
ABSTRACT

Title of dissertation: VISUAL DATA REPRESENTATION USING
CONTEXT-AWARE SAMPLES

Aravind Kalaiah, Doctor of Philosophy, 2005

Dissertation directed by: Associate Professor Amitabh Varshney
Department of Computer Science

The rapid growth in the complexity of geometry models has necessisated revision

of several conventional techniques in computer graphics. At the heart of this trend is

the representation of geometry with locally constant approximations using independent

sample primitives. This generally leads to a higher sampling rate and thus a high cost of

representation, transmission, and rendering. We advocate an alternate approach involv-

ing context-aware samples that capture the local variation of the geometry. We detail two

approaches; one, based on differential geometry and the other based on statistics. Our

differential-geometry-based approach captures the context of the local geometry using

an estimation of the local Taylor’s series expansion. We render such samples using pro-

grammable Graphics Processing Unit (GPU) by fast approximation of the geometry in

the screen space. The benefits of this representation can also be seen in other applications

such as simulation of light transport. In our statistics-based approach we capture the

context of the local geometry using Principal Component Analysis (PCA). This allows us

to achieve hierarchical detail by modeling the geometry in a non-deterministic fashion as

a hierarchical probability distribution. We approximate the geometry and its attributes

using quasi-random sampling. Our results show a significant rendering speedup and

savings in the geometric bandwidth when compared to current approaches.

VISUAL DATA REPRESENTATION USING
CONTEXT-AWARE SAMPLES

by

Aravind Kalaiah

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2005

Advisory Commmittee:

Associate Professor Amitabh Varshney, Chair/Advisor
Professor Larry Davis
Professor Bill Goldman
Assistant Professor David Luebke
Professor David Mount

c© Copyright by

Aravind Kalaiah

2005

Dedicate to my parents,

Rathna Kalaiah and Dr. Puttiah Kalaiah

ii

ACKNOWLEDGMENTS

I owe my gratitude to several people who have supported me and guided me

through various stages of my education. Above all, I would like to thank my advi-

sor, Amitabh Varshney, for his unmatched advice, support, and encouragement. I have

sought his advice on all kinds of issues, both technical and non-technical, and he has

been very patient with me and has been a big source of strength for me throughout my

graduate studies. I have been fortunate to have several discussions with the committee

members. I thank them for their advice.

Many thanks to my high school teachers who got me hooked to mathematics and

science. In particular I would like to thank Ms. Prema, Mr. Prabhakar, and Ms. Gayathri

for inspiring me to be self-motivated. I would like to thank Ms. Menon for encouraging

me to pursue higher studies. Special thanks to my school buddies Ajay, Arvind, Man-

amohan, and Swaroop for the fond memories.

I am grateful to the faculty of IIT, Bombay for the education I received in basic

computer science and mathematics. In particular, I would like to thank my undergradu-

ate advisors Vikram Gadre, Sharat Chandran, and S. Biswas for getting me interested in

computer graphics and in graduate studies. I also thank Neelima Talwar for helping me

to develop an appreciation for humanities. I would like to thank all my hostel mates at

Hostel 3 for the good times at IIT.

I am grateful to Holly Rushmeier and Fausto Bernardini for introducing to some

very special topics in graphics and for encouraging me in my research during my intern-

iii

ship at IBM Research.

I am grateful to the faculty and staff at Maryland and Stony Brook for their fruit-

ful discussions and encouragement related to my research. In particular I would like to

thank Yiannis Aloimonos, Rama Chellappa, Larry Davis, Ramani Duraiswami, Leila De

Floriani, Arie Kaufman, David Mount, and Hanan Samet for inspiring me in ways they

are probably not even aware of. Thanks to Bill Goldman for teaching me the basics of Dif-

ferential Geometry and to David Luebke for the many discussions and advice on point-

based rendering. I am grateful to my labmates Xuejun Hao, Thomas Baby, Chang-Ha

Lee, and Youngmin Kim for the animated discussions on problems in computer graph-

ics. Many thanks to Pankaj, Kanta, Sulabh, Vinod, Jackie, Harish, Ramani, Karthik, Dami,

Merrick, and Nilani for making my stay Maryland a memorable one.

Finally, I would like to thank my extended family and friends for their invaluable

support. I owe my biggest gratitude to my parents, to my brother Avinash, and to Anke,

for keeping me smiling through the most stressful periods of my work.

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Recent Trends in Visual Data . 2
1.2 Challenges of Large Visual Data . 3
1.3 Dissertation Hypothesis . 4
1.4 Overview . 5
1.5 Contributions . 5

2 Context-Aware Samples 6
2.1 Previous Work . 7

2.1.1 Geometry Acquisition and Processing 7
2.1.2 Geometry Representation . 9
2.1.3 Real-Time Rendering . 11

2.2 Differential Points . 11
2.3 Statistical Points . 16

2.3.1 Unified-Attribute Statistical Samples 19
2.4 Comparison and Summary . 20

3 Geometry Representation using Context-Aware Samples 21
3.1 Differential Point Geometry . 21

3.1.1 Sampling . 21
3.1.2 Handling undersampling . 22
3.1.3 Handling oversampling: Simplification 23

3.2 Visual Data Representation using Statistical Points 27
3.2.1 Hierarchical PCA . 28
3.2.2 Detail Evaluation . 30
3.2.3 Quasi-Random Sampling . 32
3.2.4 Determining the Number of Samples 33
3.2.5 Statistical Geometry Modeling in the Unified-Attribute Space . . . 35

3.3 Comparison and Summary . 37

4 Encoding Context-Aware Samples 38
4.1 Encoding Differential Point Geometry . 38
4.2 Encoding Statistical Points . 39

4.2.1 Classification . 39
4.2.2 Quantization . 39

4.3 Summary . 42

5 Transmission and Rendering 43
5.1 Differential Point Rendering . 43

5.1.1 Normal Distribution . 44
5.1.2 Shading . 46

5.2 Statistical Point Generation . 49

v

5.2.1 Client-Server Model . 49
5.2.2 On-demand Transmission . 50
5.2.3 View-dependent Transmission . 52
5.2.4 Anti-aliased Rendering . 55

5.3 Comparison and Summary . 56

6 Results and Applications 57
6.1 Differential Points . 57
6.2 Statistical Point Geometry . 62

6.2.1 Comparison to Splatting . 62
6.2.2 Comparison to Octree-based Representations 64
6.2.3 Compression . 65
6.2.4 Network Bandwidth Reduction . 67
6.2.5 Rendering . 69

6.3 Unified-Attribute Statistical Points . 71
6.4 Summary . 72

7 Hierarchical Shadow Computation using Statistical Points 73
7.1 Previous Work in Shadow Computation . 73
7.2 Overview of our approach . 75
7.3 Hierarchical Shadow Computation . 75
7.4 Results and Conclusions . 81

8 Conclusions and Future Work 83
8.1 Conclusions . 84
8.2 Future Work . 85
8.3 Data and Funding Acknowledgments . 87

Bibliography 88

vi

List of Tables

1.1 Recent growth of Visual Data . 2

3.1 The relationship between the screen space area of a node and the number
of points needed to cover the node . 34

6.1 Statistics of various Differential Point models 59
6.2 Comparison of Differential Points with Splatting Primitives 61
6.3 Comparison of the SPG hierarchy with the octree hierarchy 64

7.1 Results for Hierarchical Shadow Computation 81

vii

List of Figures

2.1 Differential Points: Principal curvatures and the approximating surface . . 13
2.2 PCA in the position and the normal space 16
2.3 The PCA hierarchy . 18

3.1 Simplification of the teapot model . 23
3.2 The simplification algorithm for Differential Points 25
3.3 Line segments used for the overlap test . 26
3.4 Pseudo code of the overlaps test . 27
3.5 Spatial partitioning of a set of points using clustering 27
3.6 Using the Mahalanobis distance metric for spatial partitioning 29
3.7 Illustration of the statistical point hierarchy 30
3.8 Comparison of pseudo-random and quasi-random sampling 33
3.9 Illustration of the relative advantages of PCA in the unified attribute space 36

4.1 Rendering quality with and without encoding 39
4.2 Quantization and Classification of Statistical Points 40
4.3 Influence of encoding on the rendering quality of Statistical Points 41

5.1 Differential Point Rendering Algorithm . 47
5.2 Differential Point Rendering Examples . 48
5.3 The Client-Server Rendering Model for Statistical Points 49
5.4 Timeline of Client-Server interaction . 50
5.5 On-demand Rendering on a remote PC . 51
5.6 On-demand Rendering on a remote PDA 53
5.7 View-dependent rendering datastructure and algorithm 54
5.8 View-dependent rendering on the GPU . 55

6.1 Rendering quality with and without simplification 58
6.2 The three test cases of differential point rendering 61
6.3 Comparison of statistical point rendering with splatting 63
6.4 Achieving geometry compression using statistical points 66
6.5 Comparison of statistical points with the state-of-the-art in sampled repre-

sentation . 68
6.6 Visual comparison of statistical points with the state-of-the-art in sampled

representation . 69
6.7 View-dependent rendering using statistical points 70
6.8 View-dependent rendering with unified-attribute statistical points 72

7.1 The statistical-point-light-ray intersection test 76
7.2 Tree traversal during hierarchical shadow computation 77
7.3 Hierarchical shadow computation algorithm 78
7.4 The statistical-point-light-cone intersection test 79
7.5 Shadow computation for the David’s model 80
7.6 Shadow computation for the Nerve Cell model 81

viii

Chapter 1

Introduction

In our everyday task of understanding the world around us, we rely significantly on the

input gathered by our visual system. Computer graphics primarily deals with methods

to augment this system through the creation, capture, processing, and presentation of

three-dimensional structures. Over the years, computer graphics has gained tremendous

importance in several application domains. For example, it is used in the manufacturing

industry for designing mechanical parts and to understand the flow of fluids in a manu-

facturing process. It is employed in medicine for visualizing internal organ malfunctions

and for visualizing molecular docking in rational drug design. It has also become a main-

stay in the entertainment industry for cinema and digital games.

Computer graphics deals with several kinds of data including surface geometry,

volumetric data, lighting data, and time-varying versions of such data. A large propor-

tion of these datasets are modeled by artists using commercial software such as Maya and

3D Studio Max. Another good fraction of these datasets are generated using simulations

such as fluid simulations and global lighting computations. Recently, large datasets are

also being captured from real environments using laser range scanners. We categorize all

these data under one term as visual data.

Visual datasets vary widely in their nature and complexity. Surfaces can be cate-

gorized as manifold or non-manifold and can have significant complexity in their genus

and curvature. Similarly, the volumetric datasets have 3D complexity. Time-varying data

add the dimension of time. Other attributes such as surface reflectance, lighting, and light

fields can add further dimensions and complexity to visual data. Working with datasets

of such complexity requires high computation, bandwidth, and storage resources. Con-

sequently, the issue of representation of visual datasets is amongst the core challenges in

modern computer graphics.

1

(a) Bunny (b) Happy Buddha (c) Pieta

(d) St. Matthew (e) Ste. Pierre Cathedral
Model Bunny Happy Pieta St. Matthew Ste. Pierre

Buddha Cathedral
Year 1994 1996 1998 2000 2002
Points 34,947 543,642 7.2M 127M 220M
Size 200 KB 3 MB 43 MB 762 MB 1.9GB

Table 1.1: The size of scanned geometry has witnessed a dramatic growth.

1.1 Recent Trends in Visual Data

The last three decades of research have seen several methods to represent the geome-

try. These include representations such as triangle meshes, parametric surfaces, implicit

surfaces, constructive solid geometry, and procedural surfaces. These diverse represen-

tations have coexisted because each representation offers an unique advantage such as

speed of rendering, ease of modeling, flexibility of editing, and brevity of representation.

However, the last few years have seen another sustained trend that is beginning to take

2

critical shape: the exploding complexity of visual datasets. This is illustrated in Table 1.1

for the case of scanned data. Several factors have contributed to the increasing complex-

ity of visual datasets. These include developments in a wide variety of fields such as

3D acquisition, 3D modeling, large-scale simulation of physics, and computational bi-

ology, which have begun to produce massive datasets for visualization. The large-scale

commercial interest in such datasets is further expected to expedite this trend. This has

inspired us to seek a revision of the traditional data representational schemes to incorpo-

rate the new challenges posed by such large datasets.

1.2 Challenges of Large Visual Data

In order to understand the challenges posed by current datasets we have to keep histor-

ical trends in perspective. Historically, computer graphics has approached visual data

representation from two different perspectives: (1) accuracy of representation, and (2) ef-

ficiency of rendering. The former approach has origins in the editing and high precision

requirements of the CAD/CAM industry and includes representations such as paramet-

ric surfaces, solid modeling, and implicit surfaces. The latter approach is motivated by

interactive visualization and includes representations such as triangle meshes. However,

the rapid increase in the size and the complexity of visual datasets has imposed an enor-

mous load on both the representational and computational aspects. This has motivated

us to devise a compact representational framework that also supports efficient rendering.

Addressing this issue is the primary focus of this dissertation. Our approach involves ac-

tive consideration of the following orthogonal components:

• Exploiting Coherence: Visual datasets tend to have high local coherence. Local

coherence can vary in shape, scale, and in its distribution in the object space. Data

representation needs to be simple, robust, and adaptive for capturing such local

coherencies.

• The Memory Wall Challenge: Recent trends in computer architecture suggest that

the speed of computation is far outstripping the speed of memory access [127].

This can be a bottleneck for traditional approaches that rely on a memory-intensive

3

representation. We believe that addressing the memory wall issue would require a

computation-based representation that shifts a sizeable load of representation from

memory to computation.

• Geometry Bandwidth: Transmission can be a bottleneck during interactive visual-

ization since the network and the system-bus are generally not fast enough to keep

pace with the Graphics Processing Unit (GPU) [53]. A novel representational frame-

work which is compact both on disk and in memory and supports direct rendering

from a compressed format would address this challenge.

1.3 Dissertation Hypothesis

The hypothesis of this dissertation is as follows:

Visual data can be effectively represented using sample primitives with embedded contex-

tual information. Such a representation is more efficient for the storage, transmission, and

rendering of large visual data when compared to sampled representations with little or no

embedded information per sample.

The motivation for our work comes from the observation that visual data exhibits

tremendous amount of local coherence since they are sampled nearly uniformly. In this

dissertation we propose two approaches that exploit this coherence by modeling the lo-

cal context of the samples. In particular, we propose the representation of visual data

using samples which have embedded local context information. We call such samples as

Context-Aware Samples (CAS). This approach allows us to substantially reduce the num-

ber of samples and helps us address the issues noted in §1.2. In this dissertation we show

how our approach leads to efficient storage, transmission, and rendering of large visual

data.

We distinguish between two kinds of local context information that are embedded

in the CAS primitives: surface-based and space-based. Our surface-based CAS, Differ-

ential Points [58, 59], uses the differential geometric attributes of a surface to encode the

local context, while our space-based CAS, Statistical Points [60, 61], use the statistical dis-

tribution of object samples in the local vicinity to represent the context.

4

1.4 Overview

In the remainder of this dissertation we discuss the details of representing visual data

using context-aware samples. In Chapter 2, we detail two kinds of context-aware samples

and compare their relative merits. We also compare our approach to previous work in

this chapter. In Chapter 3, we discuss how large visual data can be modeled using CAS

as basic building blocks. We discuss compact encoding of data modeled using CAS in

Chapter 4. In Chapter 5, we discuss efficient transmission and rendering of CAS using

modern Graphics Processing Units (GPU). We discuss the results and applications of our

work in Chapter 6. In Chapter 7 we show how statistical points can be used for shadow

computation. We conclude this dissertation in Chapter 8.

1.5 Contributions

Previous work on representing visual data has focused on fitting implicit or paramet-

ric functions to the samples or linearly interpolating between the samples (eg. trian-

gle meshes). The main contribution of our work is that we propose a new approach of

embedding local contextual intelligence into individual samples and using them as the

building blocks to represent the overall data. We believe that this new approach is likely

to offer several benefits in computer graphics. Some applications of our approach are al-

ready being developed by others [117, 118] and we expect our approach to become even

more popular in the future.

5

Chapter 2

Context-Aware Samples

Computer graphics has a rich collection of geometric modeling approaches such as pro-

cedural, parametric, implicit, and sampled representations. The procedural and implicit

representations enjoy unique advantages in compression, modeling natural phenom-

enon, and editing. However, by far the most widely used geometric representations are

the sampled representations. They are easy to acquire, very flexible, and can represent

arbitrarily complex data.

Sampled Representation

The underlying principle of sampled representations is to sample the original data and

then approximate or reconstruct it by interpolating between these samples. Popular sam-

pled representations include triangle meshes, parametric surfaces, textures, and 3D vol-

umetric datasets. Triangle meshes and tetrahedral meshes are sampled representations

in which the samples are connected by edges and the visual data is approximated by lin-

early interpolating between the samples (the edges are used to identify the neighbors).

NURBS are a higher-order sampled representation which offers non-linear interpolation

between the samples (control points). However, in this case, the samples need not nec-

essarily be on the original surface geometry. Textures and 3D volumes are regularly

sampled representations where the interpolation is done implicitly using linear or non-

linear techniques. Sampled representations have been used extensively for representing

geometry as well as other kinds of data such as surface reflectance properties [120], bi-

directional texture fields [25], illumination [55], and light fields [71].

Context-Aware Samples

A sampled representation that is growing in popularity is point clouds [73]. Although

such a representation cannot give a continuous representation of the data it has been

found to be useful for rendering purposes. Since this representation just has points with-

6

out any per-point context information, we call such samples as Context-Blind Samples.

Some recent work in this area assign a spherical volume to each sample and renders such

points as squares, circles, or ellipses [99]. Alternately, a tangent disk can be associated

with each point and the points can be splatted or blended on the screen for a high-quality

rendering [129]. We categorize such primitives under Context-Aware Samples since each

sample has some information describing the local vicinity. In this dissertation we for-

malize the notion of context-aware samples and introduce two classes of context-aware

samples: one based on the Taylor’s series expansion (Differential Points) and the other

based on Statistical Analysis (Statistical Points). Before we present the details of our

context-aware samples, we briefly discuss prior art in the next section.

2.1 Previous Work

Our work on context-aware samples is motivated by historical trends in modeling, rep-

resentation, and rendering of the geometry. In this section we briefly summarize some of

the previous works that have influenced our work. In this dissertation we use the terms

‘samples’ and ‘points’ interchangeably.

Artists use several modeling approaches for 3D content creation. These include

parametric, implicit, and procedural [35] methods for modeling the geometry. Recent

advances in 3D acquisition have made it possible to digitize real-world geometries [72].

This has lead to a dramatic increase in the size of the geometry modeled with intricate de-

tails. We address this issue by embedding contextual information in the samples which

reduces the cardinality and the overall size of the geometry. Our approach can handle

any sampled visual data whether created by artists, generated by simulations, or ac-

quired from the real world.

2.1.1 Geometry Acquisition and Processing

Point samples of real-world environments are acquired using several acquisition tech-

niques [7, 37, 72, 93, 98] with the choice depending on the environment being sampled.

This information is processed by surface reconstruction algorithms [6, 9] and subse-

7

quently denoised [49]. The sampled points can also be processed directly using spec-

tral processing techniques [86]. Alternately, the coarse triangle mesh can be fitted with

parametric surfaces [36, 69] for denoising and to aid other higher-level applications.

Our work on differential points uses results from classical differential geometry

which gives us a mathematical model for understanding the surface variation at a point.

There is a collection of excellent literature on this subject and in this dissertation we fol-

low the terminology of do Carmo [29]. Curvature computation on parametric surfaces

has a robust mathematical model. Various techniques have been designed to estimate

curvature from discrete sampled representations [52, 108]. Taubin [109] estimates curva-

ture at a mesh vertex by using the eigenvalues of an approximation matrix constructed

using the incident edges. Desbrun et al. [79] define discrete operators (normal, curva-

ture, etc.) of differential geometry using Voronoi cells and finite-element or finite-volume

methods. Their discrete operators respect the intrinsic properties of the continuous ver-

sions and can be used at the vertices of a triangle mesh.

We use a simplification process to prune an initial set of differential points to ob-

tain a sparse point representation. Turk [114] uses a point placement approach where the

point density is controlled by the local curvature properties of the surface. Witkin and

Heckbert [122] use physical properties of a particle system to place points on an implicit

surface. Simplification methods have been studied extensively for triangle meshes. They

can be broadly classified into local and global approaches. Local approaches work by

pruning vertices, edges, or triangles using various metrics. Global approaches work by

replacing subsets of the mesh with simplified versions or by using morphological oper-

ators of erosion and dilation. Cignoni et al. [21] and Cohen et al. [22] document various

simplification techniques. More recently, Lindstrom [74] uses error quadrics in a vertex

clustering scheme to simplify complex datasets that are too large to fit into main mem-

ory. We refer the readers to the book by Luebke et al. [76] for a thorough treatment of

simplification and level-of-detail techniques.

Image-assisted organization of points [45, 75, 103] are efficient at three-dimensional

transformations as they use the implicit relationship among pixels to achieve fast incre-

mental computations. They are also attractive because of their efficiency at represent-

8

ing complex real-world environments. The multiresolution organizations [17, 89, 99] are

designed with the rendering efficiency in mind. They use the hierarchical structure to

achieve block culling, to control depth traversals to meet the image-quality or frame-rate

constraints, and for efficient streaming of large datasets across the network [100]. Recent

advances on surface parameterization have allowed the representation of the entire sur-

face in the parametric space as a set of images [46, 90]. We refer the readers to the book

by Samet [101] for a thorough treatment of the advantages of spatial data structures such

as images, quadtrees, and octrees.

The input to our algorithm could be the points obtained directly from the scanner

or after processing for surface reconstruction [4], editing [88], simplification [87], and

signal processing [86].

2.1.2 Geometry Representation

Historic developments in data modeling and hardware rasterization have led to the

adoption of the triangle mesh as the preferred representation of the geometry. Vari-

ous methods for lossy and lossless compression of the triangle mesh have been pro-

posed [27, 54, 111, 113]. Such methods have been extended for progressive compres-

sion and reconstruction [3, 23, 42, 110]. Alternatively, higher compression rates can be

obtained by using representations that approximate the given input without necessar-

ily trying to reproduce the original samples [66], by using spectral compression [63], or

by mapping the geometry to images [90]. Our approach belongs in this category and

achieves better geometric compression since the number of primitives is greatly reduced.

Early sample-based representations modeled the geometry simply as points [45,

73]. This includes images based representations with per-pixel depth [17, 26, 75, 77, 83,

103]. Recent research has grown in the direction of assigning a local region of influence to

each point. The local region of influence can be surface-based or volume-based. Surface-

based point representations model the surface around the point using a tangential disk

[10, 48, 89, 95, 129], tangential ellipse [126], higher degree (3 or 4) polynomials [2, 39],

or wavelet basis [119]. They approximate scanned datasets well at high resolutions and

9

are usually sensitive to noise. On the other hand volume-based representations such as

spheres [99], image-based trees [17], and octree cells [11, 84, 89, 125] are topology blind

and easy to organize hierarchically. These multiresolution organizations are designed

with the rendering efficiency in mind. They use the hierarchical structure to achieve block

culling, to control depth traversals to meet the image-quality or frame-rate constraints,

and for efficient streaming of large datasets across the network [100]. For a complete

reference on the data structures used for level-of-detail techniques we refer the readers

to a survey by De Floriani et al. [40].

Current point-based representations are isotropic and therefore do not approxi-

mate the underlying data distributions compactly. Our surface-based context aware

samples extend and generalize points with local surface context information. Our space-

based context-aware samples extend the current volumetric point representations by use

of anisotropy and statistical distribution of the vicinity. Uncertainties and noise in the

data [57] are handled very well by our approach. Our statistical approach has some com-

mon elements to procedural rendering [35, 94] and the randomized z-buffer algorithm

for triangle meshes [116]. The difference is that our approach uses statistical properties to

generate geometry along with other local attributes such as normal and color to achieve

a fully randomized rendering. Variance analysis has been widely used for anti-aliasing.

Schilling [102] uses it for anti-aliasing normals in bump-mapped environment mapping.

Geometry representation using context-aware samples has several benefits: (1) the

local geometries of the context-aware samples can be handled entirely independent of

each other and hence are well suited for modern Single Program Multiple Data (SPMD)

GPUs and for network transmission, (2) they are procedural in nature and hence are not

memory intensive, are fast, and offer direct rendering from compressed data, and (3)

they offer a uniform framework for compressing other local attributes of the model such

as color, normal, and texture coordinates.

10

2.1.3 Real-Time Rendering

Linear-interpolation based representations such as triangle mesh, tetrahedral mesh, and

volumetric grids have traditionally been the preferred representation for rendering since

they are simple to rasterize. However, the recent growth of datasets has called this into

question. This is because the resolution of the data far outstrips the screen resolution and

hence the average screen-space size of a triangle could be much smaller than a pixel. For

such datasets it has been shown that it is more efficient to render the points (vertices)

simply as square rectangles [99]. The quality of such rendering can be further enhanced

by using splatting or blending on the screen [80, 89, 129] or by sampling points on their

local polynomial (if any) [2]. Points can be rendered without any CPU involvement by

storing the point geometry directly on the graphics card [10, 24, 48]. Temporal coherence

can be exploited by keeping track of the visible Surfels in the frame buffer of successive

frames [47]. Point primitives can also co-exist with triangles by leaving the representa-

tion of the smoother parts of the surface to the triangle mesh [18, 28]. In this disserta-

tion we show how our surface-based context-aware samples make use of the procedural

computation capabilities of modern GPUs for efficient rendering. We render space-based

context-aware samples by generating new points according to their embedded statistical

information. Our approach is inspired by prior work on procedural rendering [35, 94]

and randomized z-buffer [116].

2.2 Differential Points

Our surface-based context-aware samples are based on the Taylor’s series expansion. The

Taylor’s series expansion of a differentiable function f(.) at a point x is given by:

f(x) = f(a) +
∞∑

n=1

f (n)(a)
n!

(x− a)n, (2.1)

where f(x)(n) is the n-th derivative of f(.) at x. In simple terms, the Taylor’s series expan-

sion says that if there exists a differentiable function f(.) such that all of its derivatives

are known at a point a, then the value of the function can be determined everywhere in

11

the domain. So one possible approach to representing visual data is to determine all of its

derivatives at a point and then use it to determine its value everywhere else. However,

in practice, it is hard to determine all the derivatives of the function at a point, or the

function may not be infinitely differentiable. Alternately, the function can be represented

by determining a finite set of derivatives, f(a)(1),. . . , f(a)(p), at a a finite set of points

a0, . . . , ak. Then the function can be represented by partitioning the domain such that

each point x has an associated sample ai with the function at that point being approxi-

mated by:

f(x) ≈ f(ai) +
p∑

n=1

f (n)(ai)
n!

(x− ai)n. (2.2)

We translate this approximation to the domain of the surfaces using the techniques of Dif-

ferential Geometry [29]. Classical differential geometry is a study of the local properties

of curves and surfaces. We limit ourselves to only the first two derivative in this approx-

imation since higher derivatives may be hard to compute or may not exist. Moreover,

using only two derivatives allows us to make use of the well understood mathematics of

surface curvatures.

Given any point p on the surface, differential geometry gives us a tangential or-

thonormal basis consisting of the direction of maximum curvature (ûp) and the direction of

minimum curvature (v̂p). We denote the curvatures along these directions by λup and λvp

respectively. The relationship between these attributes can be summarized as follows:

|λup | ≥ |λvp |

〈ûp, v̂p〉 = 0

ûp × v̂p = n̂p

dNp(ûp) = −λupûp

dNp(v̂p) = −λvp v̂p

where 〈·, ·〉 is the vector dot product, × is the vector cross product operator, n̂p is

the normal at p, and dNp(t̂) is the first-order normal variation at the point p along the

12

(a) (b)

Figure 2.1: (a) Neighborhood of a Differential Point. (b) Approximating the local geometry by a quadratic
surface.

direction t̂ (see Figure 2.1). The normal variation (gradient) along any unit tangent, t̂ (=

uûp + vv̂p), at p can be computed as:

dNp(t̂) = dNp(uûp + vv̂p)

= udNp(ûp) + vdNp(v̂p) (2.3)

= −(λupuûp + λvpvv̂p)

Similarly, it can be shown that the normal curvature along t̂, λ(t̂), is given by [29]:

λp(t̂) = λupu2 + λvpv2 (2.4)

The normal variation and the normal curvature terms give us second-order information

about the behaviour of the regular surface around the point p.

We use this information to construct a quadratic surface, Sp, centered at the point

which corresponds to a second order approximation of the surface in the vicinity of the

point. This surface acts as our rendering primitive and we refer to it as a differential point

(DP). We use upper-case characters or symbols for terms related to Sp and lower-case

characters or symbols for terms related to the tangent plane τp (a notable exception to

this rule is the arc-length s(u, v)). The surface Sp is defined implicitly as follows: given

any tangent t̂, the intersection of Sp with the normal plane of p that is co-planar with t̂ is

13

a semi-circle with a radius of 1
|λp(t̂)| with the center of the circle being located at xp+ n̂p

λp(t̂)

and oriented such that it is cut in half by xp (if λp(t̂) is 0, then the intersection is a line

along t̂). These terms are illustrated in Figure 2.1(b).

We parameterize the tangent plane τp by the (u, v) coordinates in the vector space

of (ûp, v̂p). A point on τp is denoted by xp(u, v) and t̂(u, v) denotes the tangent at p

in the direction of xp(u, v). We parameterize Sp with the same (u, v) coordinates as τp,

with Xp(u, v) denoting a point on Sp. The points Xp(u, v) and xp(u, v) are related by a

homeomorphic mapping, Pp, with xp(u, v) being the orthographic projection of Xp(u, v)

on τp along n̂p. The arc length between Xp(0, 0) and Xp(u, v) is denoted by s(u, v) and

is measured along the semi-circle of Sp in the direction t̂(u, v). The (un-normalized)

normal vector at Xp(u, v) is denoted by Np(u, v). Note that xp = Xp(0, 0) = xp(0, 0) and

n̂p = Np(0, 0).

The surface Sp is used to describe the spatial distribution around xp. We derive

the normal distribution, Np(u, v), around xp using Sp and the curvature properties of

the surface. To derive Np(u, v) we express it in terms of its orthogonal components as

follows:

Np(u, v) =
∑

ê=ûp,v̂p,n̂p

〈Np(u, v), ê〉 ê (2.5)

Consider the semi-circle of Sp in the direction t̂(u, v). As one moves out of xp along

this curve the normal change per unit arc-length of the curve is given by the normal

gradient dNp(t̂(u, v)). So, for a arc-length of s(u, v), the normal can be obtained by using

a Taylor’s expansion on each individual component of equation (2.5) as follows:

Np(u, v) =
∑

ê=ûp,v̂p,n̂p

(〈Np(0, 0), ê〉+ s(u, v) 〈dNp(t̂(u, v)), ê〉+ Remainder Term) ê

≈ Np(0, 0) + s(u, v) dNp(t̂(u, v)) (2.6)

The surface Sp and the normals Np(u, v), give an approximation of the spatial

and the normal distribution around xp. Note that Np(u, v) is not necessarily the normal

distribution of Sp, but is just an approximation of the normals around xp. Since it is

14

only an approximation, there is a cost associated with this: the higher the arc-length, the

higher the error in approximation and thus a bigger compromise in the visual quality

after rendering. However an advantage to extrapolating to a larger neighborhood is

that a smaller set of sampled DPs suffices to cover the whole surface, thus improving the

rendering speed. We let the user resolve this tradeoff according to her needs by specifying

two error tolerances that will clamp the extent of the extrapolation:

1. Maximum principal error (ε): This error metric is used to set point sizes according to

their curvatures. It specifies a curvature scaled maximum orthographic deviation of

Sp along the principal directions. We lay down this constraint as: |λup(Xp(u, 0) −
xp(u, 0))| ≤ ε and |λvp(Xp(0, v) − xp(0, v))| ≤ ε. Since Sp is defined by semi-

circles, we have that ‖Xp(u, 0) − xp(u, 0)‖ ≤ 1
‖λup‖ . It follows that ε ≤ 1. In other

words, the extrapolation is bounded by the constraints |u| ≤ uε,p =
√

2ε−ε2

|λup | and

|v| ≤ vε,p =
√

2ε−ε2

|λvp | as shown in Figure 2.1(a). This defines a rectangle rp on τp and

bounds Sp accordingly since it uses the same parameterization. The ε constraint

ensures that points of high curvature are extrapolated to a smaller area and the

low-curvature points are extrapolated to a larger area.

2. Maximum principal width (δ): If λup is closer to 0, then uε,p can be very large. To deal

with such cases we impose a maximum width constraint δ. So uε,p is computed as

min(δ,
√

2ε−ε2

|λup |). Similarly, vε,p is min(δ,
√

2ε−ε2

|λvp |).

We call the surface Sp (bounded by the ε and δ constraints), the normal distribution

Np(u, v) (bounded by the ε and δ constraints) together with the rectangle rp a Differential

Point (DP) because all of these are constructed from just the second-order information

at a sampled point. The above discussion has shown how the local surface and normal

distribution can be represented and reconstructed using the curvature information. If

the surface has additional attributes such as color, these attributes can be represented

directly by using the Taylor’s series approximation of equation 2.2 in the domain of the

parametric space (u, v). Differential points are basic representational primitives. We

will discuss how they can be used as building blocks to represent complex surfaces in

chapter 3.

15

(a) (b)

(c) (d) (e)

Figure 2.2: Figure (a) shows a set of input points. Figure (b) shows the Gaussian approximation derived
from the PCA analysis of the input points. Figure (c) shows the normals of a set of points on an unit
sphere. The normals are shown in blue while the mean of the normals is shown in white. These normals are
unwrapped to a tangent plane at the mean as shown with green points in Figure (d). Figure (e) shows the
approximation of the normals by an ellipse on the tangent plane and a coordinate frame.

2.3 Statistical Points

Prior work on statistical analysis has shown that if a set of samples exhibits a signifi-

cant coherence or pattern, such a behaviour can be captured effectively using statistical

models [31]. Though there are several powerful models for statistical analysis we use the

simplest of them all: Principal Component Analysis (PCA) [31]. Our choice is guided by

our desire to have a representational primitive that is not only compact but is also simple

enough to be used as a rendering primitive.

The PCA of a set of N points in a d-dimensional space gives us the mean µ, an

orthogonal frame f , and the standard deviation σ of the data [31]. The terms µ and σ

are d-dimensional vectors and we refer to their i-th component as µi and σi respectively,

where σi ≥ σj if i > j. The frame f consists of d vectors with the i-th vector referred

to as f i. In our case, the input is a set of N points with three attributes: spatial position

p, normal n, and color c. We identify the mean, variance, and the basis of each of these

16

attributes by their subscripts p, n, and c corresponding to the position, normal and color

respectively (eg. µp, fn, and σc). We determine the values µp, fp, and σp from the PCA

analysis of the (x, y, z) values of the points. This gives us an anisotropic Gaussian distrib-

ution centered at µp, aligned in the directions f1
p , f2

p , and f3
p , with the standard deviation

along these directions being σ1
p , σ2

p , and σ3
p , respectively (see Figures 2.2(a-b)). Such a dis-

tribution can be effectively visualized as an oriented ellipsoid with its intercepts being

σ1
p , σ2

p , and σ3
p (see Figures 2.3(a) and 2.3(b)). Our approach can easily generalize to other

local attributes such as texture coordinates.

The PCA in the RGB color space is similar to the PCA in the spatial dimensions: the

(r, g, b) color values are treated as points in a three-dimensional space and a PCA in this

space gives us its mean, µc, principal components, fc, and the standard deviations, σc. We

have to be a little more careful when doing PCA for the normals due to the normalization

constraint. Normals can be seen as points on a unit sphere (see Figure 2.2(c-e)). We

choose a longitudinal arc-length preserving parameterization because it allows us to map

the Gaussian distribution from the tangent plane onto the sphere in such a way that the

distribution on the sphere is also Gaussian. Note that this is not possible with mappings

such as the orthographic mapping. We first orient the unit sphere such that its z-axis is

along the average of the N normals (i.e. the north pole of the sphere is at the average

normal). We then transform all the normals to this basis and determine their respective

elevation (θ) (measured from the z-axis) and azimuth (φ) angles. The normals are now

points in this sphere and they are unwrapped onto a tangent plane at the north pole using

the transformation: (u, v) = (θ sin(φ), θ cos(φ)). This parameterization preserves the arc-

lengths along the longitudes though the latitudinal arc-lengths are not preserved. A PCA

in this parametric space gives us an ellipse. The x- and the y-axes of the sphere are then

rotated to be parallel to the axes of the ellipse. The PCA analysis of the normals thus

gives us a 2D standard deviation vector σn and a 3D frame fn (basis of the sphere). Note

that the frame fn effectively represents both the mean and the principal components of

the normal distribution.

Since the PCA analysis is blind to surface geometry constraints it scales well to

arbitrary geometries with complex topology. Moreover, we found that the PCA analysis

17

(a) (b)

(c) (d)

Figure 2.3: Figure (a) shows the nodes at the mid-level resolution of the hierarchy built for the David’s
Head model. Each ellipsoid in this figure represents an anisotropic Gaussian distribution of the geometry
with their intercepts being their corresponding standard deviation σp. The ellipsoids are colored by their
mean color, µc. Figure (b) shows that scaling the ellipsoids by a factor γ = 3.5 ensures that the geometry
is represented up to a Confidence Index (CI) of at least 99.7% (i.e., the ellipsoids enclose at least 99.7% of
the cumulative Guassian distribution of the statistical points). Figure (c) shows the estimate of the local
curvatures (the β factor) varying from high (red) to medium (green) to low (blue). Figure (d) shows the
Gaussian distribution at the highest detail (after correction by the β factor).

18

is a fast, simple, and robust procedure. We believe that this feature makes the PCA-based

representation further attractive. However, a downside to this is that the nodes could

protrude out of the surface in regions of high curvature. To correct this we observe that

the ratio σ1
n

σ1
p

is a good estimate of the surface curvature since it captures the variation

of the surface normal (see Figure 2.3(c)). Hence we scale the value of σp by the factor

β = [η0+(1−η0)min(0, (1−η1

√
σ1

n
σ1

p
))], where 0 < η0, η1 < 1. The (1−η1

√
σ1

n
σ1

p
) term reduces

the width of the node if the curvature is high. However, in some cases, the (1 − η1

√
σ1

n
σ1

p
)

factor leads to relatively small nodes for lower resolution nodes of the hierarchy (see

§3.2.1). We avoid this by using the η0 factor which determines the proportion of the

original PCA-derived width that is retained even after the curvature-related reduction

of the node. Although the curvature estimate is given by σ1
n

σ1
p

, scaling σp by its square

root gave us better visual results. We have used values of η0 = 1
2 and η1 = 1

6 for all our

experiments.

2.3.1 Unified-Attribute Statistical Samples

In the above case we did a PCA separately in each of the individual attribute spaces. This

has several advantages for real-time rendering that we will discuss later. However, this

approach has the disadvantage that it drops important information about the correlation

between the individual attribute distributions. This can be overcome by doing a PCA in

the unified space of all the attributes.

Consider a PCA analysis of the points, xi = (xi, yi, zi, θi, φi, ri, gi, bi), ∀i = 0, . . . , N ,

in the 8D space of position (3D), normal (2D), and color (3D). Here the normals are repre-

sented by their angles (θ, φ) ∈ ([0, π], (−π, π]). A PCA analysis in this space first requires

us to compute the mean. The mean in this case is the Euclidean mean in all the di-

mensions except in the (θ, φ) dimension of the normal – a spherical space. We compute

the mean normal using the approach proposed by Buss and Fillmore [15]. They have

outlined a method that computes weighted averages on spheres based on least squares

minimization that respects spherical distances by using the logarithmic map and its in-

verse, the exponential map. We represent the mean normal by its angles, (µθ, µφ). The

19

next step in the PCA analysis is the computation of the covariance matrix. This requires

us to define the distance vector, xi − µ, between a point in space and the mean. The

individual components of this difference vector are the standard Euclidean difference in

all the dimensions except for the (θ, φ) normal space. For the difference vector in the

normal space we simply use the 2D coordinates in the logarithmic space defined on the

plane tangent to the unit sphere centered at the mean normal (µθ, µφ) [15]. The rest of

the PCA analysis proceeds as usual. The eigenanalysis of the covariance matrix gives us

eight 8D eigenvectors and the variances of the Gaussian distribution along these vectors.

Since this approach is so general, it may also be used to represent other visual data such

as light fields and surface reflectance.

2.4 Comparison and Summary

In this chapter we introduced context-aware samples. We covered previous related work

in this area and discussed why context-aware samples are needed for representing large

visual data. We detailed two kinds of context-aware samples. Differential points are

surface-based CAS that approximates a quadratic surface around a sample point us-

ing second-order differential information at the point. Statistical points model the lo-

cal context around a point using principal component analysis. Differential points are

well suited for well defined surfaces since the surface coherence can be most effectively

captured using this approach. On the other hand, statistical points are very robust and

general and hence are suited even for ill-defined or under sampled surfaces. Statisti-

cal points may also easily generalize to a wide variety of visual information such as 3D

volumes, light fields, and surface reflectance data.

20

Chapter 3

Geometry Representation using Context-Aware Samples

Context-aware samples (CAS) are basic primitives which act as the building blocks for

representing large and complex visual data. In the previous chapter we discussed the

nature and attributes of two kinds of CAS. In this chapter we will discuss how large vi-

sual data can be modeled using those CAS primitives. Modeling visual data using CAS

primitives requires a careful attention to several factors such as sampling the visual data

for context-aware samples, determining the attributes of the sampled CAS, handling re-

dundancy due to the presence of multiple CAS, and building a multiresolution hierarchy

over the CAS-based representation.

3.1 Differential Point Geometry

Differential Points model the surface vicinity around a sampled point. The overall surface

is modeled in parts by the individual surfaces of the differential points. If the sampling

of the surface is not based on the surface curvature, there can be a significant redundancy

in the surface representation. This is because a region of the surface could be represented

by several differential points. We minimize this redundancy with a simplification process

which uses a greedy heuristic to prune the redundant differential points.

3.1.1 Sampling

In order to represent a 3D surface with differential points we first sample it. If the surface

is a parametric one, such as NURBS, we sample it uniformly in the parametric domain.

We use the standard techniques outlined in the differential geometry literature [29] to ex-

tract surface-curvature-related information at each sampled point. This is a fairly robust

procedure that can handle most of the sampled points. However, degeneracies can arise

in the form of umbilical points where the surface is either flat or spherical (λup = λvp).

21

We derive the principal directions of such points implicitly by assigning ûp, the direction

of maximum curvature, to be the best among the projections of the x, y, and the z-axes

onto the tangent plane. We then compute v̂p, the direction of minimum curvature, as

v̂p = n̂p × ûp.

Alternately, if the surface is represented as a triangle mesh, then a NURBS surface

can be fit to the triangle mesh [69] and points can be sampled using this representation.

We use a more direct approach by using the vertices of the mesh as the sampled points

and estimating the differential information for each point using the discrete differential

geometry operators of Taubin [109]. The DPs thus obtained from the triangle mesh have

the same properties as the ones obtained by sampling a NURBS surface.

3.1.2 Handling undersampling

Since the sampling is input driven (eg. for triangle meshes) or user driven (eg. through

the sampling rate on a NURBS surface), it happens quite often that in some areas of the

surface the samples may be spaced far apart even though the surface curvature of that

region is high. If the points of such areas were to be assigned sizes using the criterion

described in section 2.2 then there might be gaps in the surface coverage. This is because

the surface Sp of the DPs are bounded and may not overlap sufficiently, thus leading

to gaps in the surface coverage. We deal with this issue by factoring in the distance of

the vertex neighbors into the size of Sp. For each mid point xp of a differential point p,

we project the mid-point of every incident edge along the average of its adjacent trian-

gle normals onto the tangent plane τp of the DP. Then we determine a rectangle on the

tangent plane τp which encloses all the projected points. We choose the parameters of

the rectangle to be such that: (1) it is axis aligned with respect to the (ûp, v̂p) directions,

(2) it is symmetric with respect to the origin (point xp), and (3) its size is the smallest

possible. We set the rectangle rp to be the larger of the rectangle computed this way and

the rectangle determined from the δ and ε parameters (see §2.2).

22

(a) Without simplification (b) With simplification (c) Rendering with
simplification

Figure 3.1: Effectiveness of Simplification: (a) Wireframe rectangles corresponding to the initial (super-
sampled) collection of differential points from the surface of the teapot. (b) Wireframe rectangles of the
differential points that are not pruned by the simplification algorithm. Simplification is done within a patch
and not between patches. The strips of rectangles represent the differential points on the patch boundaries.
(c) A rendering of the simplified differential point representation.

3.1.3 Handling oversampling: Simplification

Often times some areas of the surface are sampled at a far higher rate than what is man-

dated by the local curvature complexity. This is especially true when we supersample the

NURBS surface where our intention is to be conservative and ensure that the rectangle of

each differential point overlaps sufficiently with its neighbors so that there are no holes

in the surface coverage. In this section we discuss a greedy procedure that minimizes the

overlap of DPs by pruning the redundant DPs. The output of this simplification process

is a reduced set of DPs that represents the surface within a margin of error.

The objective of our simplification process is to prune those DPs whose geometric

information is represented by the cumulative information of their neighbors within the

error margins prescribed by the values of ε and δ. Simplification has to ensure that the

output set of DPs represent the original surface without leaving any holes. This requires

us to first define the region of the original surface that is covered by a DP. We do this

by defining a projection set, O(p), to be the set of all points of the original surface in the

vicinity of xp that fall within the surface area covered by the orthographic projection of

the rectangle rp onto the original surface along the direction n̂p. Do Carmo [29] shows

that for a vicinity around the point position xp, this projection (mapping) is a homeomor-

phism. We define an overlap relation between differential points as follows: A differential

point p is said to overlap another differential point q iff O(p) ∩ O(q) 6= φ. It follows from

23

the definition that overlap is a symmetric relation.

Let N(p) denote the set of neighbors of a DP, p. At the start of the simplification we

initialize N(p) to include all the immediately surrounding DPs that overlap p. If the DPs

are sampled from a parametric surface, then N(p) is chosen from the 8, or the 24 nearest

samples from the sampling grid of the parametric domain (DPs in the boundary can

have less than 8 immediately surrounding DPs). Since overlap is a symmetric relation,

we have that q ∈ N(p) iff p ∈ N(q). Alternately, if the differential points are sampled

from a triangle mesh, then N(p) is chosen from the vertices with whom p shares edges.

Later, when the simplification algorithm is in progress, in the event of any qi ∈ N(p)

being pruned, N(p) is updated as follows:

N(p) ⇐ N(p)− {qi} ∪ {qj |qj ∈ N(qi) and qj 6= p and O(qj) ∩ O(p) 6= φ} (3.1)

This operation deletes qi from N(p) and updates it to include all the neighbors of qi that

overlap with p. Lastly, we define a term that will act as the prunability criteria of a DP. A

differential point p is said to be enclosed iff O(p) ⊆ ⋃
q∈N(p) O(q). In other words, p is said

to be enclosed iff each point in its projection set O(p) is also in the projection set of atleast

one of its neighbors. During simplification we check to make sure that only enclosed DPs

are pruned.

Our simplification algorithm uses a greedy heuristic of pruning the most redundant

point first. A DP’s redundancy is a measure of how similar it is with respect to its neigh-

bors. We quantify it by a metric, called the redundancy factor, R(p), which quantifies the

ability of p to approximate the normal of its neighbors and vice versa. The higher the

value of R(p), more is the redundancy of p. The term R(p) is computed as follows:

R(p) =
∑

q∈N(p)

(|〈Nq,Np(uq,p, vq,p)〉|+ |〈Np,Nq(up,q, vp,q)〉|
2 |N(p)|

)
(3.2)

where (uq,p, vq,p) is the coordinates of the point on τp obtained by the orthographic pro-

jection of xq onto τp and Np(uq,p, vq,p) is the normal estimated at these coordinates us-

ing equation (2.6). The dot product |〈Nq,Np(uq,p, vq,p)〉| in equation (3.2) is a measure

24

Simplification()
1 ∀ DP p
2 Establish N(p)
3 Compute R(p)
4 Insert p in the Heap with R(p) as the key

(Highest key is at the top of the Heap)
5 While Heap is not empty
6 p = pop Heap
7 if Enclosed(p)
8 ∀ q ∈ N(p)
9 delete p from N(q)
10 undo influence of p on R(q)
11 balance Heap
12 ∀ distinct q1,q2 ∈ N(p)
13 if (Overlaps(q1,q2))
14 add q2 to N(q1)
15 update R(q1) and balance Heap
16 add q1 to N(q2)
17 update R(q2) and balance Heap
18 delete p
19 else
20 add a pointer of p to the OutputList

(p is not pruned)
21 return OutputList

Figure 3.2: A pseudo code of our algorithm for simplifying a set of DPs.

of how close the actual normal at q is to the normal estimated at xq using the curvature

information at p. If R(p) is closer to 1 then p is redundant because all the geometric

information of p is already represented by its neighbors.

We start the simplification process with a binary heap of DP’s with their respective

redundancy factors R(p) as the key. Iteratively we pop the top of the heap and check

if pruning that DP will leave any holes in the surface representation. If not, we prune

that DP and update the neighborhood and the redundancy factor of all its ex-neighbors

using equations (3.1) and (3.2). If the DP cannot be pruned then we mark it for output. A

pseudo-code of our simplification algorithm is shown in Figure 3.2.

For p to be pruned it has to satisfy the correctness check: that p is an enclosed point,

or in other words that the pruning of p does not leave a hole in the surface representation.

This check is done by the routine Enclosed(p) of the simplification pseudo-code. Testing

for the enclosure of the surfaces Sp can be very expensive. Instead, we approximate the

25

Enclosed(p)
1 TestLines = Sampled line segments on rp

2 ∀q ∈ N(p)
3 ∀l ∈ TestLines
4 delete l from TestLines
5 project l along np onto τq
6 clip it against rq

7 project back the leftover segments along np

onto τp
8 add them to TestLines
9 if (TestLines is empty)
10 return(true)
11 return(false)

Figure 3.3: The figure on the left shows the initial test line segments (AE, CG, BF, HD, BH, HF, FD, DB)
of the rectangle. They are used in the Enclosed(p) routine (line 1) which tests if a DP, p, is enclosed by its
neighbors.

original surface by τp, and test for the enclosure of p within this. This test is done by

an approximation method that samples line segments on rp (as shown in Figure 3.3) and

tests if they are fully covered by the rectangles of the DPs ∈ N(p). A pseudo-code of

this test is shown in Figure 3.3. Since the coverage of line segments does not guarantee

coverage of the entire area of rp, we see infrequent sliver gaps left between rectangles.

We make the coverage test more conservative by scaling down the rectangles for simpli-

fication (the original rectangle sizes are used for rendering). For all our test models, a

scale-down factor of 15% produced a hole-free and effective simplification. The simpli-

fication algorithm also involves a test for the overlap of q1 and q2. An approximate test

for this is done by the routine Overlaps(q1,q2) of the simplification pseudo-code which

tests if rq1 overlaps rq2 when τq2 is assumed to be the original surface and vice versa. An

approximation algorithm for this test is shown in Figure 3.4.

All the approximation algorithms work well in our case owing to the similarity of

neighboring rectangles in position, width, and orientation. Figure 3.1(b) shows the rec-

tangles left after simplification in an area where curvature-related features change very

quickly. A desirable feature of this simplification process is that the error metrics that it

uses also control the quality of the final rendered images. This allows the user to first

decide on the image quality and then get as much simplification as possible without any

26

Overlaps(q1, q2)
1 return (OverlapTest(q1, q2) || OverlapTest(q2, q1))

OverlapTest(q1, q2)
1 If the orthographic projection of xq1 onto τq2 falls within the

bounds of rq2 then return true
2 If the orthographic projection of any of the end points of rq1

onto τq2 falls within the bounds of rq2 then return true
3 If the orthographic projection of any of the edges of rq1 onto

τq2 intersects rq2 then return true
4 If all the above tests fail then return false

Figure 3.4: Pseudocode of the Overlaps test which checks if two DPs, q1 and q2, overlap each other.

(a) (b) (c)

Figure 3.5: These figures illustrate three iterations of the clustering algorithm used for spatial partitioning
of a set of points. Successive iterations reduce the distortion between the original set of points and the cluster
centers (shown as blue crosses).

loss in visual quality. Figure 6.1 shows sample models rendered with and without sim-

plification.

3.2 Visual Data Representation using Statistical Points

The clear advantage of the PCA representation over the surface-based differential point

representation is that it can model any arbitrary collection of points rather than just a

quadratic surface area. However a PCA representation of a complex set of points such as

the David’s Head, though compact, is clearly a coarse approximation. In this section we

discuss how a large set of points can be modeled by local PCA representation. Further,

our modeling method is hierarchical which gives us a multiresolution representation of

the data. We approximate the original set of points by generating points from our hierar-

chical PCA representation.

27

3.2.1 Hierarchical PCA

To represent the data at different levels of detail we build a spatial hierarchy based on

partitioning the input points. We compactly represent each node of the hierarchy using

statistical neighborhood modeling as discussed in §2.3 and §2.3.1. We build our hierarchy

in a top-down fashion by partitioning the points at each node into two sets. We prefer

a top-down approach to a bottom-up approach since it organizes the expensive nearest-

neighbor searches hierarchically. We use a 2-means clustering approach to partition the

points into a binary hierarchy. An alternate approach would have been to use a k-means

clustering where k is a variable number of partitions. However, such an approach would

would be more suited to segmenting the geometry as opposed to building a balanced

hierarchy.

The distortion of a partitioning is defined as the sum of the distances of the points

from the partition’s mean [31]. In our partitioning scheme we reduce this distortion by

using k-means clustering with k = 2. We initialize the two starting means (centers) for

the k-means algorithm by doing a PCA over the points and choosing µp + σ1
p

2 f1
p and

µp − σ1
p

2 f1
p as the initial guesses. This is a reasonable assumption since the data varies

maximally along f1
p . The k-means clustering algorithm then iterates over the twin steps

of partitioning the point set according to the proximity of each point to the two means

and then updating the two means according to this partitioning. Figure 3.5 illustrates

three iterations of the clustering algorithm. Pauly et al. [87] use a geometric method to

separate the point set for their point-based simplification hierarchy. They separate along

the principal direction f1
p with the separating plane passing through the mean µp. A

similar strategy is used by Brodsky and Watson [14] for hierarchical mesh partitioning.

This approach is equivalent to the first iteration of the clustering scheme. The subsequent

iterations then successively reduce the distortion. We stop iterating when the difference

in the average distortion between two successive iteration is less than 10−7 or when the

number of iterations is more than 30, whichever happens earlier. Our clustering step

can be made more efficient using the technique proposed by Kanungo et al. [62]. We

terminate the hierarchical partitioning at nodes which have less than a user-specified

28

(a) (b) (c) (d)

Figure 3.6: Figure (a) illustrates the Mahalanobis distance, m(q), between a point q and the mean µp of a
PCA node. Figure (b) is simple model of a sphere and a plane. Figure (c) is the partitioning of the sphere and
plane model obtained by a partitioning-plane-based approach while Figure (d) is the partitioning obtained
by the Mahalanobis-distance-based approach. The partitions have been rendered by the ellipsoids corre-
sponding to their respective PCA attributes (mean µp, standard deviation σp, and principal components
fp).

number of points (between 6 and 30 for our models).

Choosing the distance metric is a crucial issue when designing the clustering algo-

rithm. The Euclidean distance metric is a good metric in most instances and also pro-

duces a balanced tree. However, it has a tendency to merge disjoint parts of the surface

if they are close enough (see Figure 3.6(c)). This can be rectified by the Mahalanobis dis-

tance metric [31]. The Mahalanobis distance metric warps the space so that distances

along the normal direction are weighed much higher than the distances along the tan-

gential directions (see Figure 3.6(a)). The Mahalanobis distance between a point q and

the mean µp of a PCA node is determined by the product of two matrices: an affine trans-

formation matrix and a scaling matrix. The affine transformation matrix transforms the

point to the coordinate frame defined by the pair (µp, fp). We denote this transformation

by Tp. The point is then scaled using the scaling matrix, Sp, given by:

Sp =

1
σ1

p
0 0

0 1
σ2

p
0

0 0 1
σ3

p

.

The Mahalanobis distance, m(q) between q and µp is then simply given by, m(q) =

‖Sp Tp q‖2 . This is illustrated in Figure 3.6(a).

The Mahalanobis distance metric generally leads to partitions that do not merge

29

Figure 3.7: The Lucy model at various resolutions. Each ellipsoid in this figure represents an anisotropic
Gaussian distribution of the geometry with their intercepts being their corresponding standard deviation
σp. The ellipsoids are colored by their mean color, µc.

disjoint parts of the surface. This is because the Mahalanobis distance metric measures

distances respecting the local anisotropy of the partitions that the Euclidean metric is un-

able to do. However, we note here that the use of the Mahalanobis metric in partitioning

is still a heuristic, although generally a better one than the Euclidean metric. When the

surface is too complex to be neatly partitioned into two clearly disjoint surfaces, the use of

the Mahalanobis distance metric can produce an imbalanced partitioning. Hence we use

a two-pronged strategy: we first try a k-means clustering based on the Mahalanobis met-

ric and if that partitioning turns out to be imbalanced we switch to a Euclidean-distance-

based partitioning. The definition of an imbalanced partition is left to the user (we used

a balancing threshold of 30% – 70% for all our models).

3.2.2 Detail Evaluation

The hierarchical PCA gives us a hierarchical Guassian probability distribution, with the

probability distribution of each node given by:

p(x) =
1

(2π)d/2|∑|1/2
e−(x−µ)T

P−1(x−µ)

30

where d is the dimensionality of the attribute and
∑

is the covariance matrix of the at-

tribute values. We approximate the original set of points by generating new points. The

attributes of the new points are determined by independently sampling the probability

distributions in the individual attribute spaces. We determine the position attribute of

the generated points by using a three-dimensional extension of the Box-Muller trans-

form [13, 106, 123]:

x

y

z

=

σ1
p 0 0

0 σ2
p 0

0 0 σ3
p

τp

√
1− r2

p2 cos(2πrp1)

τp

√
1− r2

p2 sin(2πrp1)

τp rp2

where rp0, rp1, and rp2 are uniformly distributed random numbers in (0, 1], [0, 1], and

[−1, 1], respectively and τp =
√−2 ln(rp0). This sampling uses a uniform parameteri-

zation of a unit sphere by using a (cos(θ), φ) spherical parameterization. The random

values rp1 and rp2 are samples in this parameter space and spread points uniformly on

the unit sphere. The value τp then ensures that the radial distances of the points from the

mean are spread in a Gaussian manner while the scaling matrix gives the anisotropic na-

ture to the sampling. We determine the color of these generated points by independently

sampling their color space. To determine the normals of the generated points we use

the Box-Muller transform to sample the tangent plane positioned at the mean normal.

These points are then wrapped onto the unit sphere to reverse the sphere-to-tangent-

plane mapping discussed in §2.3. The entire normal sampling procedure is given by the

following set of equations that derive the (θ, φ) values of the normals:

τn =
√
−2 ln(rn0)

α = σ1
nτn cos(2πrn1)

β = σ2
nτn sin(2πrn1)

θ =
√

α2 + β2

φ = tan−1

(
β

α

)

31

where rn0 ∈ (0, 1] and rn1 ∈ [0, 1] are uniform random numbers. Here, the term rn0

uniformly spreads the samples around the center of the tangent plane while τn radially

distorts them to behave as a Gaussian distribution of unit variance. The (α, β) values

model an anisotropic Gaussian distribution on the tangent plane. The (θ, φ) values are

then obtained by wrapping the (α, β) values to the sphere.

The above scheme for sampling assumes that all the variances are non-zero. How-

ever, in practice we found several nodes with one or more zero variances. To deal with

zero variances of σi
p we have a minimum threshold value (of the order 10−15). Any σi

p

is set to the maximum of itself and this threshold value. This allows us to consider only

ellipsoidal (Gaussian) distributions (even if they are vanishingly thin along some dimen-

sions) without having to worry about special cases. When there are two zero variances,

we retain the principal direction derived from eigen-analysis and set the other two direc-

tions so that the z-direction of the ellipsoid points along the average normal. For the case

of three zero-variances, we set the z-axis of the ellipsoid to point along the normal while

the other two directions are any two orthogonal vectors in the tangent plane. Handling

the zero variances of σi
c and σi

n is a little easier since there is no correct orientation of their

principal vectors under such degeneracies (such as for the case of σi
p). We simply have a

minimum threshold for these values.

The above guidelines for sampling the distributions raises two important ques-

tions: (1) how to minimize the distortion in the Gaussian sampling, and (2) how to mini-

mize the number of generated points. We discuss these issues next.

3.2.3 Quasi-Random Sampling

The quality of the sampling is linked to the quality of the random number generator.

While pseudo-random numbers have been used extensively for various applications,

they have a high discrepancy owing to the independent sampling of each pseudo-random

number [81]. In other words, deriving each pseudo-random sample independent of pre-

vious pseudo-random samples produces a non-uniform distribution as shown in Fig-

ure 3.8(a). Quasi-random numbers have been used as a substitute for pseudo-random

32

(a) (b)

Figure 3.8: Figure (a) shows 800 points generated in a two-dimensional space from a pseudo-random se-
quence while Figure (b) shows 800 points generated using quasi-random numbers. Quasi-random numbers
are preferable since they show low discrepancy which results in a more uniform distribution.

numbers since they exhibit low discrepancy (see Figure 3.8(b)) [92]. Quasi-random num-

bers are generated from algebraic sequences such as the Sobol sequence [91]. They have

two main features: (1) they do not have a seed value and hence generate the same ran-

dom number sequence each time, and (2) successive random numbers are aware of the

random numbers that were generated earlier and hence are placed so as to minimize the

discrepancy. Quasi-random numbers have been used successfully in computer graphics,

for instance in the Monte-Carlo integration for global illumination [65].

We use quasi-random numbers for sampling our attributes. For computing the

spatial coordinates and the color of the generated points we use three-dimensional quasi-

random numbers. For computing the normals of the generated points we use two-

dimensional quasi-random numbers. Quasi-random numbers easily fit into our scheme

of sampling the Gaussian distribution: we simply replace the pseudo-random numbers,

r, with the quasi-random numbers in the sampling equations above.

3.2.4 Determining the Number of Samples

The points that we generate from the Gaussian distributions approximate the original

geometry and we visualize a PCA node by rendering these generated points. While it

is possible to generate any number of points, we would like to minimize this number

33

α1 α2 α3 # pseudo # quasi
1 1 1 1 1
2 1 1 2 2
3 1 1 6 4
4 1 1 15 4
2 2 1 3 3
3 2 1 9 7
4 2 1 23 10
3 3 1 26 7
4 3 1 51 12
4 4 1 83 26

α1 α2 α3 # pseudo # quasi
2 2 2 3 3
3 2 2 12 4
4 2 2 14 4
3 3 2 25 7
4 3 2 36 12
4 4 2 77 26
3 3 3 28 14
4 3 3 48 28
4 4 3 89 26
4 4 4 81 54

Table 3.1: This table shows the relationship between the screen-space dimensions of an ellipsoid (in pixels)
and the minimum number of generated points required to cover the screen-space projection of the ellipsoid.
Here αi = γ × σi

p. The “# pseudo” column refers to the number of samples required if pseudo-random
sampling were to be used while the “# quasi” column refers to the case of quasi-random sampling. The
points are rendered with a screen diameter of 1.8 pixels.

since it directly affects the rendering cost. We link the number of generated points to the

screen space dimensions of the PCA node. This is similar in spirit to the Randomized

Z-Buffer idea by Wand et al. [116]. They uniformly sample a triangle mesh by using an

analytical formula to decide the number of points to sample. In particular, if the triangle

mesh projects to p pixels, they uniformly sample O(p log p) points on their triangle mesh.

However, since our sampling is on a per-node basis, we have the flexibility of precomput-

ing this relationship so that we can efficiently look it up at runtime. We use an empirical

approach to build our lookup table. We choose an empirical approach over an analytic

approach because the former allows us to account for the constants as well as the non-

linear relationship introduced by a diverse set of factors such as discrete rasterization,

hardware anti-aliasing, and the use of quasi-random numbers.

We have set up an empirical testbed where PCA nodes with different σp attributes

are orthographically projected along their f3
p vector. Table 3.1 shows the relationship be-

tween σp and the number of points to be generated to completely cover the projection of

an ellipsoid with dimensions of γ × σp. The multiplicative factor of γ is important here.

The Gaussian distribution never really goes to zero and one will have to generate an infi-

nite number of points to cover the entire distribution. However it can be shown that the

region enclosed by γ = 3.5 has a Confidence Index (CI) of at least 99.7%, i.e., it covers

34

at least 99.7% of the distribution. Hence we limit ourselves to generating enough points

so that the screen-space area occupied by this enclosed region is covered. At render-time

we estimate the z-distance of the mean µp from the camera and estimate the dimensions

on the screen to be dFσp/ze, where F is the distance between the center of projection and

the view plane. We use this to index the table for determining the number of points to

generate. Our z-distance-based estimate is a conservative one, and the use of more para-

meters such as those from rotation and perspective projection should reduce the number

of generated points further. However, our view-dependent rendering algorithm ensures

that a node projects to no more than a couple of pixels and hence the only significant

parameter is the distance of the node from the camera eye.

We have set a maximum threshold for the screen-space size of σi
p to be 4 in our case.

Under our scheme for view-dependent tree traversal (see §5.2.3) larger values can occur

only when the user is extremely close to the surface. For such cases one can either render

using larger points or generate more points based on the Gaussian distribution parame-

ters. Table 3.1 shows that a pseudo-random number scheme requires more samples than

a scheme based on quasi-random numbers. This is natural since pseudo-random num-

ber generators exhibit greater discrepancy. Moreover, quasi-random sampling does not

exhibit temporal aliasing since the quasi-random sequence does not vary on a per-frame

basis.

3.2.5 Statistical Geometry Modeling in the Unified-Attribute Space

The PCA analysis in the unified-attribute space gives us a better representation of a point

cloud than doing separate PCA in the individual attribute spaces since the correlation

between the attributes is preserved in this case. However, unified-attribute-space PCA

could still be a coarse approximation if the distribution in any of the individual attribute

spaces is complex. Hence, we use the partitioning scheme of §3.2.1 to derive a hierarchical

PCA distribution in the unified-attribute space. Alternately, instead of using clustering

in the spatial attribute space, it is possible to partition using clustering in the unified-

attribute space. However, we simply went with the former approach since it creates a

35

(a) (b)

Figure 3.9: Points generated from a low-resolution cut (at level 12) of the tree. Figure (a): Points gener-
ated by sampling the individual Gaussian distributions of the position, normal, and color attributes. Figure
(b): Points generated by sampling the Gaussian distribution derived from the unified attribute space. There
are 4096 nodes in each figure with each node generating the same number of points that it represents.
Notice the better distribution of the normals near the eyes and in the hair in Figure (b).

more balanced tree (especially at lower resolutions).

We sample the Gaussian distribution in the unified-attribute space just like we

sampled the individual attribute distributions previously. This requires us to generate

Gaussian random numbers in a 8D space. We do this by sampling points uniformly on

a 8D hypersphere [78] and then radially warping them according to a Gaussian distri-

bution of unit variance. We use these Gaussian numbers and warp them according to

the 8D PCA parameters of the node (mean, standard deviation, and basis frame). This

distortion process is a direct generalization of the technique we used for the spatial at-

tributes in §3.2.2. Note that the points generated this way have the proper position and

color attributes. However, the normals are still in the 2D logarithmic tangent space. We

convert these values to normals in 3D by using the exponential map with respect to the

mean normal (µθ, µφ) [15].

Since this sampling is done in the unified attribute space the correlation between

36

the attributes is maintained and the generated points are much more closer to the under-

lying point cloud (see Figure 3.9). In order to determine the number of points to generate

for a given node we need to determine its screen space projection area. For this we con-

sider a 8D hyper-ellipsoid with intercepts of γσ along its respective principal axes. This

is generalization of the approach we adopted for the spatial domain (see Figure 2.3). We

project these intercepts to the 3D spatial domain and choose the maximum of these pro-

jections as an estimate of the radius of the sphere bounding the spatial attributes of the

node. We use the screen space projection defined by this radius to index into table 3.1 for

determining the number of points to generate.

3.3 Comparison and Summary

In this chapter we discussed how visual data can be modeled using context-aware sam-

ples as the basic building blocks. We saw that the differential point geometry is mod-

eled by sampling points on the surface and computing the parameters of the differential

points using eigenanalysis. We also discussed how undersampling and oversampling

issues are handled. We discussed how a statistical point geometry is sampled using hi-

erarchical partitioning. We also showed how the original data can be approximated by

sampling the probability distribution derived from statistical analysis.

Differential points offer a very compact representation of the visual data. The

second-order approximation of differential points did not show any noticeable visual

artifacts. The representation of visual data using statistical points is more robust to noise

than differential points. Also statistical points are easier to organize hierarchically.

37

Chapter 4

Encoding Context-Aware Samples

Context-aware samples represent the overall geometry with fewer number of samples

than context-blind samples. Additionally, there is significant coherence in the actual con-

text information of the samples and we can reduce the representational complexity even

further by leveraging this coherence. In this chapter we discuss how the coherence in

the context information can be exploited for compactly encoding context-aware samples.

Our primary tools for this procedure are quantization and classification techniques.

4.1 Encoding Differential Point Geometry

We use coherence in the context information of the differential points using quantization.

We quantize the position xp of a DP p in 6 bytes by using 2 bytes each for the x−, y−,

and z−coordinates. We quantize the frame into 4 bytes by quantizing the θ and φ angles

of ûp and v̂p into a byte each. We found that a 8-bit precision for quantizing the cur-

vatures values was not enough for our test models. Hence we quantize the maximum

principal curvature, λup , with 16-bits and encode the minimum principle curvature, λvp ,

by encoding the ratio ρp = λvp

λup
∈ [0, 1] with 8 bits. This amounts to quatizing a DP into

13 bytes. However, if the DPs are undersampled (ex. sampled from a triangle mesh) then

the dimensions of the rectangles rp of a few DPs might be different than the size auto-

matically computed from the curvature values (see §3.1.1). If the size of the rectangle rp

can be computed solely from the curvature values, then a zero byte is written to the file

after the first 13 bytes of the DP have been written. Otherwise, the width and the height

of rp are encoded in 1 byte each (the bytes being nonzero) and written after the first 13

bytes of the DP. We do not save the color for each DP, but group together DPs with the

same color and write the color information once for this group.

38

(a) (b)

Figure 4.1: A comparison of the rendering quality with and without encoding: (a) The bunny rendered
without encoding, (b) The bunny rendered with encoding.

4.2 Encoding Statistical Points

The PCA-based representation of a set of points is fairly compact. However, a quick look

at the PCA parameters of the nodes of the hierarchy shows that there is a high coherence

in the PCA parameters themselves. We use two approaches to leverage this coherence

for a compact representation: classification and quantization.

4.2.1 Classification

Due to the uniform subdivision enforced by our algorithm the standard deviations σ ex-

hibit a high level of coherence. We use a k-means clustering algorithm on the standard

deviations (σp, σn, and σc) to derive a small number of representative variances (between

64 to 4K for each model). Figures 4.2(b) and 4.2(c) show the original values of the stan-

dard deviations σp and their cluster centers. We are now free to make a global lookup

table of the σ cluster centers and only store the index of the best matching standard de-

viation with each node. This saves us significant number of bits for each node because

now we use only 12 bits each for σp and σn, and 6 bits for σc (see Figure 4.2(a)).

4.2.2 Quantization

We use quantization to reduce the number of bits needed for the remaining attributes. To

encode the frame, fp we could quantize the quaternion coefficients corresponding to the

rotation of the unit basis to fp. This approach gives equal weight to all the three principal

39

(a)

(b) (c)
(d)

Figure 4.2: (a): A node is quantized into 13 bytes for the spatial and normal information. Four extra
bytes are used for the optional color information. The breakdown is shown in bits. (b): About 600K PCA
values of σp for the David’s Head, and (c): their 512 k-means cluster centers. (d): We quantize the frame,
fp, by quantizing its θ, φ, and ψ angles.

components. However we have observed that the human eye is much more sensitive to

the quantization of f3
p , (that generally points in the direction of the local normal) than

to the quantization of the other two axes. So we quantize f3
p separately by quantizing

its θ and φ angles in 8 and 10 bits, respectively (see Figure 4.2(d)). To quantize the other

two axes we observe that they are orthogonal in the plane normal to f3
p . The remaining

two components, f1
p and f2

p , can therefore be represented by a single angle ψ. To see this,

consider the rotation of the unit vectors x̂ = (1, 0, 0), ŷ = (0, 1, 0), and ẑ = (0, 0, 1) by an

angle of θ around the axis â = ẑ× f3
p (see Figure 4.2(d)). If we denote the rotated vectors

by x̂′, ŷ′, and ẑ′ respectively, then ẑ′ = f3
p , while x̂′ and ŷ′ reside on the plane normal

to f3
p . The angle ψ is then simply the counter-clockwise angle going from x̂′ to f1

p . We

quantize ψ by 6 bits which means that the whole frame fp can be quantized into 24 bits.

Our method of encoding the frame fp allows us to decode its quantized information

quickly. Given the values of θ, φ, and ψ we can compute the frame vector f3
p directly as

(cosφ sin θ, sinφ sin θ, cos θ). To determine the other two frame vectors we first need to

40

(a) (b)

Figure 4.3: Figure (a) shows view-dependent rendering on a 512 × 512 window from 191K un-encoded
nodes and 824K generated points. Figure (b) shows the same rendering from encoded nodes. We encode each
node to 17 bytes using quantization and classification. We noticed very little difference between rendering
with encoded and unencoded data.

compute the vector x̂′ given by [96]:

x̂′ = cos θ x̂ + (1− cos θ)(â · x̂)â + sin θ (â× x̂)

=

cos θ + f3
p (y) f3

p (y) (1− cos θ)

−f3
p (x) f3

p (y) (1− cos θ)

f3
p (x) sin θ

,

where f3
p (x) and f3

p (y) are the x- and y- components of f3
p respectively. The vector ŷ′ can

be computed similarly. The final frame vector f1
p is then given by the rotation of x̂′ and

ŷ′ by an angle of ψ to get :

f1
p = cosψ x̂′ + sinψ ŷ′

f2
p = cosψ ŷ′ − sinψ x̂′

We speed up decoding by using a lookup table for the sine and cosine values of all

the possible quantized values of the angles θ, φ, and ψ representing fp. Since we use a

8-10-6 quantization of these angles, our lookup table consists of (28 +210 +26)×2 = 2688

floating point numbers which can easily fit into present-day caches.

41

Quantizing the remaining information is straightforward. We quantize fn similarly

with 24 bits. We quantize fc in 10 bits using a 4-3-3 quantization of its (θ, φ, ψ) values.

We encode µp in 32 bits using a 10-11-11 quantization, where the dimension of minimum

width uses a 10 bit quantization. The value of µc is encoded in 16 bits using a 5-6-5

quantization of its red, green, and blue values [99]. Overall, each node can be represented

with 13 bytes of spatial and normal information with 4 extra bytes required for color. A

complete single-precision floating-point representation would have required 96 bytes.

Figure 4.3 illustrates the effectiveness of our encoding algorithm visually (the details of

the view-dependent rendering algorithm will be discussed in §5.2.3).

4.3 Summary

In this chapter we have shown how the context-aware samples can be encoded. We have

shown that quantization can be used to encode the parameters of the context information

and classification can yield significant reduction in the representational complexity. We

encode both CAS primitives with just 13 bytes for surface position and normals. We note

that differential points can be represented with even fewer bytes by using classification.

Our encoding had negligible impact on the quality of the rendering. Although context-

aware samples need more bytes per sample when compared to simple point primitives,

they have far less overall memory consumption since they are fewer in number. We

present a quantitative comparison of the memory consumption of CAS primitives in

chapter 6 (see Tables 6.1 and 6.2).

42

Chapter 5

Transmission and Rendering

Context-aware samples have several elegant properties which can be used for efficient

transmission and rendering. Since they are completely independent of each other, they

can be used for efficient streaming. Moreover, since they are similar to procedural or

parametric representations, they shift the load of rendering from memory access to com-

putation. This effectively addresses the growing disparities between the speeds of mem-

ory and computation (the memory wall problem) and gives us a significant rendering

speedup. In the rest of this chapter we discuss the transmission and rendering of context-

aware samples. For us transmission encompasses both the bandwidth for the system bus

as well as the network bandwidth for remote rendering.

5.1 Differential Point Rendering

Differential points are completely independent of each other, therefore they can be simply

transmitted in an order-independent manner. We render a DP by rasterizing the regional

surface, Sp, using the fragment shaders. While the differential information in a DP can

be extrapolated to define a continuous spatial neighborhood, Sp, current graphics hard-

ware do not support such a rendering primitive. We note that the main functionality of

the spatial distribution is that it derives the normal distribution around the differential

point. However, it is not necessary for the rendering algorithm to use an accurate spatial

distribution given the relatively small neighborhoods of extrapolation. So we use the rec-

tangle rp as an approximation to Sp when rasterizing p. Since the shading artifacts are

more readily discernible to the human eye the screen-space normal distribution around p

has to mimic the normal variation around p on the original surface. This is done by pro-

jecting the normal distribution Np(u, v) onto rp and rasterizing rp with a normal map of

this distribution. Normal mapping is not neccesary when rendering with the more recent

43

graphics cards since the normals can be directly computed at every pixel using our for-

mulations. In the following subsections we will discuss how we precompute the normal

distribution, Np(u, v), and then detail our run-time per-pixel shading algorithm.

5.1.1 Normal Distribution

Consider the projection of Np(u, v) onto τp using the projection Pp discussed in §3.1.3.

The resulting (un-normalized) normal distribution, np(u, v), on the tangent plane can be

expressed using equation (2.6) as:

np(u, v) ≈ Np(0, 0) + s(u, v) dNp(t̂(u, v)) (5.1)

It can be shown that the normal distribution, np(u, v), can be expressed in the local coor-

dinate system (êx, êy, êz) of (ûp, v̂p, n̂p) as [59]:

np(u, v) ≈ êz −
[

(λup u êx + λvp v êy)

(λupu2 + λvpv2)/
√

u2 + v2
arcsin

(
λupu2 + λvpv2

√
u2 + v2

)]
(5.2)

where êx = (1, 0, 0), êy = (0, 1, 0), and êz = (0, 0, 1) are the canonical basis in <3. This

expression has the nice feature that the normal distribution is independent of ûp, v̂p, and

Np(0, 0) when specified in the local coordinate frame.

To shade a DP on a per-pixel basis we would want the normal distribution to be

available at the screen space. This can be done on the GPU using its support for normal

mapping. A normal map is a texture map where the red, green, and blue channels of

the texture stand for the x−, y−, and z− components of the normal. After the normal

map is mapped to the geometry, the normals can be made available at each pixel that the

geometry projects to. It is expensive to compute a normal map at run-time for each com-

bination of λu and λv. Hence we pre-compute normal maps in the local coordinate frame

for different values of the principal curvatures λu and λv. At run time we normal map

the rectangle rp with the closest resembling normal map amongst these pre-computed

normal maps. A drawback to this scheme is that since λu and λv are unbounded quan-

tities it is impossible to compute all possible normal maps. To get around this problem,

44

we introduce a new term, ρp = λvp

λup
, and note that −1 ≤ ρp ≤ 1 because |λup | ≥ |λvp |.

We then rewrite the local normal distribution of equation(5.2) using ρp as:

np(u, v) ≈ êz − (u êx + ρp v êy)
arcsin(λupψp(u, v))

ψp(u, v)
(5.3)

where ψp(u, v) = (u2 + ρpv2)/
√

u2 + v2. Now consider a normal distribution for a differ-

ential point m whose λum = 1:

nm(u, v) ≈ êz − (u êx + ρm v êy)
arcsin(ψm(u, v))

ψm(u, v)

The only external parameter to nm(u, v) is ρm. Since ρm is bounded, we pre-compute a

set, M, of normal distributions for discrete values of ρ and store them as normal maps.

Later, at render time, we normal map the rectangle rm by the normal map whose ρ value

is closest to ρm. To normal map a general differential point p using the same set of normal

maps, M, we use the following lemma:

Lemma 1 When expressed in their respective local coordinate frames, np(u, v) ≈ nm(λupu, λupv)

where m is any DP with λum = 1 and ρm = ρp.

Proof: First, we make an observation that λupψp(u, v) = ψp(λupu, λupv). Using this

observation, the tangent plane normal distribution at p (equation (5.3)) can be re-written

as:

np(u, v) ≈ êz −
[
((λupu)êx + ρp(λupv)êy)

arcsin(ψp(λupu, λupv))
ψp(λupu, λupv)

]

= êz −
[
((λupu)êx + ρm(λupv)êy)

arcsin(ψm(λupu, λupv))
ψm(λupu, λupv)

]

≈ nm(λupu, λupv) ¤

The above lemma shows that a screen-space normal distribution for any general DP p

can be obtained by normal mapping the rectangle rp with the best matching normal map

nm(·, ·) with a scaling factor of λup .

45

5.1.2 Shading

We discussed the mechanism for delivering the normal at pixel that a DP projects to.

In this section we discuss how this information be used to compute the lighted color

of each pixel. For specular shading, apart from the local normal distribution, we also

need a local half-vector distribution. For this we use the cube-vector-mapping function-

ality [67] offered in the nVIDIA GeForce series of GPUs which allows us to specify un-

normalized vectors at each vertex of a polygon and obtain linearly-interpolated and nor-

malized versions of these on a per-pixel basis. We use the cube-vector map to specify a

un-normalized half vector at each vertex of rp which delivers a normalized half vector at

each pixel that rp occupies. Per-pixel specular shading is achieved by using the per-pixel

normal (from the normal map) and half vector (from the cube-vector map) for illumi-

nation computations in the register combiners. A similar technique is used for diffuse

shading.

Let ĥp denote the (normalized) half (halfway) vector at the point position xp and

let Hp(u, v) denote the (un-normalized) half vector at a point Xp(u, v) on the surface Sp

with Hp(0, 0) = ĥp. Let hp(u, v) be the (un-normalized) half-vector distribution on the

tangent plane τp obtained as a result of applying the projection Pp on Hp(u, v). It can

then be shown that [59]:

hp(u, v) ≈ Hp(0, 0) + u
∂

∂u
Hp(u, v)

∣∣∣∣
u=0
v=0

+ v
∂

∂v
Hp(u, v)

∣∣∣∣
u=0
v=0

(5.4)

where the partial differential can be shown to be of the form [59]:

∂

∂u
Hp(u, v)

∣∣∣∣
u=0
v=0

=
((̂lp · êx)̂lp − êx)

‖a− xp‖ +
((ŵp · êx)ŵp − êx)

‖b− xp‖ (5.5)

where a is the position of the light, b is the position of the eye, and l̂p = a−xp

‖a−xp‖ and ŵp =
b−xp

‖b−xp‖ are the respective normalized light and view vectors at xp. The subtraction and

the dot products in equation (5.5) are simple operations and can be done fast. However,

the square root and the division operations are expensive. Both of these operations are

combined by the fast inverse-square-root approximation [115] and in practice, we have

46

Display()
(Let M be the set of normal maps computed for quantized
values of ρ. It is computed and loaded into texture memory
at the program start time)

1 Clear the depth buffer and the color buffers
2 Configure the register combiners for diffuse shading
3 ∀ DP p
4 Mp = normal map ∈ M whose ρ is closest to ρp

5 Map Mp onto rp

6 Compute the light vector, lp(·, ·), at the vertices of rp

7 Use the light vectors to map a cube vector map onto rp

8 Render rp

9 Clear the color buffer after loading it into the accumulation
buffer

10 Clear the depth buffer
11 Configure the register combiners for specular shading
12 ∀ DP p
13 Mp = normal map ∈ M whose ρ is closest to ρp

14 Map Mp onto rp (The details from the last pass can be
cached if desired)

15 Compute the half vector, hp(·, ·), at the vertices of rp

16 Use the half vectors to map a cube-vector map onto rp

17 Render rp

18 Add the accumulation buffer to the color buffer
19 Swap the front and the back color buffers

Figure 5.1: Differential Point Rendering Algorithm

found that this approximation causes no compromise in visual quality.

The light-vector distribution on τp can be derived similarly to be:

lp(u, v) ≈ l̂p − uêx − vêy

The normal (np(u, v)), half-vector (hp(u, v)), and the light-vector (lp(u, v)) distri-

bution around p can be delivered on a per-pixel basis using the normal-mapping and

cube-mapping mechanisms discussed above. We use them to determine the lighted color

of each pixel by computing the term α np(u, v) · lp(u, v) + β np(u, v) · hp(u, v), where

α, β ∈ [0, 1]. The overall rendering algorithm is given in Figure 5.1.

In summary, in order to color the pixels that a DP projects to, we need two oper-

ations: (1) computing the relevant vectors (coordinates) for texture mapping (CPU-end

47

(a) Diffuse Illumination (b) Specular Illumination (c) Diffuse and Specular
Illumination

Figure 5.2: Examples illustrating differential point rendering under various illumination schemes.

computation) and (2) per-pixel shading (GPU-end computation). For the first part we

map the rectangle rp by two textures: the normal map and the half vector (or light vec-

tor) map. Normal-mapping involves choosing the best approximation to the normal dis-

tribution from the set of pre-computed normal maps M and computing the normal-map

coordinates (u, v) for the vertices of rp. Half-vector mapping involves computing the un-

normalized half vectors at the vertices of rp using equation (5.4) and using them as the

texture coordinates of the cube vector map that is mapped onto rp. The cube-vector map-

ping hardware delivers a per-pixel (normalized) half vector obtained as result of a linear

interpolation between the half vectors specified at the vertices of rp. Per-pixel shading

is achieved at the fragment shaders (previously known as register combiners) using the

(per-pixel) normal and half vectors [67]. If both diffuse and specular shading are desired

then shading is done in two passes with the accumulation buffer being used to buffer the

results of the first pass. We use a two-pass scheme because nVIDIA GeForce2 allows only

two textures at the register combiners. If three textures are accessible at the combiners

(as in GeForce3 or higher) then both the diffuse and specular illumination can be done in

one pass. In presence of multiple light sources, we do a separate rendering pass for each

48

Figure 5.3: Client-Server rendering: The server selects the level of detail to be used for rendering in a
view-dependent manner. The nodes of the appropriate level of detail are transmitted to the client, which is
either the graphics card or a remote rendering device. The client renders each node by generating points
and their attributes from the statistical information of the node.

light source, using the accumulation buffer for intermediate results.

5.2 Statistical Point Generation

Statistical points, like differential points, are processing-order independent. In addition,

statistical samples have the advantage of a hierarchical structure which can be leveraged

in several ways for transmission and rendering. In this section we discuss how the ro-

bust and simple representation of statistical points translates to efficient transmission and

rendering.

5.2.1 Client-Server Model

We use a client-server model for transmission and rendering of statistical points. This

model applies to both transmission on the system bus and transmission over the network.

The underlying idea behind our client-server model is that the server sends only the PCA

parameters to the client and the client renders that PCA node by sampling the requisite

number of points. This is illustrated in Figure 5.3. A time-line illustration of our client-

server architecture is shown in Figure 5.4.

We deal with three kinds of rendering devices: (1) GPU, (2) remote computer, and

(3) PDA. The GPU represents a single-system computer where the CPU sends the geom-

etry information to the GPU for rendering. This is consistent with the architecture of

graphics interfaces such as OpenGL and DirectX that allow the CPU to treat the GPU as a

49

Figure 5.4: A time-line illustration of our client-server architecture. A blue arrow represents a change of
state at the server or the client, while a red arrow represents a flow of information between the server and
the client. Depending on the bandwidth of the communication channel, this architecture can be used for a
per-frame view-dependent rendering or a client-feedback-based on-demand rendering.

client accessed through device drivers. We make no distinction between GPU and other

client rendering devices since the bottleneck is generally the communication bandwidth

that we wish to reduce.

Transmission to the client involves two phases: the initial startup phase and the

per-frame update phase. This is illustrated in Figure 5.4. In the startup phase the client

receives global information about the geometry. This constitutes the classification and

quantization information discussed in §4.2. The classification information consists of the

classes of the standard deviations σp, σn, and σc. The quantization information consists

of the bit distribution for µp, µc, fp, fn, and fc. This information sets up the client to

decode the PCA nodes as they arrive.

We have experimented with two kinds of client-server rendering frameworks – on-

demand and view-dependent rendering. The on-demand rendering is more suitable for ap-

plications that involve less synchronous communication on lower-bandwidth communi-

cation channels such as the Wi-Fi 802.11x and cell phone networks. The view-dependent

rendering requires a greater synchronous, per-frame communication with the server and

is better suited for time-critical applications on higher bandwidth communication chan-

nels such as the system bus and dedicated fiber-optic networks.

5.2.2 On-demand Transmission

In on-demand rendering the user selects a subset of the model using a refinement window.

The client requests the server to update the nodes in that window. The server sends back

50

(a) (b) (c)

(d) (e)

Figure 5.5: On-demand rendering: We show the rendering of PCA nodes on a remote PC with (a) square
splats and (b) with quasi-random sampling. The client selects a refinement window in Figure (c). Figures
(d) and (e) are the rendering of the refined nodes with square splats and quasi-random sampling, respec-
tively. The figures show that quasi-random sampling conveys more information for the same number of
nodes. However, the software rendering at the client was twice as slow.

51

the encoded PCA information of the refined nodes (see Figures 5.5 and 5.6). Here the

server can either maintain a mirror state of the client and its level-of-detail information or

the client can send its past transactions so that the server can determine the current level

of detail. In the first case the client only has to send the parameters of its camera and the

refinement window. This leads to less flow of information between the two, but comes

at the cost of the server memory. In the second case the bandwidth used by the client is

still small, although there is some computational load on the server. We have used the

first case in our experiments although the latter case may be more suitable when scaling

to a large number of clients. We have tested our on-demand framework on a variety of

communication channels such as Wi-Fi 802.11b, Ethernet LAN, the Internet, and USB.

Our client rendering devices for these experiments were a remote PC and a PDA.

5.2.3 View-dependent Transmission

In view-dependent rendering we update the level of detail at each frame depending on the

proximity of the object to the eye of the virtual camera. An appropriate level of detail in

the hierarchy is maintained as a level cut across the hierarchy tree or a tree cut. Thus, in

regions where higher detail is desired the tree cut is close to the leaves of the hierarchy

and in regions of low detail the cut is closer to the root. Before we discuss the details

of our view-dependent level-of-detail determination we will discuss our hierarchy tree

data-structure which is crucial from an implementation stand point. Our hierarchy tree

data structure is similar to B-Trees (see Figure 5.7(a)). In each node we store a pointer to

the parent, a pointer to the next node in the tree-cut, and a pointer to its left child. We

do not need to store a pointer to both the children since siblings are stored in consecutive

memory locations – hence the right child is only a pointer increment away from the left

child. We also store the encoded PCA attributes(13 or 17 bytes) at a node and an extra

byte which is set to 1 iff the child is a right child. In all we use between 26 to 30 bytes for

each node. The compact size of the node leads to a nice caching performance.

We maintain the tree cut by maintaining a pointer to the first node of the tree cut

and a next pointer in each subsequent node. The server initially sets the tree-cut to be

52

(a) (b) (c)

(d) (e)

Figure 5.6: On-demand rendering: These figures show the same sequence of operations as in Figure 5.5
on a PDA client.

53

(a)

Server()
1. For every node, n, in the tree-cut
2. Decode(n)
3. If (CanCull(n))
4. Merge(n)
5. continue
6. p← NumPointsToGenerate(n)
7. If (NeedSplit(n, p))
8. n← Split(n)
9. Decode(n)
10. p← NumPointsToGenerate(n)
11. SendToClient(n, p)
12. If (CanMerge(p))
13. Merge(n)

(b)

Figure 5.7: View-dependent rendering data structure and algorithm. The tree data structure has following
elements – P: Parent pointer, C: Child pointer, N: Next tree-cut pointer, L/R: Left/Right sibling, PCA:
encoded PCA parameters.

at half the maximum level of the hierarchy. Then, at each frame the server traverses the

cut and adjusts it in a view-dependent fashion. The adjustments include checking for

view-frustum culling and back-face culling as well as the use of screen-space projection

area.

We implement view-frustum culling by approximating a node by a sphere of radius

γσ1
p (as in §3.2.4). We use a normal-cone-based back-face culling test [70] with the radius

of the cone being γσ1
n. If the node can be culled, the server merges the node and its

sibling to its parent if: (1) the node is a right child, (2) the previous node in the cut is its

(left) sibling, and (3) the previous node was also culled. Pseudocode’s Merge() function

(Figure 5.7(b)) implements this. If the node is not culled, the server estimates the screen-

space area of the node and looks up the number of points to render from the table 3.1. If

the screen-space area of the node is above a maximum threshold (set to 2 in all our tests)

then the server splits the node. The split node is replaced in the tree-cut by its children.

The server merges the node if its screen-space area is below a threshold (set to 1 in all our

cases) and moves on to the next node in the tree-cut. The server sends the encoded PCA

attributes of the unculled nodes to the client-rendering device, such as the GPU, with

information on the number of points to be generated. The client renders the PCA nodes

54

Figure 5.8: Figure (a) shows the means of the nodes of the tree-cut during view dependent rendering.
Figure (b) shows the rendering of the model using quasi-random sampling at the GPU.

by generating the points and their attributes. If the client is a remote PC or a PDA then it

can generate the points directly on the CPU. If the client is the GPU then we can generate

points on it directly [61]. Figure 5.8 illustrates the view of both the server and the client

during view-dependent rendering.

5.2.4 Anti-aliased Rendering

The PCA nodes are rendered as the points that are generated from their PCA attributes.

While rendering these generated points we have to deal with two issues: (1) temporal

aliasing, and (2) spatial aliasing. The temporal aliasing artifacts arise for pseudo-random

sampling where new points are generated for every frame. Our approach of using quasi-

random sampling gets rid of temporal aliasing since the generated points are from the

same set for every frame. Spatial screen anti-aliasing can be effectively done using the

hardware support for anti-aliasing (see Figures 6.4(b) and 6.4(c)). We have used the 8×
Quincunx multisampling feature of the NVIDIA GPUs which comes with a very small

overhead cost on rendering. Also, rendering from encoded data did not show any no-

ticeable artifacts (see Figure 4.3).

55

5.3 Comparison and Summary

In this chapter we discussed how the nice features of context-aware samples translates

to efficient transmission and rendering. We saw that differential points can be rendered

by rasterizing their rectangles and computing the color at each pixel they occupy by

using the fragment shaders. We also saw that statistical point geometry can be rendered

by transmitting the nodes of a cut of the tree to the client which then renders the node

by generating points. We saw that statistical point geometry is suitable for both on-

demand and view-dependent transmission and that they support a variety of clients such

as remote PC, PDA, or a graphics card. In the next chapter we will present the results of

our experiments and compare it to previous work.

56

Chapter 6

Results and Applications

In the previous chapters we have discussed the construction, representation, transmis-

sion, and rendering of context-aware samples. In this chapter we will discuss the main

implementation details of these stages. We will also highlight the advantages of context-

aware samples by comparing them with alternate approaches and quantify their relative

benefits. There are two prevailing approaches in the research community for represent-

ing the geometry using independent samples. While context-aware samples subscribe to

the approach of having smart samples, the alternate approach is to have context-blind

samples which do not encode much local context information in each sample but rep-

resent the overall geometry by populating more samples for a given surface area. The

best-known technique in the second category is splatting. In this case the samples are

simply points with a normal and a tangential disk and they are rendered by blending

the tangential disks in screen space. We compare both differential points and statistical

points with splatting.

6.1 Differential Points

We have implemented differential points on a PC with a 866MHz Pentium 3 processor

with 512MB RDRAM and a nVIDIA GeForce2 Graphics card with 32MB of DDR RAM.

We did all our rendering-related tests on a 800×600 window. We used 256 normal maps

(|M| = 256) corresponding to uniformly sampled values of ρ and we built a linear mip-

map on each of these with the highest resolution being 32×32. The resolution of the

cube-vector map was 512×512×6.

We have tested differential points on five models: the Utah teapot, a human head

model, a camera prototype (all NURBS models), the Stanford bunny, and the Cyber-

ware venus model (triangle mesh models). In case of a NURBS surface the component

57

(a) (b) (c) (d)

Figure 6.1: Rendering quality with and without simplification. Head Model (ε = 0.012, δ = 2.0)
(a) Without simplification, (b) With simplification. Venus Model (ε = 10−6, δ = 0.05) (c) Without
simplification, (d) With simplification

.

patches are sampled uniformly in the parametric domain and simplified independent of

each other. The main parameter of the sampling process is the ε parameter. A smaller

ε requires a higher sampling frequency. The main role of δ is in areas where curvature

changes fast. In such surfaces, δ ensures that the rectangles from the low curvature re-

gion do not block the nearby rectangles in the higher curvature regions. The δ term

also ensures that the rectangles do not overrun the boundary significantly. We use a

simple binary heap for heap operations in the simplification process. The main func-

tional bottleneck in the pre-processing stage is the test for enclosure in the simplification

process. Since every DP popped from the heap is tested for enclosure, the number of

enclosure tests is equal to the number of sampled DPs. Irrespective of the amount of

super-sampling of a model, simplification yielded similar results on all attempts that

shared the same error metrics (ε and δ). The effectiveness of simplification is summa-

rized in table 6.1 and is illustrated in Figure 6.1. While simplification does not cause any

loss of visual quality, it can lead to an order-of-magnitude speed-up in rendering and can

save substantial storage space. While simplification reduces the number of primitives,

quantization has the orthogonal influence of reducing the storage space for each primi-

tive. We have found that the quantization of a DP to 13 bytes does not lead to any drop

in visual quality (see Figure (4.1)).

The results reported in Table 6.1 are with dynamic illumination (the light and half

vectors are computed for each DP in each frame). Both the specular and diffuse shading

58

Without Simplification Teapot Camera Head Bunny Venus
Number of Points 156,800 216,712 376,400 34,834 134,359
Disk Space w/o encoding (in MB) 9.19 12.69 22.06 1.77 6.82
Disk Space w/ encoding (in MB) 1.99 2.75 4.77 0.51 1.99
Pre-processing Time (in seconds) 22.5 15.25 22.2 1.2 3.25
Frames per second (Diffuse) 2.13 1.59 0.89 9.09 2.44
Frames per second (Specular) 2.04 1.52 0.88 9.05 2.38
With Simplification Teapot Camera Head Bunny Venus
Number of Points 25,713 46,077 64,042 34,350 92,608
Disk Space w/o encoding (in MB) 1.51 2.70 3.75 1.75 4.64
Disk Space w/ encoding (in MB) 0.32 0.59 0.82 0.50 1.34
Pre-processing Time (in seconds) 146.5 178.17 485.5 7.15 76.92
Frames per second (Diffuse) 12.51 6.89 5.26 9.11 3.57
Frames per second (Specular) 11.76 6.67 5.13 9.09 3.45

Table 6.1: Summary of results: The teapot, camera, and the head are derived from NURBS and the
Stanford bunny and the Cyberware venus are derived from a triangle mesh

are done at the hardware level. However, nVIDIA GeForce2 does not support a hard-

ware implementation for the accumulation buffer. Instead, the accumulation buffer is

implemented in software by the OpenGL drivers. So the case with both diffuse and spec-

ular illumination can be slow. However this is not an issue for the modern GPUs where

fragment shaders are much more capable. We could render about about 330, 000 DPs

per second with diffuse illumination. Both the diffuse and specular illumination passes

take around the same time. The main bottleneck in rendering is the bus bandwidth and

the pixel-fill rate. This can be seen by noting that specular and diffuse illumination give

around the same frame rates even though the cost of computing the half vectors is higher

than the cost of computing the light vectors and that the specular illumination pass has

more computation per-pixel than the diffuse illumination pass.

The context information of differential points gives them greater expressiveness

than context-blind samples. However, context-blind samples have the advantage that

their rendering-related computations are much simpler. We compare differential point

rendering with splatting of context-blind samples. We construct the context-blind sam-

ples simply by replacing the contextual information of DPs with a bounding ball. We

consider the following screen-space splatting primitives for context-blind samples:

1. Square Primitive: They are squares parallel to the view plane with a width equal to

59

the radius of the bounding sphere [99]. They are rendered with Z-buffering enabled

but without any blending.

2. Rectangle Primitive: Consider a disc on the tangent plane of the point, with a

radius equal to the radius of the bounding ball. Also consider a plane parallel to

the view plane and located at the position of the point. An orthogonal projection

of the disc on this plane results in an ellipse. The rectangle primitive is obtained by

fitting a rectangle around the ellipse with the sides of the rectangle being parallel

to the principal axes of the ellipse [89]. The rectangle primitives are rendered with

Z-buffering but without any blending.

3. Elliptical Primitive: We initialize 256 texture maps representing ellipses (with a

unit radius along the semi-major axis) varying from a sphere to a nearly “flat” el-

lipse. The texture maps are not Gaussian, they just have an alpha value of 0 in the

interior of the ellipse and 1 elsewhere. At run time, we texture map the rectan-

gle primitive with a scaled version of the closest approximation of its ellipsoid. We

the render the texture-mapped rectangles with a small depth offset and enable their

blending [99]. We have implemented this in hardware using the register combiners.

We compare differential point rendering with the above splatting primitives using

three test cases. In the first test case we represent the model with the same number of DPs

and splat primitives and compare their rendering quality. In the second test case we con-

trol the sampling of DPs and the context-blind samples so that they yield approximately

similar visual quality of rendering. In the third test case we control the sampling of DPs

and context-blind samples so that they all have the same rendering speed. Our results

are summarized in table 6.2 and Figure 6.2. For the first test case we found that DPs de-

liver a much better rendering quality for the same number of primitives. DPs especially

fared well in high curvature areas which are not well modeled and rendered by the splat

primitives. Moreover, DPs had nearly the same frame rates as the ellipsoidal primitive.

But DPs were slower than the square and rectangle primitives and required more disk

space.

We control the sampling of the points for the remaining two test cases using uni-

60

Rendering PrimitiveStatistical Highlights
DP SP RP EP

Number of Points 156,800 156,800 156,800 156,800
Test 1 Storage Space (in MB) 9.19 4.90 4.90 4.90

Frames per second (Diffuse) 2.13 11.76 10.52 2.35
Number of Points 156,800 1,411,200 1,155,200 320,000

Test 2 Storage Space (in MB) 9.19 44.10 36.10 10.01
Frames per second (Diffuse) 2.13 1.61 1.49 1.16
Number of Points 156,800 1,036,800 819,200 180,000

Test 3 Storage Space (in MB) 9.19 32.4 25.6 5.6
Frames per second (Diffuse) 2.13 2.05 2.06 2.02

Table 6.2: Comparison with Splatting Primitives: (Test 1) Same Number of Rendering Primitives, (Test
2) Approximately similar rendering quality, (Test 3) Similar frame rates. DP = Differential Points, SP =
Square Primitive, RP = Rectangle Primitive, and EP = Elliptical Primitive.

(2.13 fps) (11.76 fps) (10.52 fps) (2.35 fps)
Test 1: Comparison of rendering quality for the same number of primitives (157K points)

(157K points, (1411K points, (1155K points, (320K points,
2.13fps) 1.61 fps) 1.49 fps) 1.16 fps)

Test 2: Comparison of primitives for similar rendering quality

(a) Differential (b) Square (c) Rectangle (d) Elliptical
Points Primitive Primitive Primitive

(157K points) (1037K points) (819K points) (180K points)
Test 3: Comparison of rendering quality for a rendering speed of 2.1 fps

Figure 6.2: Selected areas of rendering of the teapot model for the three test cases

61

form sampling. Results from the second test show that DPs clearly out-perform the splat-

ting primitives both in frame rates and in the storage space requirements. The third test

shows that for the same frame rates DPs produced better rendering quality using fewer

rendering primitives.

6.2 Statistical Point Geometry

In this section we will quantify the benefits of statistical samples. Like we did for differ-

ential points, we will first compare the quality and speed of rendering of statistical points

with that of splatting. We will then highlight the balance and efficiency of our hierarchi-

cal representation by comparing it against an octree-based representation. Afterwards,

we will go on to discuss some of the applications of a statistical representation.

We did all our tests on a 2.4 GHz Pentium IV PC with 2GB RAM and a NVIDIA

GeForceFX 5800 GPU. Our test models were the Stanford’s David’s Head, the full David’s

Statue, the Lucy model, and the St. Matthews face. We have added colors to the David

and Lucy models by solid texturing. We have also tested our work on two raw LIDAR

range scans of the Murder Scene (courtesy of the 3rd Tech Inc.). Except for registration,

we did not do any other processing on the two scans. These datasets took no more than

two hours of preprocessing each, with the classification and quantization phase taking

up most of the time. For classifying the variances we used a naive partition-based k-

means clustering scheme. Advanced clustering schemes should improve this number

dramatically [31].

6.2.1 Comparison to Splatting

Since splatting uses two-dimensional tangent plane Gaussian distributions it is natural

to ask if our three-dimensional Gaussian nodes can be used for splatting as well. In this

section we show how the statistical information can be used for splatting and compare

the speed and rendering quality of splatting with that of statistical point generation.

Splatting requires a 2D tangent plane weight function at each point. The points

are rendered by projecting the support of the weight function to the screen and accu-

62

(a) (b)

(c)

Figure 6.3: Figure (a): The per-pixel cumulative weight accumulated in the second pass of the splatting
algorithm. Figure (b): The final rendering after per-pixel normalization at 9 FPS (42.6K surfels). Figure
(c): Rendering of the model by points generation at 29 FPS (42.6K nodes, 79.7K generated points)

mulating the weighted color contribution at each pixel. The final color at the pixel is

computed by normalizing the color by the cumulative weight contribution from the in-

dividual points/Surfels. We refer the reader to [95, 129] for a thorough treatment of

splatting.

We can splat our nodes with the help of elliptical surfels derived from our nodes.

We represent the elliptical surfels by considering the two most significant components

of the ellipsoidal distribution. Hence the surfels are centered at the means µp, and have

standard deviations of σ1
p and σ2

p , along the vectors f1
p and f2

p respectively. We modify

the Gaussian weight function of the surfel as follows:

w(u, v) = max
(

exp
(
− 1

2

((u

σ1
p

)2
+

(v

σ2
p

)2))
− exp

(
− 1

2
γ2

)
, 0

)

In this function, the γ factor acts to limit the infinite support of the Gaussian function. We

choose γ = 3.0 which corresponds to a Confidence Index (CI) greater than 99.5%. We ren-

63

Model Tree # Node # Leaf APR σAPR # NTC FPS
Octree 1012K 784K 5.19 33.4K 201.8K 6.3David Head
SPG 903K 452K 1.24 1.14 80.4K 9.7
Octree 1882K 1445K 5.04 11.4K 53.3K 24.1David Statue
SPG 1843K 921K 1.20 1.16 21.8K 35.2
Octree 1525K 1204K 12.25 4.9K 74.0K 17.6Lucy
SPG 1330K 665K 1.17 1.06 28.3K 26.8

Table 6.3: Comparison of our hierarchy (SPG) with an octree-based point hierarchy. APR: average parti-
tioning ratio, i.e. the average ratio of the largest and smallest cardinalities amongst the children of a node.
σAPR: same as APR except we compare the maximum and minimum values of σ1

p amongst the children
of a node. NTC: Number of nodes in the tree cut. FPS: Rendering speed in frames per second. For the
NTC and FPS comparisons we rendered both hierarchies with view-dependent rendering (without normal
culling) on a 512×512 window at 2.5× distance from the object center.

der each surfel as a tangent plane rectangle centered at µp, with widths of 2γσ1
p and 2γσ2

p

along f1
p and f2

p respectively. We map each such rectangle with a texture corresponding

to a spherically symmetric weight function with a standard deviation of 1
γ . We can then

deliver the value of the weight function at each pixel simply by assigning texture coor-

dinate values of (0,0), (1,0), (1,1), and (0,1) to the corners of the rectangle [95]. We found

that the quality of rendering by our statistical point generation scheme is comparable to

that of splatting (see Figures 6.3(b) and 6.3(c)). Moreover, point generation is about 3×
faster than splatting. This is mainly because splatting needs three rendering passes as

opposed to one in our case.

6.2.2 Comparison to Octree-based Representations

Hierarchical representation of point geometry based on the octree hierarchy is very pop-

ular [11, 125, 129]. The primary advantages of an octree-based hierarchy are: (1) The

implicit structure of the octree can be used to efficiently represent the means of the

nodes [11], (2) The octree structure can be used for reducing the cumulative computa-

tion in applications such as hierarchical rendering [11] and hierarchical computation of

the covariance matrix [84]. However, a key disadvantage of the octree subdivision is that

it can be highly imbalanced. To illustrate the importance of a balanced tree we did an

octree subdivision of the point set and computed the PCA attributes of the points in each

node. We cut off the octree subdivision when the number of points in a node was less

64

than the user-specified cutoff value (we used the same value as for our method). We

then rendered the dataset by selecting a cut in the octree and generating points per node

using our technique. For view-dependent rendering, we simply used the recursive-tree-

traversal technique of QSplat [99], in combination with our method of estimating the

screen-space area of the node. Our findings are shown in table 6.3. The table shows that

our method leads to a tree with a lesser number of nodes and also has less number of leaf

nodes. The table also shows that the average partitioning ratio (APR), i.e. the average

ratio of the number of points in the largest and the smallest children of a node, is much

closer to 1 in our case. This shows that our partitioning is much more balanced than a

plain octree-based partitioning. Moreover, when we compared the largest standard de-

viations (σ1
p) of the children and took the ratio of the maximum and minimum of these

values, our numbers were more closer to 1 (see the “σAPR” column). This shows that

not only does our partitioning balance the number of points, it also balances the volume

of the partitions. Also note that a 1-to-2 partitioning offers a finer control in setting the

tree cut when compared to a 1-to-8 partitioning. This advantage, combined with the bal-

anced nature of our tree, gave us a big reduction in the number of nodes in the tree cut

during view-dependent rendering (see the “# TCN” column of table 6.3). This typically

translates to a higher rendering speed since the main bottlenecks are at the CPU and the

AGP bus. Both the renderings were made without normal culling. For the results shown

in table 6.3 we used the recursive tree traversal of QSplat [99] for rendering both trees.

The rendering speeds using our method (without normal culling) was roughly twice as

fast as the octree case.

6.2.3 Compression

The representation of the geometry as a hierarchical probability distribution is very ef-

fective for compression. Given any set of points, a typical un-compressed representation

would require 8 bytes for each point – two bytes for each of the x, y, and z components

and two bytes for the normal. Our PCA representation can encode any set of points with

just 13 bytes, which means that we start saving with a PCA representation as soon as the

65

(a) (b) (c) (d)

Figure 6.4: Figure (a) shows that the basic shape of the Lucy model is captured with just 32 PCA nodes.
Figures (b) and (c) show a closeup of the Lucy model when rendered with points generated from level 19
of the hierarchy with 24 levels. We generated 14 million points from 480K nodes for the entire model.
This corresponds to 2.32 bits/vertex approximation of the geometry and normals with about 71dB PSNR
(Hausdorff) error. Figure (c) is rendered with hardware anti-aliasing, while Figure (b) is rendered without
anti-aliasing. Figure (d) shows the original Lucy model (rendered with anti-aliasing).

number of points in the set exceeds two. The processing of the Lucy dataset yielded us

a tree of about 1.33 million nodes of which about 665K nodes are at the leaf level. We

classified the variances into 2400 classes of spatial variances σp, 1800 classes of normal

variances σn, and 64 classes of color variances σc. While the original 14 million points

of the Lucy dataset required about 112MB of data, our total representation including the

hierarchy and the classification requires about 18MB. We can achieve significant compres-

sion by substituting the original point set with the points generated with quasi-random

sampling.

The compression however comes at the cost of an approximation error. Figure

6.4(a) shows the nodes of the Lucy model at a coarse resolution. Figure 6.4(b) shows the

approximation of the Lucy dataset with 2.32 bits per vertex for geometry and normals.

We measure the approximation error as the Peak Signal to Noise Ratio (PSNR) as mea-

sured by the Hausdorff distance metric [90]. At each node, we generate the same number

of points as the number of points that the node represents and determine the nearest orig-

inal point of that node for each generated point. This nearest-neighbor association is a

conservative estimate of the Hausdorff distance between the original and the generated

66

points. The PSNR is given as 20 log10(Peak/d), where d is the root-mean-squared dis-

tance of the generated points from the original points in the Hausdorff distance metric

and Peak is the length of the diagonal of the bounding box. Figure 6.5(a) shows our

rate-distortion curve for various datasets. Our results compare well to the compression

results by Praun and Hoppe [90]. We also compare our compression to that of Botsch

et al. [11]. While the PSNR error rates for their compression are not available, we could

get a rendering quality similar to theirs using 13.25 bits/vertex for position and nor-

mal (David’s Head). In the compression chart of Figure 6.5(a) this corresponds to 8.66

bits/vertex for encoding just the position. For the David’s Head model, Botsch et al. [11]

needed 10.2 bits/vertex (position and normal) on the hard disk after gzipping, and their

memory foot print was 32 bits/vertex. Our byte requirements are the same for both

hard disk and memory. Hence octree is better when it comes to storage on disk while

our approach is better in terms of memory footprint. Note that the memory footprint is

especially important when visualizing large models.

6.2.4 Network Bandwidth Reduction

The compression of the geometry reduces the storage size on the disk. However, the

growing use of graphics over networks makes geometry bandwidth reduction very im-

portant. This can be critical for several communication channels such as the Internet,

Wi-Fi 802.11x, Universal Serial Bus (USB), and DSL links over land lines. Moreover,

geometry bandwidth is also an issue for distributed-computing environments where the

bandwidth is not large enough to keep the graphics cards busy [53]. The nodes of our

tree, given their compact representation and order independence, are well suited for re-

ducing the network bandwidth in client-server settings. To illustrate the reduction in the

network bandwidth we set up an experiment where the camera eye is placed at various

distances relative to the object center and the object is visualized in a view-dependent

fashion. For every such distance, we rotated the object around an axis aligned with the

y-axis of the camera and we measured the average network bandwidth required to trans-

mit the PCA information of the nodes. We did all our tests on a 1024×1024 test window.

67

(a)

(b) (c)

Figure 6.5: Figure (a) shows our rate-distortion curves for compressing various models. Figure (b) shows
the reduction in network bandwidth while Figure (c) shows our rendering speedup. Comparisons in Figures
(b) and (c) are with respect to QSplat.

68

(a) (b) (c) (d) (e) (f)
(a) QSplat (b) SP (c) QSplat (d) SP (e) QSplat (f) SP

Nodes 124K 121K 667K 44K 47K 26K
Frames/sec 4.8 10.2 9.6 25.0 14.3 31.2
Bandwidth 4.9 MB 1.6 MB 2.7 MB 0.57 MB 1.9 MB 0.35 MB
Gen. Pts. - 311K - 121K - 73K

Figure 6.6: We compare results from view-dependent rendering of Statistical Points (SP) with that of
QSplat for varying distances of the eye from the object center. The terms of comparison are the number of
nodes chosen for rendering, the frame rates, the geometry bandwidth, and the number of generated points.

We compared the results of our approach with QSplat [99, 100]. The results are shown in

Figure 6.5(b) and a few snapshots of the test are shown in Figure 6.6. QSplat is actually

designed for network streaming. However, by the strength of its broad approach, it dou-

bles up as the state-of-the-art in point-based network graphics. The results show that

we consistently achieve several-fold reduction in network bandwidth. This may be at-

tributed to the better representation of the local geometry by our anisotropic probability

distribution than by the isotropic-spherical approximation of QSplat. However, we note

that this improvement is at the cost of approximately regenerating the original data.

6.2.5 Rendering

The best rendering quality currently available for rendering points is through splat-

ting [11, 129]. Statistical point generation when combined with hardware FSAA can give

high quality rendering as well. It can handle high frequency textures and delivers a qual-

ity that is comparable to splatting (see Figures 6.3(b) and 6.3(c)). In addition, statistical

69

Figure 6.7: The Murder Scene model as seen from various distances from the eye. These renderings were
made on a 1024 × 1024 window. Note that the noise in the scanned data (black cloud) and edges are well
handled.

point generation has the benefit of a single pass rendering which allows it to outperform

the speed of splatting by a factor of 2× to 3.5× during view-dependent rendering.

Since statistical generation can predict the geometry instead of fetching it from the

memory, fewer nodes suffice during view-dependent rendering. This enhances the effi-

ciency of view-dependent rendering in two ways: (1) it reduces the number of memory

fetches at the server (CPU), and (2) it decreases the bus-bandwidth to the client (GPU).

These factors together give us a significant speedup. Sampling on the GPU is about

30% faster than sampling on the CPU. We expect this factor to be even better with more

programmable GPUs. However, for on-demand rendering we are about half as slow as

rendering the nodes as opaque rectangles, but our rendering quality is much better as

illustrated in Figures 5.5 and 5.6. Figure 6.7 illustrates view-dependent rendering of the

Murder Scene model.

Statistical point generation was able to deliver about 29 FPS for a VLOD (view-

dependent level-of-detail) rendering of the Chameleon model on a 512×512 window.

Its rendering speed – 10 FPS for the Davids Head model on a 512×512 window – is

better than the VLOD splatting scheme of [84] (1 FPS). It is comparable to the speed

70

of non-hierarchical splatting of [95], which ran at 19 FPS on a GeForce4 Ti4400 for the

Chamaleon model. Botsch and Kobbelt [10] got superior speeds of 70 FPS for a non-

hierarchical rendering of the Chameleon model by keeping the geometry in the video

memory using the ARB vertex buffer object extension. Guennebaud and Paulin [48] could

achieve similar rendering speeds for comparable geometry sizes. Our approach matches

the rendering speed (9.5 FPS) of Botsch and Kobbelt [10] for the David’s Head model on

a 512×512 window. Moreover, since Botsch and Kobbelt [10] use the video memory to

store the geometry they cannot accommodate rendering of large models (for example,

they have to subsample the Davids Head model to about 1 million points). This is not a

problem for SPG since the main dataset resides in the system memory. In addition, SPG

can deliver much higher rendering speeds when the object is far away. Therefore with

respect to the current state of the art, we are comparable to non-hierarchical-splatting at

full screen resolution and significantly better than VLOD-based splatting.

While splatting can deliver a high-quality rendering it can be slower than a point-

or a quad-based rendering. The best publicly available software for fast point-based

rendering of large datasets is QSplat [99]. We outperform QSplat by a factor of 2× to 3×
(see Figures 6.6 and 6.5(c)). Dachsbacher et al. [24] map QSplat to GPU and render their

nodes as opaque squares. By keeping the entire dataset on the graphics card they can

deliver a rendering speed of nearly 50 million points per second (MPS) on ATI Radeon

9700. We could get a rendering speed of 56 MPS with color for the David’s Statue model.

In addition, since our dataset is system memory resident, we can handle much larger

datasets and deliver a more detailed rendering.

6.3 Unified-Attribute Statistical Points

Generation of samples in the combined 8D space is more expensive than generating the

attributes in the individual attribute spaces. This is because the cost of matrix fetch and

matrix-vector multiplication is higher in the 8D space. We also end up generating more

points since the spherical screen-space area estimation is quite conservative. Generat-

ing points on the GPU is not viable since transferring the 64-element matrix (per-node)

71

(a) (b)

Figure 6.8: Figure (a) shows the view-dependent rendering of the Chameleon model on a 512×512 win-
dow using PCA analysis in the individual attribute spaces (33.7K nodes, 61.08K generated points, 31.2
FPS) while Figure (b) shows a view-dependent rendering of the Chameleon model built using PCA in the
unified attribute space (34.7K nodes, 645K generated points, 1.6 FPS).

to the GPU can be quite expensive. Moreover, while the correlation of the attributes

of the generated points is informative in the lower-resolutions, we found that the cor-

relation does not add much perceptual improvement in the higher-resolutions (see Fig-

ures 6.8(a) and 6.8(b)). These two factors combine to make the PCA in the unified PCA

space unattractive for view-dependent rendering. A view-dependent rendering of the

David’s Head model gave us a rendering speed of about 1 frame per second on a 512x512

window. However, this approach can serve to represent lower-resolution versions of the

data very well. Alternately, one could represent the lower resolution nodes in the uni-

fied PCA space and the higher resolution nodes in the independent attribute spaces to

achieve the best of both worlds.

6.4 Summary

In this chapter we discussed the implementation details and quantified the benefits of

context aware samples. We found that CAS reduce the bandwidth significantly and push

the load of visualization from memory to computation. The overall effect of these influ-

ences is that CAS are highly efficient for storage, transmission, and rendering of large

graphics models.

72

Chapter 7

Hierarchical Shadow Computation using Statistical Points

Shadows are an important visual cue in the understanding of complex models such as

the ones encountered in medical visualization. Prior research in shadow computation

has shown that shadowing is a spatial or a volumetric attribute as opposed to being a

surface attribute. In previous chapters we have shown that the surface can be visualized

directly using CAS primitives and that no explicit surface reconstruction is necessary. We

believe that surface reconstruction is not necessary for several other applications. In this

chapter we validate our belief by showing how CAS primitives can be used for efficient

shadow computation.

Traditional shadow computation for surfaces involves determining the actual sur-

face point that occludes a given light ray. In this chapter, we propose making this vis-

ibility decision based on the statistical properties of the surface. This approach is more

geared towards complex surfaces where there is no single large occluder due to which

an actual ray-surface intersection is computationally expensive. Our hierarchy of statis-

tical points enables us to make the visibility decision faster. This is mainly because our

algorithm allows us to limit the number of ray-node intersection tests.

7.1 Previous Work in Shadow Computation

Shadow computation has been pursued with interest since the early days of visualization

as it falls in the broad area of visibility computation. We only provide a brief summary

here and refer the reader to Durand’s doctoral thesis [33] for a thorough survey. There

are two classes of shadow computation algorithms: object-space-based approaches and

image-space-based approaches. The early object-space methods involved visibility de-

termination by navigating spatial hierarchies with ray-tracing. The bounding volume

hierarchy was successfully used for such complex geometry as fractal trees and stochas-

73

tic terrain surfaces [64, 97]. Such hierarchies have since popularly used convex objects

such as sphere, cube, and in general, enclosing parallel slabs, as the bounding volumes.

Ellipsoid was first introduced as a bounding volume for ray-tracing stochastic

surfaces [12]. Since the surface was obtained by a recursive subdivision of an initial

mesh, Bouville used the hierarchy to fit ellipsoids at each level of the recursion and

achieved superior results compared to a plain polygonal bounding volume. For ar-

chitectural scenes where the occluders are often large polygons, polygonal bounding

volumes, octree-based [43], grid-based [16, 41, 56, 68, 124], and BSP tree-based spatial

subdivision schemes [1, 85] were found to be more efficient. In contrast to object-space

methods, analytical methods offer higher accuracy of visibility, albeit at a higher cost

of computation and robustness issues. Of these, shadow volume techniques [8, 19, 20]

have generally been used in conjunction with the Z-buffer. Discontinuity meshing tech-

niques [30, 32, 34, 51, 112] have been used for generating precise soft shadows in con-

junction with global illumination.

Image-space-based methods primarily involve using the hardware z-buffer for solv-

ing the visibility problem and are generally fast and robust compared to the object space

approaches. The traditional shadow-buffer technique [121] has also been used for gener-

ating soft shadows by multiple sampling of an area light source [50] and more efficiently

by using convolution [105]. The inherent aliasing of the shadow buffer can be countered

with view-dependent methods such as the hierarchical Z-buffer [44], adaptive shadow

maps [38], and perspective shadow maps [107]. However, since they require shadow

computation at every frame, they are more efficient for animated environments and large

polygonal environments where shadows could lie within a single large polygon. Stam-

minger and Drettakis [107] also discuss extending perspective shadow maps for proce-

dural point geometry where the sampling density can be changed in a view-dependent

fashion.

Shadow computation for volume rendering is supported in hardware by deep

shadow maps. More recently, Nulkar and Mueller [82] precompute the visibility using

light volumes and achieve high-quality rendering using image-aligned splatting. Zhang

and Crawfis [128] reduce the memory requirement by using a splatting volume renderer

74

at both the light source and the eye point.

7.2 Overview of our approach

Shadow computation on point-sample geometry involves addressing two key consider-

ations: correctness and efficiency. Points being dimensionless primitives, they cannot

be used as occluders. What we need is a good estimate of the region around a point to

determine if it blocks the light ray in question. We use a statistical measure of the point

neighborhood for this decision. Our hierarchical clustering algorithm hierarchically par-

titions the geometry into leaves representing small regions of the geometry. Each node

of this hierarchy is characterized by its PCA signature. This information can be used to

determine, with varying degrees of confidence, if that node blocks any given light ray.

Note that one could alternately use other bounding primitives such as a tangent disk,

sphere, cube, etc. and use the traditional ray-object intersection test.

Our approach is similar in principle to the traditional bounding-volume-based ap-

proach. One could also consider an analytical object-space solution for point geome-

try, but it is likely to be expensive. Alternately, one could use image-based methods

such as the shadow-buffer algorithm in conjunction with fast point-based-rendering tech-

niques [59, 99], but it would suffer from inherent aliasing problems. Adaptive view-

dependent shadow-map-based methods [38, 44, 107] are also possible. However, such a

method would require shadow computation at each frame. Moreover, object-space-based

visibility methods are still essential for other applications such as global illumination [33]

and precomputed radiance transfer [104].

7.3 Hierarchical Shadow Computation

The basic operation in our shadow-computation algorithm is the statistical-point-light-

ray intersection test. This is illustrated in 2D in Figure 7.1. We will pose it as a visibility

problem. Let l and p be two points in the space of the frame of the statistical node n. To

determine if the line segment lp intersects the geometry represented by the node n we

need to figure out the closest point on the line segment lp to µn. We measure distances in

75

Figure 7.1: The statistical-point-light-ray intersection test: To check if the light ray originating at l
reaches the point p we determine the “nearest point” qmin on the line segment lp.

the Mahalanobis metric to minimize the function m(q,n) = ‖Mnq‖, we first note that any

point q on the line segment lp can be parameterized as q = p+ t(l−q), where 0 ≤ t ≤ 1.

The nearest point can now be found by substituting this in the equation d(m(q,n))
dt = 0 to

get:

qmin = p− pT MT
n Mn(l− p)

‖Mn(l− p)‖2
(l− q). (7.1)

We note that m(qmin,n) is a measure of how close the light ray is to the points

represented by the node and we call it the distance metric, d(p,n, l). If we assume a

Gaussian distribution within the node, then d(p,n, l) corresponds to a Confidence In-

terval (CI) of erf(d(p,n,l)√
2

), where erf() is the standard error function. We set a threshold,

τd, for the value of d(p,n, l) and conclude that the light ray is not occluded by the node if

d(p,n, l) > τd. For all our tests we set τd = 3.5 which corresponds to a CI of at least 99.7%.

In other words if d(p,n, l) > 3.5, then the chances of finding a occluding point to the light

ray is at most 0.3%. If the value of t is not within the range [0, 1], then we set d(p,n, l) to

infinity to signify the fact that there is no occlusion. If the distance ‖Mnp‖ ≤ τd then the

query point p is within the valid bounds of the node n. So in this case we set d(p,n, l) to

zero. This ensures that our hierarchical shadow computation algorithm goes down one

level in the hierarchy to check if the point is indeed inside the node n. If however, n is a

leaf node, then we set d(p,n, l) to infinity.

If d(p,n, l) ≤ τd, then the light ray may or may not be occluded. The chances of

the node occluding the light ray are higher if it represents a flat region of the surface.

76

(a) (b)

Figure 7.2: Hierarchical shadow computation for the node n involves checking all subtrees in the path
from n to the root. Case (a): Light ray is not occluded. A cut is found in each subtree such that no node in
the cut occludes n. Case (b): Light ray is occluded. An occluder node, o, is found in one of the subtrees.
The occluder node does not have to be a leaf node and not all subtrees may have to be searched.

We define a confidence metric, c(n), to be a measure of the confidence with which we can

conclude that a light ray is occluded if its d(p,n, l) ≤ τd. We use the third variance, σ3
n,

as this metric since it a good measure of the flatness of the surface. As with the distance

metric, we use a threshold τc for the confidence metric as well. If c(n) ≤ τc then we

conclude that the ray is occluded. Since the model is normalized to fit into a unit cube,

the value τc is not dependent on the input point cloud. We used a τc value of 10−4 for all

our test cases.

The overall shadow computation is done in a hierarchical manner. The user spec-

ifies the accuracy of the shadows by choosing the minimum value of ‖σn‖ at which the

shadow computations are made. We do an inorder traversal of the tree to form a tree-cut

involving the nodes that are either leaf nodes or their ‖σn‖ is less than the threshold. We

then traverse along the cut and determine the visibility of each node n from the light

source l. This test is described in pseudo-code by the function IsShadowed(n, l) in Fig-

ure 7.3. This function tests if the mean µn of a given node n is visible from l. It does so

by traversing the tree from n to the root and determining if the subtree at each ancestor

node (the one that does not belong to the path) occludes the node n. This way of the tree

traversal ensures that we do not encounter the case where the surface point at which the

visibility is being tested falls within the given node. The occlusion test of each subtree is

done by the function IsSubtreeOccluding(p, n, l) shown in Figure 7.3. This is a recursive

77

IsSubtreeOccluding(p, n, l)
1 If (IsLeaf(n)
2 return (d(p,n, l) ≤ τd);
3 If (d(p,n, l) > τd)
4 return false;
5 Else If (c(n) ≤ τc)
6 return true;
7 If (IsSubtreeOccluding(p, n.child[0], l))
8 return true;
9 return (IsSubtreeOccluding(p, n.child[1], l));

IsShadowed(n, l)
1 For each subtree, s, in the path from n to the root
2 If (IsSubtreeOccluding(µn, s.root, l))
3 return true;
4 return false;

Figure 7.3: Hierarchical algorithm to determine the shadowing of the node n by the light source l.

test which terminates if it has found an occluding node or if it has found a cut in the

subtree such that all of its nodes fail the distance-metric test. This is illustrated in 2D in

Figure 7.2. Note that in lines 7, 8, and 9 of the IsSubtreeOccluding() pseudo-code we have

the option of choosing the first child to to be subject to recursion. The child whose dis-

tance metric is smaller is chosen first since it has a better chance of finding an occluder, if

any.

The inorder determination of the tree-cut ensures that spatially close nodes are

ordered close to each other. We use this to exploit the coherence in shadows. The main

observation is that any occluder of a mean µn is also likely to occlude the mean of another

node that is spatially close to n. This coherence gets stronger the closer the cut is to the

leaf levels. We exploit this coherence by simply caching the last occluder. So we first test

if µn is occluded by the cached node and move on to the hierarchical test only if this fails.

This simple scheme gave us a significant reduction in the number of statistical-point-

light-ray tests when a node is occluded.

We modify our approach built around hard shadows for computing soft shadows

efficiently. We assume a spherical area light source and at each query point we compute

the fraction of the light area that is visible. For this we take the traditional approach of

78

(a) (b)

Figure 7.4: The statistical-point-light-cone intersection test: A test to check if any of the light rays origi-
nating at the area light source l reaches the point p. The visibility light cone is approximated by a cylinder.
There are two cases to consider: (a) The mean µn falls within the volume of the cylinder, (b) The Maha-
lanobis distance between the node n and any point on the surface of the cylinder is less than τd. We test the
cases in this order and conclude that we have a potential (partial) occlusion if either of them is a success.

sampling points on the surface of the light source, and at each query point, we deter-

mine the fraction of these points that are visible. The basic test in this case is a statistical

point-light cone visibility test. This is illustrated in 2D in Figure 7.4. This test analyti-

cally determines if there will be an occlusion for any of the light rays originating from

the source. If this test is successful then we do an individual statistical-point-light-ray

intersection test between the query point p and the points of the light source.

We approximate the statistical-point-light-cone intersection test with a statistical

point-light cylinder intersection test. We place a cylinder that tightly encloses the spher-

ical light source and is directed along the line between the query point p and the center

of the light source, l. To do the statistical-point-light-cylinder visibility test efficiently

we identify two test cases. First, if the mean µn falls within the volume of the cylinder

then there is at least a partial occlusion and conclude that the test is positive. If this test

fails then there is a point on the surface of the cylinder which has the least Mahalanobis

distance with respect to the node n. This point has to be tangential to some concentric

ellipsoid of n and hence should lie on the plane determined by the points p, µn, and the

center of the light source, l. So we determine the line segment that corresponds to the

intersection of this plane with the cylinder. There are two such line segments and we

determine the one that lies between lp and µn. We then use the statistical-point-light-ray

intersection test to determine the distance metric between this line segment and µn. If

this metric is less than or equal to τd then we conclude that there is a potential (partial)

79

(a) (b)

(c)

(d)

Figure 7.5: Figures (a) and (b) are the renderings of the David with hard and soft shadows respectively.
Figure (c) is the rendering of hard shadows with the view point being at the light source. Figure (d) is the
soft shadow analogy of Figure (c).

occlusion of the query point p by the node n.

The soft-shadow computation is done hierarchically using an algorithm similar

to the one described in Figure 7.3. We traverse along the inorder cut of the tree and

determine the fraction of the light source points that are visible at each node n of the

cut. This test is done by travelling along the path of the tree from n to the root and

determining all the light rays that are occluded by the other subtree at each of the ancestor

nodes. This is a recursive test similar to the function IsSubtreeOccluding() of Figure 7.3. At

each node we do a statistical-point-light-cylinder intersection test. If this test is successful

then we recurse to test its children. We terminate the recursion if the node is a leaf or if

its confidence metric c(n) < τc. The actual statistical-point-light-ray intersection tests

between µn and the points of the light source are only performed at this stage. We keep

track of the light rays that are already occluded and do the test only for those that are

not occluded. In the context of the IsSubtreeOccluding() pseudo-code, this is done at lines

2 and 6. The subtree recursion and the upward tree traversal to the root is terminated

when all the light rays are occluded. This corresponds to line 7 of the IsSubtreeOccluding(

) pseudo-code and line 2 of the IsShadowed() pseudo-code.

80

UNC Nerve David’s David
Brain Cell Head (Full)

points (in millions) 5.18 1.16 2.0 4.13
nodes 1231K 532K 897K 1844K
Max. tree depth 24 24 22 25
Avg. # tests (occlusion) 52.17 48.04 35.49 28.11
Avg. # tests (no occlusion) 208.03 145.43 160.14 191.37
Avg. # tests (overall) 62.75 81.80 65.7 75.48
Time (hard shadows) 32.57s 17.85s 24.28s 56.75s
Time (soft shadows) 5.7m 6.2m 11.3m 130.1m

Table 7.1: Summary of results for hierarchical shadow computation

(a) (b) (c) (d)

Figure 7.6: Figure (a) is the view of the Nerve Cell as seen from the light source. Figure (b) is a plain
rendering without any shadows while Figures (c) and (d) are renderings with hard and soft shadows re-
spectively.

7.4 Results and Conclusions

We did all our tests on a 2.4GHz Pentium4 based PC with 2GB RAM and a NVIDIA

Quadro4 graphics card. We tested our work on two kinds of models: medical datasets

and scanned models. The medical datasets (UNC brain and the nerve cell) were obtained

by sampling points on the isosurfaces extracted from their volume grid representation.

We also tested our work on the Stanford’s David’s Head model and the full David ver-

sion. These models took no more than an hour to build the hierarchy.

For the test cases we computed the shadows using leaf-level cuts. The results are

summarized in table 7.3. Row four of this table lists the average number of statistical-

point-light-ray intersection tests performed for an occluded query point during hard

shadow computation. Row five lists this number when the point query is not occluded.

The former number is smaller because of the early exit strategy and occluder caching.

81

Row six lists the overall average number of statistical-point-light-ray intersection tests

per query point while rows seven and eight list the total time taken for the hard and soft

shadow computation respectively. The results show that the (amortized) number of oc-

clusion tests for a given query point is of the order of O(log n), where n is the number

of nodes. Overall this is a O(n log n) algorithm since occlusion is tested at about O(n)

points. Note that unlike the shadow-buffer-based techniques, we do not have to recom-

pute the shadows on a per-frame basis since the computation is done in the object space.

We did not do any back-face culling of query points facing away from the light source.

This is because the isosurfaces may not have a well-defined side. When back-face culling

was used for the David’s Head and the full David model we got a further reduction of

about 40% over the number reported here. We believe that the time complexity can be

greatly reduced by hierarchically doing a PCA node-PCA node occlusion test to reduce

the number of occlusion queries. We leave this for future work. Figures 7.5 and 7.6 show

example renderings for the test datasets. For computing the soft shadows we uniformly

distributed 40 points on the spherical light source. We got as much as a 70% reduction in

computation complexity compared to a brute-force method that would test each individ-

ual light ray separately.

82

Chapter 8

Conclusions and Future Work

In this dissertation we have presented a novel approach for representing visual data us-

ing context-aware samples (CAS). Context-aware samples are samples with embedded

information that models the local vicinity of the sample. The embedded information al-

lows us to capture the distribution of the visual data around the samples. We represent

the overall visual data by the union of the individual contexts of the CAS. Our approach

is a marked shift from traditional representations that use interpolation of individual

samples or use modeling approaches such as parametric or implicit surfaces.

We distinguish between two kinds of context-aware samples: surface-based and

space-based. Differential points are surface-based CAS that use the basic principles of

differential geometry to capture the surface around the sample point using the local cur-

vature information at the sample point. The local vicinity of a differential point is ap-

proximated by a second-order surface whose bounds are inversely related to the local

curvature. Our simplification algorithm prunes excess differential points using a greedy

pruning procedure. This feature allows us to sample the surface adaptively by allocat-

ing more samples to areas of high surface curvature. We render the differential points

by rasterizing the local shape and coloring the screen pixels using the fragment shaders.

Our experimental results show that for similar rendering quality the differential points

are faster to render than the splatting primitives. Our results also show that differential

points can produce much better rendering quality than splatting for the same frame rates.

Statistical points are space-based CAS that model the local context around a sam-

ple point as a Gaussian probability distribution. Given a raw set of sample points, we

convert it to a statistical-point-based representation by hierarchically partitioning it in

the spatial domain. We use k-means clustering to ensure a fair partitioning of the points

at each step of this hierarchy-building process. For each node of the hierarchy we de-

rive a single statistical point that represents all the raw sample points of that node. This

83

statistical point can be derived either by using PCA in the individual attribute spaces

or by using a PCA in the unified attribute space of the raw sample points. We approxi-

mate the original sampled data by sampling the probability distribution of the statistical

points. We render our statistical-point-based representation by selecting a cut in the hi-

erarchy and sampling points for the selected nodes of the hierarchy. The user can choose

between an on-demand or a view-dependent way to determine the cut. Our approach al-

lows us to render on a variety of client rendering devices such as the GPU, remote PC, or

a PDA. Our experimental results show that statistical points can be used as a compressed

representation. Our results also show that statistical points are nearly twice as fast as the

state-of-the-art in point-based rendering and that they deliver a high-quality rendering

comparable to that of splatting.

8.1 Conclusions

The main features of CAS primitives are that they are independent of each other and

that they have embedded local context information. These features translate to several

advantages such as:

• Robustness of representation: Context-aware samples are robust at representing vi-

sual data. Differential samples, for example, do not have some of the differentia-

bility constraints of parametric surfaces. Similarly, statistical points can represent

arbitrary visual data and can easilt work with noisy data..

• Rendering from compressed data: The context of one CAS primitive can capture infor-

mation about several sample points in the vicinity. This leads to much less num-

ber of samples and a overall reduction in storage space. For example, differential

points require much less storage space for the same rendering quality as splatting.

Similarly, statistical points achieve much better compression and give a substantial

reduction in the network bandwidth when compared to splatting. Such rendering

from compressed data contributes to an improved rendering performance in sev-

eral ways: (1) it leads to lesser number of memory fetches, (2) it reduces the geom-

etry bandwidth, and (3) it makes better use of the SPMD capabilities of modern

84

GPUs.

• High-quality rendering: The contextual information of the CAS primitives lead to

better rendering quality. For example, differential points were found to give better

rendering quality for the same rendering speed as splatting. Similarly, statistical

points were at least twice as fast as splatting with comparable rendering quality.

• Flexible streaming: The order independence of the CAS allows us to stream them to

the client device in a very flexible manner. For example, the on-demand rendering

feature of statistical points requires little or no maintenance on the client side.

In short, the context-aware primitives offer an efficient representation for the storage,

transmission, and rendering of visual data. This is a validation of the hypothesis of this

dissertation as stated in §1.3.

8.2 Future Work

In this dissertation we have shown how context-aware samples can be used for efficient

storage, transmission, and rendering. We have also shown how the statistical points can

be used for shadow computation. We believe that CAS primitives can be used for many

more applications. Differential points have already been used by other for global illu-

mination of point-based geometries [117, 118]. Curvature information can also be used

for surface-based operations such as texture synthesis over the surface. Our hierarchy of

statistical points can be used for approximate nearest neighbor search [5]. The algorithm

for this would look for the nearest neighbor of a sample point by recursing through the

hierarchy and pruning subtree searches based on the probability of the search point with

respect to the probability distribution of the subtree. An extension of our shadow compu-

tation algorithm can be used for efficient global illumination using ray tracing or photon

mapping. A similar hierarchical approach can also be used to speed up applications such

as collision detection. We believe that there is a potential to compress CAS-based rep-

resentations even further. One possible approach to this could to use a spanning tree to

link nearby CAS primitives and encode such a tree using delta encoding.

85

Our CAS primitives are disjoint and independent primitives. While this feature

has several advantages it also has a disadvantage in that it can lead to visually noticeable

discontinuities in regions of relatively low sampling. This problem can be potentially

solved by using the partition of unity reconstruction. For example, a continuous surface

can be reconstructed using the approach of radial basis functions where the Guassian

probability distribution of statistical points acts as the weight function while the distance

function is the distance along the f3 axis of the node. Using modern GPUs such an

implicit surface can be potentially rendered without any surface reconstruction.

In this dissertation we have considered two scenarios: the first scenario is the one in

which all the attributes are represented with context-aware samples – this is the scenario

that we have presented. A second scenario that has been explored by others is to mix

point-based representations with triangle meshes [18, 28]. A third scenario could involve

using CAS primitives for only a few select attributes while the rest of the attributes are

represented using traditional methods such a linear interpolation. For example, consider

the problem of visualizing the satellite images of the Earth. In this case the geometry

of the earth could be considerably coarse as compared to the image resolution. In such

cases the geometry could be represented using the traditional triangle meshes while the

texture could be streamed to the client as CAS primitives.

Over the course of this dissertation we have come to believe that higher-order rep-

resentations of the data could have a major impact on the representation of future visual

datasets. Visual data representation using techniques such as dimensionality reduction,

probability distribution functions, and kernel-space mapping appears promising. Math-

ematical models such as the Poisson point process can be very efficient for both repre-

sentation and visualization. Also, we feel that there are many benefits to developing a

mathematical model for fitting representations to the visual data that are global, para-

metric, and stochastic. We believe such higher-level representations can also be used for

other operations such as data synthesis and querying. In this dissertation we have laid

the basic steps towards this goal. We believe that the insights that we have gained during

our research will plant the seeds for further research in this direction.

86

8.3 Data and Funding Acknowledgments

We thank Marc Levoy and the Stanford Graphics Laboratory for providing us with the

Bunny, David’s Head, David, Lucy, and the St. Matthews face models. We thank Robert

McNeel & Associates for the head model, the camera model, and for the openNURBS

code. Also thanks to Cyberware Inc. for the venus model. We thank 3rd Tech Inc. for the

Murder Scene dataset. Also many thanks to the Computer Graphics Lab of ETH-Zurich

for the Chameleon dataset. We thank Klaus Mueller for the UNC Brain dataset and the

nerve cell dataset. We thank Dirk Bartz for providing us with the the blood vessel dataset.

The nerve cell dataset is originally provoided by Noran Instruments. Last, but not the

least, we would like to acknowledge NSF funding grants IIS00-81847, ACR-98-12572 and

DMI-98-00690.

87

Bibliography

[1] P. K. Agarwal, J. Erickson, and L. J. Guibas. Kinetic binary space partitions for

intersecting segments and disjoint triangles (extended abstract). In Proceedings of the

Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 107–116, January

1998.

[2] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, C. Silva, and D. Levin. Point set

surfaces. In IEEE Visualization 2001, pages 21–28, October 2001.

[3] P. Alliez and M. Desbrun. Progressive compression for lossless transmission of

triangle meshes. In Proceedings of SIGGRAPH 2001, pages 195–202, August 2001.

[4] N. Amenta, M. Bern, and M. Kamvysselis. A New Voronoi-Based Surface Recon-

struction Algorithm. In Proceedings of SIGGRAPH 98, pages 415–422, 1998.

[5] S. Arya and D. M. Mount. Algorithms for fast vector quantization. In Proceedings

of the Data Compression Conference (DCC’93), pages 381–390. IEEE Press, 1993.

[6] C. L. Bajaj, F. Bernardini, and G. Xu. Automatic reconstruction of surfaces and

scalar fields from 3D scans. In Proceedings of SIGGRAPH’95, pages 109–118, August

1995.

[7] J. A. Beraldin, F. Blais, L. Cournoyer, M. Rioux, S. F. El-Hakim, R. Rodell, F. Bernier,

and N. Harrison. Digital 3D imaging for rapid response on remote sites. In Pro-

ceedings of 2nd International Conference on 3-D Imaging and Modelling, pages 34–43,

1999.

[8] P. Bergeron. A general version of Crow’s shadow volumes. IEEE Computer Graphics

and Applications, 6(9):17–28, September 1986.

[9] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The ball-

pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization

and Computer Graphics, 5(4):349–359, October 1999.

88

[10] M. Botsch and L. Kobbelt. High-quality point-based rendering on modern GPUs.

In Pacific Graphics’03, pages 335–343, 2003.

[11] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality rendering of point

sampled geometry. In Rendering Techniques’02, pages 53–64. Eurographics, 2002.

[12] C. Bouville. Bounding ellipsoids for ray-fractal intersection. In B. A. Barsky, editor,

Computer Graphics (SIGGRAPH ’85 Proceedings), volume 19, pages 45–52, July 1985.

[13] G. E. P. Box and M. E. Muller. A note on the generation of random normal deviates.

Ann. Math. Stat., 28:610–611, 1958.

[14] D. Brodsky and B. Watson. Model simplification through refinement. In Proceedings

of Graphics Interface 2000, pages 221–228, 2000.

[15] S. R. Buss and J. P. Fillmore. Spherical averages and applications to spherical

splines and interpolation. ACM Transactions on Graphics, 20(2):95–126, 2001.

[16] F. Cazals, G. Drettakis, and C. Puech. Filtering, clustering and hierarchy construc-

tion: a new solution for ray-tracing complex scenes. Computer Graphics Forum,

14(3):371–382, August 1995.

[17] C. F. Chang, G. Bishop, and A. Lastra. LDI Tree: A hierarchical representation for

image-based rendering. In Proceedings of SIGGRAPH’99, pages 291–298, 1999.

[18] B. Chen and M. X. Nguyen. POP: A hybrid point and polygon rendering system

for large data. In IEEE Visualization’01, pages 45–52, October 2001.

[19] N. Chin and S. Feiner. Near real-time shadow generation using BSP trees. vol-

ume 23, pages 99–106, July 1989.

[20] Y. Chrysanthou and M. Slater. Shadow volume BSP trees for computation of shad-

ows in dynamic scenes. In 1995 Symposium on Interactive 3D Graphics, pages 45–50,

April 1995.

[21] P. Cignoni, C. Montani, and R. Scopigno. A comparison of mesh simplification

algorithms. Computers & Graphics, 22(1):37–54, 1998.

89

[22] J. Cohen, D. Luebke, M. Reddy, A. Varshney, and B. Watson. Advanced issues in

level of detail. In Course notes(41) of SIGGRAPH 2000, July 2000.

[23] D. Cohen-Or, D. Levin, and O. Remez. Progressive compression of arbitrary trian-

gular meshes. In IEEE Visualization ’99, pages 67–72, 1999.

[24] C. Dachsbacher, C. Vogelgsang, and M. Stamminger. Sequential point trees. ACM

Transactions on Graphics, 22(3):657–662, 2003.

[25] K.J. Dana, B. van Ginneken, S.K. Nayar, and J.J. Koenderink. Reflectance and tex-

ture of real world surfaces. ACM Transactions on Graphics, 18(1):1–34, January 1999.

[26] L. Darsa, B. C. Silva, and A. Varshney. Navigating static environments using image-

space simplification and morphing. In Symposium on Interactive 3D Graphics, pages

25–34, April 1997.

[27] M. F. Deering. Geometry compression. In Proceedings of SIGGRAPH’95, pages 13–

20, August 1995.

[28] T. K. Dey and J. Hudson. PMR: Point to Mesh Rendering, A Feature-Based Ap-

proach. In IEEE Visualization’02, pages 155–162, October 2002.

[29] M. P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall. Inc.,

Englewood Cliffs, New Jersey, 1976.

[30] G. Drettakis and E. Fiume. A fast shadow algorithm for area light sources us-

ing backprojection. Computer Graphics, 28(Annual Conference Series):223–230, July

1994.

[31] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons,

Inc., New York, 2nd edition, 2001.

[32] F. Duguet and G. Drettakis. Robust epsilon visibility. ACM Transactions on Graphics,

21(3):567–575, July 2002.

[33] F. Durand. 3D Visibility: analytical study and applications. PhD thesis, Université

Joseph Fourier, Grenoble I, July 1999. http://www-imagis.imag.fr.

90

[34] F. Durand, G. Drettakis, and C. Puech. The visibility skeleton: A powerful and effi-

cient multi-purpose global visibility tool. In SIGGRAPH 97 Conference Proceedings,

pages 89–100, August 1997.

[35] D. Ebert, F. Musgrave, P. Peachey, K. Perlin, and S. Worley. Texturing & Modeling: A

Procedural Approach. AP Professional, San Diego, 3rd edition, 2002.

[36] M. Eck and H. Hoppe. Automatic reconstruction of B-spline surfaces of arbitrary

topological type. In Proceedings of SIGGRAPH’96, pages 325–334, August 1996.

[37] C. Fermuller, Y. Aloimonos, and A. Brodsky. New eyes for building models from

video. CGTA: Computational Geometry: Theory and Applications, 15:3–23, 2000.

[38] R. Fernando, S. Fernandez, K. Bala, and D. P. Greenberg. Adaptive shadow maps.

In SIGGRAPH 2001 Conference Proceedings, pages 387–390, August 2001.

[39] S. Fleishman, D. Cohen-Or, M. Alexa, and C. T. Silva. Progressive point set surfaces.

ACM Transactions on Graphics, 22(4):997–1011, 2003.

[40] L.De Floriani, L.Kobbelt, and E. Puppo. A Survey on Data Structures for Level-

Of-Detail Models. In N.Dodgson, M.Floater, and M.Sabin, editors, Advances in

Multiresolution for Geometric Modelling, Series in Mathematics and Visualization, pages

49–74. Springer Verlag, 2004.

[41] A. Fujimoto, T. Tanaka, and K. Iwata. ARTS: Accelerated ray tracing system. IEEE

Computer Graphics and Applications, 6(4):16–26, 1986.

[42] P.-M. Gandoin and O. Devillers. Progressive lossless compression of arbitrary sim-

plicial complexes. ACM Transactions on Graphics, 21:372–379, 2002. (also in Pro-

ceedings of SIGGRAPH’02).

[43] A. S. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics and

Applications, 4(10):15–22, October 1984.

[44] N. Greene and M. Kass. Hierarchical Z-buffer visibility. In Computer Graphics Pro-

ceedings, Annual Conference Series, 1993, pages 231–240, 1993.

91

[45] J. P. Grossman and William J. Dally. Point sample rendering. In Rendering Techniques

’98, Eurographics, pages 181–192. Springer-Verlag Wien New York, 1998.

[46] X. Gu, S. Gortler, and H. Hoppe. Geometry images. In Proceedings of SIGGRAPH

2002, pages 355–361, August 2002.

[47] G. Guennebaud, L. Barthe, and M. Paulin. Deferred Splatting. In Computer Graph-

ics Forum, volume 23, pages 1–11. September 2004. (Also in Proceedings of EURO-

GRAPHICS’04).

[48] G. Guennebaud and M. Paulin. Efficient screen space approach for Hardware Ac-

celerated Surfel Rendering. In Vision, Modeling and Visualization, Munich, pages

1–10. IEEE Signal Processing Society, November 2003.

[49] I. Guskov, W. Sweldens, and P. Schröder. Multiresolution signal processing for

meshes. In Proceedings of SIGGRAPH 99, pages 325–334, 1999.

[50] P. Haeberli and K. Akeley. The accumulation buffer: Hardware support for high-

quality rendering. Computer Graphics (SIGGRAPH ’90 Proceedings), 24(4):309–318,

August 1990.

[51] P. S. Heckbert. Discontinuity meshing for radiosity. In D. Paddon, A. Chalmers,

and F. Sillion, editors, Rendering Techniques ’92, Eurographics, pages 203–216. Con-

solidation Express Bristol, 1992.

[52] A. Hilton, J. Illingworth, and T. Windeatt. Statistics of surface curvature estimates.

Pattern Recognition, 28(8):1201–1222, 1995.

[53] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and J. T.

Klosowski. Chromium: A stream-processing framework for interactive rendering

on clusters. ACM Transactions on Graphics, 21(3):693–702, July 2002.

[54] M. Isenburg and J. Snoeyink. Face fixer: Compressing polygon meshes with prop-

erties. In Proceedings SIGGRAPH 2000, pages 263–270, 2000.

92

[55] H. W. Jensen. Global illumination using photon maps. In Rendering Techniques ’96,

pages 21–30, 1996.

[56] David Jevans and Brian Wyvill. Adaptive voxel subdivision for ray tracing. pages

164–172, June 1989.

[57] C.R. Johnson and A.R. Sanderson. A next step: Visualizing errors and uncertainty.

IEEE Computer Graphics and Applications, 23(5):6–10, September 2003.

[58] A. Kalaiah and A. Varshney. Differential point rendering. In Rendering Techniques

’01, Eurographics, pages 139–150. Springer-Verlag Wien New York, 2001.

[59] A. Kalaiah and A. Varshney. Modeling and rendering points with local geometry.

IEEE Transactions on Visualization and Computer Graphics, 9(1):30–42, January 2003.

[60] A. Kalaiah and A. Varshney. Statistical point geometry. In Eurographics Symposium

on Geometry Processing, pages 113–122, June 2003.

[61] A. Kalaiah and A. Varshney. Non-deterministic geometry representation for effi-

cient transmission and rendering. ACM Transactions on Graphics (To Appear), 2005.

[62] T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Y. Wu.

An efficient k-means clustering algorithm: Analysis and implementation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24:881–892, 2002.

[63] Z. Karni and C. Gotsman. Spectral compression of mesh geometry. In Proceedings

of SIGGRAPH 2000, pages 279–286, 2000.

[64] T. L. Kay and J. T. Kajiya. Ray tracing complex scenes. In Computer Graphics (SIG-

GRAPH ’86 Proceedings), volume 20, pages 269–278, August 1986.

[65] A. Keller. Quasi-Monte Carlo Methods in Computer Graphics: The Global Illu-

mination Problem. In Lectures in Applied Mathematics, volume 32, pages 455–469.

SIAM, 1996.

[66] A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive geometry compres-

sion. In Proceedings of SIGGRAPH 2000, pages 271–278, 2000.

93

[67] M. J. Kilgard. A practical and robust bump-mapping technique for today’s GPUs.

In Game Developers Conference, July, 2000 (available at http://www.nvidia.com).

[68] K. S. Klimaszewski and T. W. Sederberg. Faster ray tracing using adaptive grids.

IEEE Computer Graphics and Applications, 17(1):42–51, January 1997.

[69] V. Krishnamurthy and M. Levoy. Fitting smooth surfaces to dense polygon meshes.

In Proceedings of SIGGRAPH’96, pages 313–324, August 1996.

[70] S. Kumar, D. Manocha, W. Garrett, and M. Lin. Hierarchical back-face compu-

tation. In Rendering Techniques ’96, Eurographics, pages 231–240. Springer-Verlag

Wien New York, 1996.

[71] M. Levoy and P. Hanrahan. Light field rendering. In Proceedings of SIGGRAPH 96,

pages 31–42, 1996.

[72] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton,

S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The Digital Michelangelo

Project: 3D scanning of large statues. In Proceedings of SIGGRAPH 2000, pages 131–

144, July 2000.

[73] M. Levoy and T. Whitted. The use of points as a display primitive. In Technical

Report 85-022, Computer Science Department, UNC, Chapel Hill, January 1985.

[74] P. Lindstrom. Out-of-core simplification of large polygonal models. In Proceedings

of SIGGRAPH 2000, pages 259–262, July 2000.

[75] D. Lischinski and A. Rappoport. Image-based rendering for non-diffuse synthetic

scenes. In Rendering Techniques ’98, Eurographics, pages 301–314. Springer-Verlag

Wien New York, 1998.

[76] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R. Huebner. Level of

Detail for 3D Graphics. Morgan Kaufman, 2002.

[77] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3D warping. In 1997

Symposium on Interactive 3D Graphics, pages 7–16, April 1997.

94

[78] G. Marsaglia. Choosing a point from the surface of a sphere. Ann. Math. Stat.,

43(2):645–646, April 1972.

[79] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential-geometry

operators for triangulated 2-manifolds. In Proceedings of VisMath’02, 2002.

[80] K. Mueller, T. Moller, and R. Crawfis. Splatting without the blur. In IEEE Visualiza-

tion’99, pages 363–370, October 1999.

[81] H. Niederreiter. Random number generation and quasi-Monte Carlo methods. Society

for Industrial and Applied Mathematics, 1992.

[82] M. Nulkar and K. Mueller. Splatting with shadows. In International Workshop on

Volume Graphics’01, pages 35–50, 2001.

[83] M. M. Oliviera and G. Bishop. Image based objects. In ACM Symposium of Interactive

3D Graphics, pages 191–198, 1999.

[84] R. Pajarola. Efficient level-of-details for point based rendering. In Proceedings

IASTED Computer Graphics and Imaging Conference (CGIM), 2003.

[85] M. S. Paterson and F. F. Yao. Binary partitions with applications to hidden-surface

removal and solid modelling. In Proceedings of the Fifth Annual Symposium on Com-

putational Geometry (Saarbrücken, FRG, June 5–7, 1989), pages 23–32, New York, 1989.

ACM, ACM Press.

[86] M. Pauly and M. Gross. Spectral processing of point-sampled geometry. In Pro-

ceedings of SIGGRAPH’01, pages 379–386, August 2001.

[87] M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplification of point-sampled

surfaces. In IEEE Visualization 2002, pages 163–170, October 2002.

[88] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. Shape modeling with point-

sampled geometry. ACM Transactions on Graphics, 22(3):641–650, July 2003.

[89] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface elements as

rendering primitives. In Proceedings of SIGGRAPH 2000, pages 335–342, July 2000.

95

[90] E. Praun and H. Hoppe. Spherical parametrization and remeshing. ACM Transac-

tions on Graphics, 22(3):340–349, July 2003.

[91] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes

in C : The Art of Scientific Computing. Cambridge University Press, 2 edition, January

2003.

[92] W. H. Press and S. A. Teukolsky. Quasi- (that is, sub-) random numbers. Computers

in Physics, 3(6):76–79, 1989.

[93] P. Rademacher and G. Bishop. Multiple-center-of-projection images. In Proceedings

of SIGGRAPH 98, pages 199–206, August 1998.

[94] W. T. Reeves. Particle systems — A technique for modeling a class of fuzzy objects.

Computer Graphics, 17(3):359–376, July 1983.

[95] L. Ren, H. Pfister, and M. Zwicker. Object space EWA surface splatting: A hardware

accelerated approach to high quality point rendering. In Eurographics’02, pages

461–470, September 2002.

[96] J. Ritter. Fast 2D-3D Rotation. In A. Glassner, editor, Graphics Gems, pages 440–441.

Academic Press, Boston, 1990.

[97] S. M. Rubin and T. Whitted. A 3-dimensional representation for fast rendering

of complex scenes. In Computer Graphics (SIGGRAPH ’80 Proceedings), volume 14,

pages 110–116, July 1980.

[98] H. Rushmeier, G. Taubin, and A. Guéziec. Applying shape from lighting variation

to bump map capture. In Rendering Techniques’97, pages 35–44. Springer-Verlag

Wien New York, June 1997.

[99] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering system

for large meshes. In Proceedings of SIGGRAPH 2000, pages 343–352, July 2000.

96

[100] S. Rusinkiewicz and M. Levoy. Streaming QSplat: A viewer for networked visual-

ization of large, dense models. In ACM Symposium on Interactive 3D Graphics, pages

63–68, March 2001.

[101] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

[102] A. Schilling. Antialiasing of environment maps. Computer Graphics Forum, 20(1):5–

11, 2001.

[103] J. Shade, S. Gortler, L. He, and R. Szeliski. Layered depth images. In Proceedings of

SIGGRAPH 98, pages 231–242, August 1998.

[104] P.-P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance transfer for real-time

rendering in dynamic, low-frequency lighting environments. ACM Transactions on

Graphics, 21(3):527–536, July 2002.

[105] C. Soler and F. X. Sillion. Fast calculation of soft shadow textures using convolu-

tion. In SIGGRAPH 98 Conference Proceedings, pages 321–332, July 1998.

[106] J. Spanier and E. M. Gelbard. Monte Carlo Principles and Neutron Transport Problems.

Addison-Wesley, New York, NY, 1969.

[107] M. Stamminger and G. Drettakis. Perspective shadow maps. In SIGGRAPH 2002

Conference Proceedings, Annual Conference Series, pages 557–562, 2002.

[108] E. M. Stockely and S. Y. Wu. Surface parameterization and curvature measure-

ment of arbitrary 3-D objects: Five practical methods. Pattern Analysis and Machine

Intelligence, 8:833–840, August 1992.

[109] G. Taubin. Estimating the tensor of curvature of a surface from a polyhedral ap-

proximation. In Fifth International Conference on Computer Vision, pages 902–907,

1995.

[110] G. Taubin, A. Gueziec, W. Horn, and F. Lazarus. Progressive forest split compres-

sion. In Proceedings of SIGGRAPH 98, pages 123–132, July 1998.

97

[111] G. Taubin and J. Rossignac. Geometric compression through topological surgery.

ACM Transactions on Graphics, 17(2):84–115, April 1998.

[112] Seth J. Teller. Computing the antipenumbra of an area light source. Computer Graph-

ics, 26(2):139–148, July 1992.

[113] C. Touma and C. Gotsman. Triangle mesh compression. In Graphics Interface, pages

26–34, June 1998.

[114] G. Turk. Re-tiling polygonal surfaces. In Proceedings of SIGGRAPH 92, pages 55–64,

July 1992.

[115] K. Turkowski. Computing the inverse square root. In A. Paeth, editor, Graphics

Gems, volume 5, pages 16–21. Academic Press, 1995.

[116] M. Wand, M. Fischer, I. Peter, F. M. Heide, and W. Straßer. The randomized z-

buffer algorithm: Interactive rendering of highly complex scenes. In Proceedings of

SIGGRAPH’01, pages 361–370, August 2001.

[117] M. Wand and W. Straβer. Multi-resolution point-sample raytracing. In Proceedings

of Graphics Interface’03, 2003.

[118] M. Wand and W. Straβer. Real-time caustics. Computer Graphics Forum, 22(3):611–

620, 2003. (Also in Proceedings of EUROGRAPHICS’03).

[119] T. Welsh and K. Mueller. A frequency-sensitive point hierarchy for images and

volumes. In IEEE Visualization’03, pages 425–432, October 2003.

[120] S. H. Westin, J. R. Arvo, and K. E. Torrance. Predicting reflectance functions from

complex surfaces. volume 26, pages 255–264, July 1992.

[121] Lance Williams. Casting curved shadows on curved surfaces. Computer Graphics,

12(3):270–274, August 1978.

[122] A. P. Witkin and P. S. Heckbert. Using particles to sample and control implicit

surfaces. In Proceedings of SIGGRAPH 94, pages 269–278, July 1994.

98

[123] T.-T. Wong, W.-S. Luk, and P.-A. Heng. Sampling with hammersley and halton

points. Journal of Graphics Tools, 2(2):9–24, 1997.

[124] A. Woo. Recursive grids and ray bounding box comments and timings. Ray Tracing

News, 10(3), 1997.

[125] J. C. Woolley, D. Luebke, and B. Watson. Interruptible rendering. In SIGGRAPH’02

Technical Sketch, page 205, 2002.

[126] J. Wu and L. Kobbelt. Optimized sub-sampling of point sets for surface splatting.

In Proc. of Eurographics, pages 643–652, 2004.

[127] Wm. A. Wulf and S. A. McKee. Hitting the memory wall: Implications of the

obvious. Computer Architecture News, 23(1):20–24, March 1995.

[128] C. Zhang and R. Crawfis. Volumetric shadows using splatting. In Proc. IEEE Visu-

alization’02, pages 85–92. IEEE Computer Society, October 2002.

[129] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting. In Proceedings

of SIGGRAPH 2001, pages 371–378, August 2001.

99

