, 2010.

110

[19] ——, “Efficient Hausdorff distance computation for freeform geo-

metric models in close proximity,” Computer-Aided Design, vol. 45,

pp. 270–276, 2013.

[20] A. Krishnamurthy, S. McMains, and I. Hanniel, “Gpu-accelerated

Hausdorff distance computation between dynamically deformable

NURBS surfaces,” Computer-Aided Design, vol. 43, pp. 1370–1379,

2011.

[21] X.-M. Liu, L. Yang, J.-H. Yong, H.-J. Gu, and J.-G. Sun, “A torus

patch approximation approach for point projection on surfaces,”

Computer Aided Geometric Design, vol. 26, pp. 593–598, 2009.

[22] J.-K. Seong, K.-J. Kim, M.-S. Kim, G. Elber, and R. Martin, “Inter-

secting a freeform surface with a general swept surface,” Computer-

Aided Design, vol. 37, pp. 473–483, 2005.

[23] Q. Hong, “Trimming self-intersections of offset curves and surfaces,”

Ph.D. dissertation, Dept. of Computer Science and Engineering,

Seoul National University, 2020.

[24] C.-C. Ho., “Feature-based process planning and automatic numer-

ical control part programming,” Ph.D. dissertation, Dept. of Com-

puter Science, Univ. of Utah, 1997.

111

[25] C.-C. Ho and E. Cohen, “Surface self-intersection,” in Mathematical

Methods for Curves and Surfaces, T. Lyche and L. L. Schumaker,

Eds., 2001, pp. 183–194.

[26] M. do Carmo, Differential Geometry of Curves and Surfaces. En-

glewood Cliffs, NJ: Prentice-Hall, 1976.

[27] G. E. Farin and D. Hansford, The Essentials of CAGD, 1st ed. USA:

A. K. Peters, Ltd., 2000.

[28] D. Filip, R. Magedson, and R. Markot, “Surface approximations

using bounds on derivatives,” Computer Aided Geometric Design,

vol. 3, pp. 295–311, 1986.

[29] J. M. Beck, R. T. Farouki, and J. K. Hinds, “Surface Analysis Meth-

ods,” IEEE Computer Graphics and Applications, vol. 6, no. 12, pp.

18–36, 1986.

[30] A. Krishnamurthy, R. Khardekar, S. McMains, K. Haller, and G. El-

ber, “Performing efficient NURBS modeling operations on the gpu,”

IEEE Trans. on Visualization and Computer Graphics, vol. 15, pp.

530–543, 2009.

[31] N. Patrikalakis, “Surface-to-surface intersections,” IEEE Computer

Graphics and Applications, vol. 13, pp. 89–95, 1993.

112

[32] G. Farin, “An ssi bibliography,” in Geometry Processing for Design

and Manufacturing, R. E. Barnhill, Ed. SIAM, Philadelphia, PA:

Chapter 10, 1992, pp. 205–207.

[33] N. Patrikalakis and T. Maekawa, “Intersection problems,” in Hand-

book of Computer Aided Geometric Design, G. Farin, J. Hoschek,

and M.-S. Kim, Eds. Amsterdam: Elsevier, 2002.

[34] H.-S. Heo, S. J. Hong, J.-K. Seong, M.-S. Kim, and G. Elber, “The

intersection of two ringed surfaces and some related problems,”

Graphical Models, vol. 63, pp. 228–244, 2001.

[35] S. Hur, M. Oh, and T. Kim, “Approximation of surface-to-surface

intersection curves within a prescribed error bound satisfying G2

continuity,” Computer-Aided Design, vol. 41, pp. 37–46, 2009.

[36] ——, “Classification and resolution of critical cases in Grandine and

Klein’s topology determination using a perturbation method,” Com-

puter Aided Geometric Design, vol. 26, pp. 243–258, 2009.

[37] T. Akenine-Möller, E. Hains, and N. Hoffman, Real-Time Rendering.

Natick, MA: A.K. Peters, 2008.

[38] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast proxim-

ity queries using swept sphere volumes,” Dept. of Computer Science,

UNC, Tech. Rep., 1999.

113

[39] M. C. Lin and S. Gottschalk, “Collision detection between geometric

models: A survey,” in Proc. of IMA Conference on Mathematics of

Surfaces, 1998, pp. 37–56.

[40] M. C. Lin and D. Manocha, Handbook of Discrete and Computa-

tional Geometry, 2nd ed., J. Goodman and J. O’Rourke, Eds. Chap-

man & Hall/CRC, 2004.

[41] T. Sederberg and R. Meyers, “Loop detection in surface patch inter-

sections,” Computer Aided Geometric Design, vol. 5, pp. 161–171,

1988.

[42] X. Ye and T. Maekawa, “Differential geometry of intersection curves

of two surfaces,” Computer Aided Geometric Design, vol. 16, pp.

767–788, 1999.

[43] Y.-J. Kim, J. Lee, M.-S. Kim, and G. Elber, “Efficient offset trim-

ming for planar rational curves using biarc trees,” Computer Aided

Geometric Design, vol. 29, no. 7, pp. 555–564, 2012.

[44] J. Lee, Y.-J. Kim, M.-S. Kim, and G. Elber, “Efficient offset trim-

ming for deformable planar curves using a dynamic hierarchy of

bounding circular arcs,” Computer-Aided Design, vol. 58, pp. 248–

255, 2015.

114

[45] ——, “Efficient voronoi diagram construction for planar freeform

spiral curves,” Computer Aided Geometric Design, vol. 43, pp. 131–

142, 2016.

[46] G. Müllenheim, “On determining start points for a surface/surface

intersection algorithm,” Computer Aided Geometric Design, vol. 8,

no. 5, pp. 401–408, 1991.

[47] N. M. Aziz, R. Bata, and S. Bhat, “Bézier surface/surface intersec-

tion,” IEEE computer graphics and applications, vol. 10, no. 1, pp.

50–58, 1990.

[48] R. E. Barnhill, “Geometry processing: Curvature analysis and

surface-surface intersection,” in Mathematical Methods in Computer

Aided Geometric Design, T. Lyche and L. L. Schumaker, Eds. Aca-

demic Press, 1989, pp. 51–60.

[49] R. E. Barnhill, G. Farin, M. Jordan, and B. R. Piper, “Sur-

face/surface intersection,” Computer Aided Geometric Design,

vol. 4, no. 1, pp. 3–16, 1987.

[50] R. E. Barnhill and S. N. Kersey, “A marching method for paramet-

ric surface/surface intersection,” Computer aided geometric design,

vol. 7, no. 1-4, pp. 257–280, 1990.

115

[51] L. Busé, M. Elkadi, and A. Galligo, “Intersection and self-

intersection of surfaces by means of bezoutian matrices,” Computer

Aided Geometric Design, vol. 25, pp. 53–68, 2008.

[52] G. Elber, T. Grandine, and M.-S. Kim, “Surface self-intersection

computation via algebraic decomposition,” Computer-Aided Design,

vol. 41, pp. 1060–1069, 2009.

[53] D. Pekerman, G. Elber, and M.-S. Kim, “Self-intersection detection

and elimination in freeform curves and surfaces,” Computer-Aided

Design, vol. 40, pp. 150–159, 2008.

[54] P. Volino and N. M. Thalmann, “Efficient self-collision detection

on smoothly discretized surface animations using geometrical shape

regularity,” in Computer Graphics Forum, vol. 13, no. 3. Wiley

Online Library, 1994, pp. 155–166.

[55] ——, “Collision and self-collision detection: Efficient and robust so-

lutions for highly deformable surfaces,” in Computer Animation and

Simulation ’95. Springer, 1995, pp. 55–65.

[56] Q. Hong, Y. Park, M.-S. Kim, and G. Elber, “Trimming offset sur-

face self-intersections around near-singular regions,” Computers &

Graphics, vol. 82, pp. 84–94, 2019.

116

[57] S. Aomura and T. Uehara, “Self-intersection of an offset surface,”

Computer-Aided Design, vol. 22, pp. 417–421, 1990.

[58] R. Barnhill, T. Frost, and S. Kersey, “Self-intersections and offset

surfaces,” in Geometry Processing for Design and Manufacturing,

R. Barnhill, Ed. SIAM, 1992.

[59] T. Maekawa, W. Cho, and N. M. Patrikalakis, “Computation of

self-intersections of offsets of Bézier surface patches,” Journal of Me-

chanical Design: ASME Transactions, vol. 119, pp. 275–283, 1997.

[60] J.-K. Seong, G. Elber, and M.-S. Kim, “Trimming local and global

self-intersections in offset curves/surfaces using distance maps,”

Computer-Aided Design, vol. 38, pp. 183–193, 2006.

[61] Y. Wang, “Intersection of offsets of parametric surfaces,” Computer

Aided Geometric Design, vol. 13, pp. 453–465, 1996.

[62] C. Bajaj, C. Hoffmann, R. Lynch, and J. Hopcroft, “Tracing surface

intersections,” Computer Aided Geometric Design, vol. 5, pp. 285–

307, 1988.

[63] C. Bajaj and G. Xu, “NURBS approximation of surface-surface in-

tersection curves,” Advances in Computational Mathematics, vol. 2,

pp. 1–21, 1994.

117

[64] G. Elber, J.-J. Choi, and M.-S. Kim, “Ruled tracing,” The Visual

Computer, vol. 13, pp. 78–94, 1997.

[65] K.-J. Kim, “Torus and simple surface intersection based on a con-

figuration space approach,” Ph.D. dissertation, Dept. of Computer

Science, POSTECH, 1998.

[66] D. Meek and D. Walton, “Approximating smooth planar curves by

arc splines,” J. of Computational and Applied Mathematics, vol. 59,

pp. 221–231, 1995.

[67] ——, “Spiral arc spline approximation to a planar spiral,” J. of

Computational and Applied Mathematics, vol. 107, pp. 21–30, 1999.

[68] C. A. Neff, “Finding the distance between two circles in three-

dimensional space,” IBM J. of Research and Development, vol. 34,

pp. 770–775, 1990.

[69] G. Elber, “Free form surface analysis using a hybrid of symbolic

and numerical computation,” Ph.D. dissertation, Dept. of Computer

Science, The University of Utah, 1992.

[70] T. Maekawa, W. Cho, and N. M. Patrikalakis, “Computation of

self-intersections of offsets of be´ zier surface patches,” Journal of

Mechanical Design, 1997.

118

[71] S. Aomura and T. Uehara, “Self-intersection of an offset surface,”

Computer-Aided Design, vol. 22, no. 7, pp. 417–421, 1990.

[72] Y. Wang, “Intersection of offsets of parametric surfaces,” Computer

Aided Geometric Design, vol. 13, no. 5, pp. 453–465, 1996.

[73] J.-J. Choi, “Local canonical cubic curve tracing along sur-

face/surface intersections,” Ph.D. dissertation, Dept. of Computer

Science, POSTECH, 1997.

119

초 록

두변수를가지는 B-스플라인자유곡면의곡면간교차곡선과자가교차곡

선, 그리고 오프셋 곡면의 자가 교차곡선을 구하는 효율적이고 안정적인

알고리즘을개발하는새로운접근방법을제시한다.새로운방법은최하단

노드에 최대 접촉 토러스를 가지는 복합 바운딩 볼륨 구조에 기반을 두고

있다. 이 바운딩 볼륨 구조는 곡면간 교차나 자가 교차가 발생할 가능성

이 있는 작은 곡면 조각 쌍들의 기하학적 검색을 가속화한다. 최대 접촉

토러스는 자기가 근사한 C2-연속 자유곡면과 2차 접촉을 가지므로 주어

진 곡면에서 다양한 기하 연산의 정밀도를 향상시키는데 필수적인 역할을

한다.

효율적인곡면간교차곡선계산을지원하기위해,미리만들어진,최하

단 노드에 최대 접촉 토러스가 있으며 구형구면 트리를 가지는 복합 이항

바운딩 볼륨 구조를 설계하였다. 최대 접촉 토러스는 거의 모든 곳에서

접선교차가 발생하는, 자명하지 않은 곡면간 교차곡선 계산 문제에서도

효율적이고 안정적인 결과를 제공한다.

곡면의자가교차곡선을구하는문제는주로마이터점때문에곡면간

교차곡선을계산하는것보다훨씬더어렵다.자가교차곡면은마이터점

부근에서 법선 방향이 급격히 변하며, 마이터 점은 자가 교차 곡선의 끝점

에 위치한다. 따라서 마이터 점은 자가 교차 곡면의 기하 연산 안정성에

큰 문제를 일으킨다. 마이터 점을 안정적으로 감지하여 자가 교차 곡선의

계산을 용이하게 하기 위해, 자유곡면을 위한 복합 바운딩 볼륨 구조에

적용할 수 있는 삼항 트리 구조를 제시한다. 특히, 두 변수를 가지는 곡면

의 매개변수영역에서 마이터 점을 충분히 작은 사각형으로 감싸는 특별한

표현 방법을 제시한다.

접선교차와 마이터 점을 가지는, 아주 자명하지 않은 자유곡면 예제를

사용하여 새 방법이 효과적임을 입증한다. 모든 실험 예제에서, 기하요소

들의 정확도는 하우스도르프 거리의 상한보다 낮음을 측정하였다.

주요어: 곡면 교차, 곡면 자가 교차, 바운딩 볼륨 구조, 구형구면, 최

대 접촉 토러스, 마이터 점

학번: 2016-21202

121

	Chapter 1 Introduction
	1.1 Background
	1.2 Surface-Surface-Intersection
	1.3 Surface Self-Intersection
	1.4 Main Contribution
	1.5 Thesis Organization

	Chapter 2 Preliminaries
	2.1 Differential geometry of surfaces
	2.2 Bezier curves and surfaces
	2.3 Surface approximation
	2.4 Torus
	2.5 Summary

	Chapter 3 Previous Work
	3.1 Surface-Surface-Intersection
	3.2 Surface Self-Intersection
	3.3 Summary

	Chapter 4 Bounding Volume Hierarchy for Surface Intersections
	4.1 Binary Structure
	4.1.1 Hierarchy of Bilinear Surfaces
	4.1.2 Hierarchy of Planar Quadrangles
	4.1.3 Construction of Leaf Nodes with Osculating Toroidal Patches

	4.2 Ternary Structure
	4.2.1 Miter Points
	4.2.2 Leaf Nodes
	4.2.3 Internal Nodes

	4.3 Summary

	Chapter 5 Surface-Surface-Intersection
	5.1 BVH Traversal
	5.2 Construction of SSI Curve Segments
	5.2.1 Merging SSI Curve Segments with G1-Biarcs
	5.2.2 Measuring the SSI Approximation Error Using G1-Biarcs

	5.3 Tangential Intersection
	5.4 Summary

	Chapter 6 Surface Self-Intersection
	6.1 Preprocessing
	6.2 BVH Traversal
	6.3 Construction of Intersection Curve Segments
	6.4 Summary

	Chapter 7 Trimming Offset Surfaces with Self-Intersection Curves
	7.1 Offset Surface and Ternary Hybrid BVH
	7.2 Preprocessing
	7.3 Merging Intersection Curve Segments
	7.4 Summary

	Chapter 8 Experimental Results
	8.1 Surface-Surface-Intersection
	8.2 Surface Self-Intersection
	8.2.1 Regular Surfaces
	8.2.2 Offset Surfaces

	Chapter 9 Conclusion
	Bibliography
	초록

<startpage>17
Chapter 1 Introduction 1
 1.1 Background 1
 1.2 Surface-Surface-Intersection 5
 1.3 Surface Self-Intersection 8
 1.4 Main Contribution 12
 1.5 Thesis Organization 14
Chapter 2 Preliminaries 15
 2.1 Differential geometry of surfaces 15
 2.2 Bezier curves and surfaces 17
 2.3 Surface approximation 19
 2.4 Torus 21
 2.5 Summary 24
Chapter 3 Previous Work 25
 3.1 Surface-Surface-Intersection 25
 3.2 Surface Self-Intersection 29
 3.3 Summary 32
Chapter 4 Bounding Volume Hierarchy for Surface Intersections 33
 4.1 Binary Structure 33
 4.1.1 Hierarchy of Bilinear Surfaces 34
 4.1.2 Hierarchy of Planar Quadrangles 37
 4.1.3 Construction of Leaf Nodes with Osculating Toroidal Patches 41
 4.2 Ternary Structure 44
 4.2.1 Miter Points 47
 4.2.2 Leaf Nodes 50
 4.2.3 Internal Nodes 51
 4.3 Summary 56
Chapter 5 Surface-Surface-Intersection 57
 5.1 BVH Traversal 58
 5.2 Construction of SSI Curve Segments 59
 5.2.1 Merging SSI Curve Segments with G1-Biarcs 60
 5.2.2 Measuring the SSI Approximation Error Using G1-Biarcs 63
 5.3 Tangential Intersection 64
 5.4 Summary 65
Chapter 6 Surface Self-Intersection 67
 6.1 Preprocessing 68
 6.2 BVH Traversal 69
 6.3 Construction of Intersection Curve Segments 70
 6.4 Summary 72
Chapter 7 Trimming Offset Surfaces with Self-Intersection Curves 74
 7.1 Offset Surface and Ternary Hybrid BVH 75
 7.2 Preprocessing 77
 7.3 Merging Intersection Curve Segments 81
 7.4 Summary 84
Chapter 8 Experimental Results 85
 8.1 Surface-Surface-Intersection 85
 8.2 Surface Self-Intersection 97
 8.2.1 Regular Surfaces 97
 8.2.2 Offset Surfaces 100
Chapter 9 Conclusion 106
Bibliography 108
초록 120
</body>

