181 research outputs found

    Robotic learning of force-based industrial manipulation tasks

    Get PDF
    Even with the rapid technological advancements, robots are still not the most comfortable machines to work with. Firstly, due to the separation of the robot and human workspace which imposes an additional financial burden. Secondly, due to the significant re-programming cost in case of changing products, especially in Small and Medium-sized Enterprises (SMEs). Therefore, there is a significant need to reduce the programming efforts required to enable robots to perform various tasks while sharing the same space with a human operator. Hence, the robot must be equipped with a cognitive and perceptual capabilities that facilitate human-robot interaction. Humans use their various senses to perform tasks such as vision, smell and taste. One sensethat plays a significant role in human activity is ’touch’ or ’force’. For example, holding a cup of tea, or making fine adjustments while inserting a key requires haptic information to achieve the task successfully. In all these examples, force and torque data are crucial for the successful completion of the activity. Also, this information implicitly conveys data about contact force, object stiffness, and many others. Hence, a deep understanding of the execution of such events can bridge the gap between humans and robots. This thesis is being directed to equip an industrial robot with the ability to deal with force perceptions and then learn force-based tasks using Learning from Demonstration (LfD).To learn force-based tasks using LfD, it is essential to extract task-relevant features from the force information. Then, knowledge must be extracted and encoded form the task-relevant features. Hence, the captured skills can be reproduced in a new scenario. In this thesis, these elements of LfD were achieved using different approaches based on the demonstrated task. In this thesis, four robotics problems were addressed using LfD framework. The first challenge was to filter out robots’ internal forces (irrelevant signals) using data-driven approach. The second robotics challenge was the recognition of the Contact State (CS) during assembly tasks. To tackle this challenge, a symbolic based approach was proposed, in which a force/torque signals; during demonstrated assembly, the task was encoded as a sequence of symbols. The third challenge was to learn a human-robot co-manipulation task based on LfD. In this case, an ensemble machine learning approach was proposed to capture such a skill. The last challenge in this thesis, was to learn an assembly task by demonstration with the presents of parts geometrical variation. Hence, a new learning approach based on Artificial Potential Field (APF) to learn a Peg-in-Hole (PiH) assembly task which includes no-contact and contact phases. To sum up, this thesis focuses on the use of data-driven approaches to learning force based task in an industrial context. Hence, different machine learning approaches were implemented, developed and evaluated in different scenarios. Then, the performance of these approaches was compared with mathematical modelling based approaches.</div

    Robot Learning Assembly Tasks from Human Demonstrations

    Get PDF
    The industry robots are widely deployed in the assembly and production lines as they are efficient in performing highly repetitive tasks. They are mainly position-controlled and pre-programmed to work in well-structured environments. However, they cannot deal with dynamical changes and unexpected events in their operations as they do not have sufficient sensing and learning capabilities. It remains a big challenge for robotic assembly operations to be conducted in unstructured environments today. This thesis research focuses on the development of robot learning from demonstration (LfD) for the robotic assembly task by using visual teaching. Firstly, the human kinesthetic teaching method is adopted for robot to learn an effective grasping skill in unstructured environment. During this teaching process, the robot learns the object's SIFT feature and grasping pose from human demonstrations. Secondly, a novel skeleton-joint mapping framework is proposed for robot learning from human demonstrations. The mapping algorithm transfers the human motion from the human joint space to the robot motor space so that the robot can be taught intuitively in a remote place. Thirdly, a novel visual-mapping demonstration framework is built for robot learning assembly tasks, in which, the demonstrator is able to teach the robot with feedback in real-time. Gaussian Mixture Model and Gaussian Mixture Regression are used to encode the learned skills for the robot. Finally, The effectiveness of the approach is evaluated with practical assembly tasks by the Baxter robot. The significance of this thesis research is on its comprehensive insight of robot learning from demonstration for assembly tasks. The proposed LfD paradigm has the potential to effectively transfer human skills to robots both in industrial and domestic environments. It paves the way for general public to use the robots without the need of programming skills

    Learning to grasp in unstructured environments with deep convolutional neural networks using a Baxter Research Robot

    Get PDF
    Recent advancements in Deep Learning have accelerated the capabilities of robotic systems in terms of visual perception, object manipulation, automated navigation, and human-robot collaboration. The capability of a robotic system to manipulate objects in unstructured environments is becoming an increasingly necessary skill. Due to the dynamic nature of these environments, traditional methods, that require expert human knowledge, fail to adapt automatically. After reviewing the relevant literature a method was proposed to utilise deep transfer learning techniques to detect object grasps from coloured depth images. A grasp describes how a robotic end-effector can be arranged to securely grasp an object and successfully lift it without slippage. In this study, a ResNet-50 convolutional neural network (CNN) model is trained on the Cornell grasp dataset. The training was completed within 30 hours using a workstation PC with accelerated GPU support via an NVIDIA Titan X. The trained grasp detection model was further evaluated with a Baxter research robot and a Microsoft Kinect-v2 and a successful grasp detection accuracy of 93.91% was achieved on a diverse set of novel objects. Physical grasping trials were conducted on a set of 8 different objects. The overall system achieves an average grasp success rate of 65.0% while performing the grasp detection in under 25 milliseconds. The results analysis concluded that the objects with reasonably straight edges and moderately pronounced heights above the table are easily detected and grasped by the system

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Human Machine Interfaces for Teleoperators and Virtual Environments

    Get PDF
    In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models

    Investigating Precise Control in Spatial Interactions: Proxemics, Kinesthetics, and Analytics

    Get PDF
    Augmented and Virtual Reality (AR/VR) technologies have reshaped the way in which we perceive the virtual world. In fact, recent technological advancements provide experiences that make the physical and virtual worlds almost indistinguishable. However, the physical world affords subtle sensorimotor cues which we subconsciously utilize to perform simple and complex tasks in our daily lives. The lack of this affordance in existing AR/VR systems makes it difficult for their mainstream adoption over conventional 2D2D user interfaces. As a case in point, existing spatial user interfaces (SUI) lack the intuition to perform tasks in a manner that is perceptually familiar to the physical world. The broader goal of this dissertation lies in facilitating an intuitive spatial manipulation experience, specifically for motor control. We begin by investigating the role of proximity to an action on precise motor control in spatial tasks. We do so by introducing a new SUI called the Clock-Maker's Work-Space (CMWS), with the goal of enabling precise actions close to the body, akin to the physical world. On evaluating our setup in comparison to conventional mixed-reality interfaces, we find CMWS to afford precise actions for bi-manual spatial tasks. We further compare our SUI with a physical manipulation task and observe similarities in user behavior across both tasks. We subsequently narrow our focus on studying precise spatial rotation. We utilize haptics, specifically force-feedback (kinesthetics) for augmenting fine motor control in spatial rotational task. By designing three kinesthetic rotation metaphors, we evaluate precise rotational control with and without haptic feedback for 3D shape manipulation. Our results show that haptics-based rotation algorithms allow for precise motor control in 3D space, also, help reduce hand fatigue. In order to understand precise control in its truest form, we investigate orthopedic surgery training from the point of analyzing bone-drilling tasks. We designed a hybrid physical-virtual simulator for bone-drilling training and collected physical data for analyzing precise drilling action. We also developed a Laplacian based performance metric to help expert surgeons evaluate the resident training progress across successive years of orthopedic residency

    Human skill capturing and modelling using wearable devices

    Get PDF
    Industrial robots are delivering more and more manipulation services in manufacturing. However, when the task is complex, it is difficult to programme a robot to fulfil all the requirements because even a relatively simple task such as a peg-in-hole insertion contains many uncertainties, e.g. clearance, initial grasping position and insertion path. Humans, on the other hand, can deal with these variations using their vision and haptic feedback. Although humans can adapt to uncertainties easily, most of the time, the skilled based performances that relate to their tacit knowledge cannot be easily articulated. Even though the automation solution may not fully imitate human motion since some of them are not necessary, it would be useful if the skill based performance from a human could be firstly interpreted and modelled, which will then allow it to be transferred to the robot. This thesis aims to reduce robot programming efforts significantly by developing a methodology to capture, model and transfer the manual manufacturing skills from a human demonstrator to the robot. Recently, Learning from Demonstration (LfD) is gaining interest as a framework to transfer skills from human teacher to robot using probability encoding approaches to model observations and state transition uncertainties. In close or actual contact manipulation tasks, it is difficult to reliabley record the state-action examples without interfering with the human senses and activities. Therefore, wearable sensors are investigated as a promising device to record the state-action examples without restricting the human experts during the skilled execution of their tasks. Firstly to track human motions accurately and reliably in a defined 3-dimensional workspace, a hybrid system of Vicon and IMUs is proposed to compensate for the known limitations of the individual system. The data fusion method was able to overcome occlusion and frame flipping problems in the two camera Vicon setup and the drifting problem associated with the IMUs. The results indicated that occlusion and frame flipping problems associated with Vicon can be mitigated by using the IMU measurements. Furthermore, the proposed method improves the Mean Square Error (MSE) tracking accuracy range from 0.8Ëš to 6.4Ëš compared with the IMU only method. Secondly, to record haptic feedback from a teacher without physically obstructing their interactions with the workpiece, wearable surface electromyography (sEMG) armbands were used as an indirect method to indicate contact feedback during manual manipulations. A muscle-force model using a Time Delayed Neural Network (TDNN) was built to map the sEMG signals to the known contact force. The results indicated that the model was capable of estimating the force from the sEMG armbands in the applications of interest, namely in peg-in-hole and beater winding tasks, with MSE of 2.75N and 0.18N respectively. Finally, given the force estimation and the motion trajectories, a Hidden Markov Model (HMM) based approach was utilised as a state recognition method to encode and generalise the spatial and temporal information of the skilled executions. This method would allow a more representative control policy to be derived. A modified Gaussian Mixture Regression (GMR) method was then applied to enable motions reproduction by using the learned state-action policy. To simplify the validation procedure, instead of using the robot, additional demonstrations from the teacher were used to verify the reproduction performance of the policy, by assuming human teacher and robot learner are physical identical systems. The results confirmed the generalisation capability of the HMM model across a number of demonstrations from different subjects; and the reproduced motions from GMR were acceptable in these additional tests. The proposed methodology provides a framework for producing a state-action model from skilled demonstrations that can be translated into robot kinematics and joint states for the robot to execute. The implication to industry is reduced efforts and time in programming the robots for applications where human skilled performances are required to cope robustly with various uncertainties during tasks execution

    Natural freehand grasping of virtual objects for augmented reality

    Get PDF
    Grasping is a primary form of interaction with the surrounding world, and is an intuitive interaction technique by nature due to the highly complex structure of the human hand. Translating this versatile interaction technique to Augmented Reality (AR) can provide interaction designers with more opportunities to implement more intuitive and realistic AR applications. The work presented in this thesis uses quantifiable measures to evaluate the accuracy and usability of natural grasping of virtual objects in AR environments, and presents methods for improving this natural form of interaction. Following a review of physical grasping parameters and current methods of mediating grasping interactions in AR, a comprehensive analysis of natural freehand grasping of virtual objects in AR is presented to assess the accuracy, usability and transferability of this natural form of grasping to AR environments. The analysis is presented in four independent user studies (120 participants, 30 participants for each study and 5760 grasping tasks in total), where natural freehand grasping performance is assessed for a range of virtual object sizes, positions and types in terms of accuracy of grasping, task completion time and overall system usability. Findings from the first user study in this work highlighted two key problems for natural grasping in AR; namely inaccurate depth estimation and inaccurate size estimation of virtual objects. Following the quantification of these errors, three different methods for mitigating user errors and assisting users during natural grasping were presented and analysed; namely dual view visual feedback, drop shadows and additional visual feedback when adding user based tolerances during interaction tasks. Dual view visual feedback was found to significantly improve user depth estimation, however this method also significantly increased task completion time. Drop shadows provided an alternative, and a more usable solution, to dual view visual feedback through significantly improving depth estimation, task completion time and the overall usability of natural grasping. User based tolerances negated the fundamental problem of inaccurate size estimation of virtual objects, through enabling users to perform natural grasping without the need of being highly accurate in their grasping performance, thus providing evidence that natural grasping can be usable in task based AR environments. Finally recommendations for allowing and further improving natural grasping interaction in AR environments are provided, along with guidelines for translating this form of natural grasping to other AR environments and user interfaces

    A Taxonomy of Freehand Grasping Patterns in Virtual Reality

    Get PDF
    Grasping is the most natural and primary interaction paradigm people perform every day, which allows us to pick up and manipulate objects around us such as drinking a cup of coffee or writing with a pen. Grasping has been highly explored in real environments, to understand and structure the way people grasp and interact with objects by presenting categories, models and theories for grasping approach. Due to the complexity of the human hand, classifying grasping knowledge to provide meaningful insights is a challenging task, which led to researchers developing grasp taxonomies to provide guidelines for emerging grasping work (such as in anthropology, robotics and hand surgery) in a systematic way. While this body of work exists for real grasping, the nuances of grasping transfer in virtual environments is unexplored. The emerging development of robust hand tracking sensors for virtual devices now allow the development of grasp models that enable VR to simulate real grasping interactions. However, present work has not yet explored the differences and nuances that are present in virtual grasping compared to real object grasping, which means that virtual systems that create grasping models based on real grasping knowledge, might make assumptions which are yet to be proven true or untrue around the way users intuitively grasp and interact with virtual objects. To address this, this thesis presents the first user elicitation studies to explore grasping patterns directly in VR. The first study presents main similarities and differences between real and virtual object grasping, the second study furthers this by exploring how virtual object shape influences grasping patterns, the third study focuses on visual thermal cues and how this influences grasp metrics, and the fourth study focuses on understanding other object characteristics such as stability and complexity and how they influence grasps in VR. To provide structured insights on grasping interactions in VR, the results are synthesized in the first VR Taxonomy of Grasp Types, developed following current methods for developing grasping and HCI taxonomies and re-iterated to present an updated and more complete taxonomy. Results show that users appear to mimic real grasping behaviour in VR, however they also illustrate that users present issues around object size estimation and generally a lower variability in grasp types is used. The taxonomy shows that only five grasps account for the majority of grasp data in VR, which can be used for computer systems aiming to achieve natural and intuitive interactions at lower computational cost. Further, findings show that virtual object characteristics such as shape, stability and complexity as well as visual cues for temperature influence grasp metrics such as aperture, category, type, location and dimension. These changes in grasping patterns together with virtual object categorisation methods can be used to inform design decisions when developing intuitive interactions and virtual objects and environments and therefore taking a step forward in achieving natural grasping interaction in VR
    • …
    corecore