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Abstract

Grasping is the most natural and primary interaction paradigm people perform every
day, which allows us to pick up and manipulate objects around us such as drinking a
cup of coffee or writing with a pen. Grasping has been highly explored in real environ-
ments, to understand and structure the way people grasp and interact with objects by
presenting categories, models and theories for grasping approach. Due to the complex-
ity of the human hand, classifying grasping knowledge to provide meaningful insights
is a challenging task, which led to researchers developing grasp taxonomies to pro-
vide guidelines for emerging grasping work (such as in anthropology, robotics and hand

surgery) in a systematic way.

While this body of work exists for real grasping, the nuances of grasping transfer in
virtual environments is unexplored. The emerging development of robust hand tracking
sensors for virtual devices now allow the development of grasp models that enable VR
to simulate real grasping interactions. However, present work has not yet explored the
differences and nuances that are present in virtual grasping compared to real object
grasping, which means that virtual systems that create grasping models based on real
grasping knowledge, might make assumptions which are yet to be proven true or untrue

around the way users intuitively grasp and interact with virtual objects.

To address this, this thesis presents the first user elicitation studies to explore grasp-
ing patterns directly in VR. The first study presents main similarities and differences
between real and virtual object grasping, the second study furthers this by exploring
how virtual object shape influences grasping patterns, the third study focuses on visual
thermal cues and how this influences grasp metrics, and the fourth study focuses on un-
derstanding other object characteristics such as stability and complexity and how they

influence grasps in VR. To provide structured insights on grasping interactions in VR,



Birmingham City University CEBE

the results are synthesized in the first VR Taxonomy of Grasp Types, developed fol-
lowing current methods for developing grasping and HCI taxonomies and re-iterated to

present an updated and more complete taxonomy.

Results show that users appear to mimic real grasping behaviour in VR, however they
also illustrate that users present issues around object size estimation and generally a
lower variability in grasp types is used. The taxonomy shows that only five grasps
account for the majority of grasp data in VR, which can be used for computer systems
aiming to achieve natural and intuitive interactions at lower computational cost. Further,
findings show that virtual object characteristics such as shape, stability and complexity
as well as visual cues for temperature influence grasp metrics such as aperture, category,
type, location and dimension. These changes in grasping patterns together with virtual
object categorisation methods can be used to inform design decisions when developing
intuitive interactions and virtual objects and environments and therefore taking a step

forward in achieving natural grasping interaction in VR.
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1| Introduction

1.1 Motivation

Virtual Reality (VR) is in a period of strong growth, with the number of virtual
environments increasing day by day. One significant factor that is fuelling this
advancement is the unprecedented growth in consumer availability and use, with
companies such as Meta, Microsoft and Samsung enabling accessible VR experi-
ences for the masses. VR applications are now increasingly used in the entertain-
ment and gaming world which include VR social platforms (Facebook Spaces),
immersive cinemas (IMAX), museum tours (British Museum), live concerts, live
sports games (Meta’s Oculus venues) and 3D immersive games that replicate tra-

ditional game genres in VR.

This growth in consumer available VR hardware and software attracted the re-
search community to investigate the use of VR outside entertainment applications,
to support decision making and enable innovation, while taking workforce train-
ing to the next level by enabling highly immersive environments (Frutos-Pascual,
Harrison, Creed, & Williams, 2019). The high immersion levels and the abil-
ity to replicate real scenarios in VR has allowed the development of VR training
applications and simulations (Figure 1.1), which bring several advantages when
compared to traditional training and learning, including the ability to simulate any
situation without exposing trainees to its risks and the ability to repeat a train-
ing session for an unlimited number of times (Ragan et al., 2015). Hence, from
flight simulations (X. Sun, Liu, Tian, Wu, & Gao, 2020), surgical training tech-
niques (Nayer, Murdock, Dharia, & Belyea, 2020), psychological therapies (Opris
et al., 2012) or fire evacuation simulations (Lawson, Roper, Shaw, Hsieh, & Cobb,

2020), the possibilities are rapidly developing.
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Figure 1.1: Controller-based surgical training platform from Osso VR (Osso VR
Virtual Reality Surgical Training Platform, n.d.).

Yet the usability and effectiveness of these simulations is highly dependent on
several factors, which have shown to play a key role in mimicking real scenarios
and significantly impact user quality of experience (Hudson, Matson-Barkat, Pal-
lamin, & Jegou, 2018). Immersion is known as the perception of being physically
present in a non-physical world, and is achieved by surrounding the user by visual,
auditory and other stimuli to "block out the physical world" (Biocca, 1992). Be-
yond immersion, the main component of VR is interaction (Heim, 2000), which
allows the user to interact with the virtual objects and improves presence in these
environments (Hudson, Matson-Barkat, Pallamin, & Jegou, 2019), which is par-
ticularly important for virtual environments which aim to mimic real scenarios for
training and simulations. In real environments, people are accustomed to interac-
tions between people and surrounding objects where they receive information via
multiple sense organs in ways of seeing, listening, speaking, touching and tasking.
This inspired the development of various interaction methods in VR, researchers
focusing on providing real-time interactivity through speech, head movements,

gaze, touch or 3D hand interactions (Figure 1.2).
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Figure 1.2: Virtual hand-object interactions proposed by (Tian et al., 2019).

Hand interaction has gained popularity in VR with the rapid technological ad-
vancements that allow users to interact with virtual systems using their hands,
due to human hand dexterity and humans’ ability to use their hands for acquiring
and manipulating objects with ease. Commonly, hand-held controllers are used
as the standard interaction method for VR interactions, especially for consumer-
available and entertainment VR. However, controllers have shown to be limited
in providing natural and intuitive interactions, users often reporting that interac-
tions are not intuitive and require a longer learning curve (Tanjung, Farhan, Sire-
gar, Panjaitan, & Fahmi, 2020), which is particularly important for VR scenarios

where mimicking reality is important for knowledge transfer.

Suppose you work in the manufacturing industry, training for a challenging as-
sembly task. Instead of reading procedures or watching others perform the task,
VR now allows the development of a training scenario where you can practice
the important steps multiple times, allowing you to learn without risking your and
your co-worker’s safety. High immersion levels through visual and auditory stim-
uli help you feel present in this environment and provide feedback for when you
make a mistake. The aim of this training is for you to translate the assembly skills
learned during this experience to a technique you will confidently perform in the
real scenario. Now to achieve this, you would like to be able to interact with
the virtual environment in the most natural and intuitive manner, which would

not require you to learn new interactions but rather allow you to focus on the
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goal of the training session. Naturally, the most comfortable interaction technique
would be to use your hands in the same way you use them in real environments.
This would provide a learning experience where the consequences are not real but
with the benefits of hands-on learning, which has been studied in psychology and
education and showed numerous learning benefits such as increased motivation,

improved on-the-job performance and shorter learning curves (Cridlin, 2007).

Hand interactions that take advantage of the dexterous versatility of the human
hand have been highly explored within the Human-Computer Interaction (HCI)
community (Q. Wang, Kang, & Kristensson, 2021) initially through the use of
wearables such as gloves(Maldonado & Zetzsche, 2021), however previous work
showed that bare hand interactions (e.g. without using devices to augment the
hand) mitigate some of the limitations associated with wearables such as fatigue
and discomfort and therefore have been linked to ease of access and naturalness
(Oudah, Al-Naji, & Chahl, 2020). When creating new bare hand interactive sys-
tems, several studies rely on predefined gestures, which are generally designed for
optimal recognition rather than naturalness, being often arbitrary and not intuitive
enough (Piumsomboon, Clark, Billinghurst, & Cockburn, 2013), which led re-
searchers to focus on physical interaction paradigms for VR environments where

natural and intuitive interaction is required.

Grasping is the primary and most frequent physical interaction technique people
perform in everyday life and is defined as every static posture at which an ob-
ject can be held securely with a single hand. Virtual grasping has extensively
been explored as a technical and computational challenge, however with current
approaches, users are often trained to use particular grasps, with the design con-
siderations and grasping constraints used in these solutions being applied from
the body of knowledge available in real object grasping. This approach assumes

that in order to achieve intuitive and natural grasping for training and simulations,
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virtual grasp models need to replicate real grasping movements. In real environ-
ments, the hand pose during grasping is influenced by both visual perception and
haptic feedback that inform us on the shape, weight, texture or temperature of
a real object, which we then use to make a decision on how to perform a grasp
that ensures stability for the intended task. However, current VR technology is
still limited in offering haptic feedback (Islam & Lim, 2022), with the majority of
grasping interaction decisions being made based on visual perception only. Now
this introduces the question of whether the limitations we are currently facing in
VR influence intuitive grasping patterns, and whether or not virtual grasping mod-
els should completely mimic real grasping patterns to achieve natural and intuitive

interactions in VR.

Evaluating grasping patterns directly in VR will aid in answering this question
and understanding the intuitive hand poses users perform in VR when haptic feed-
back is missing as well as how these grasping patterns change in VR for common
factors that influence user grasping interaction in real environments such as ob-
ject characteristics, task and visual thermal cues. Nonetheless, the complexity
and variety of uses of the human hand makes the categorisation and classifica-
tion of hand function a challenging task, still, synthesising grasps in taxonomies
has shown to be beneficial for defining common terminology and informing new
research directions in real grasping research. Developing a VR grasp taxonomy
would therefore inform the design of virtual grasping models and more natural
and intuitive VR environments and objects, as well as providing an overview of
key user behaviours, limitations and problems when grasping in VR, taking a step
forward in achieving natural and intuitive interactions in VR, which could also
contribute to current research trends that aim to move the metaverse from science

fiction to an upcoming reality (Y. Wang et al., 2022).
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1.2 Aim and Objectives

The aim of this work is to evaluate grasping patterns in VR and develop the first

VR Taxonomy of Grasp Types. This is achieved through the following objectives:

1. Review and determine current trends in 3D hand interaction and real grasp-

ing research.

2. Define a methodology for collecting grasping patterns in VR suitable for

determining grasping trends and taxonomies.

3. Explore and quantify the differences and similarities between grasping real

objects and grasping virtual objects.

4. Measure the impact of object characteristics and tasks on grasping metrics

in VR.

5. Evaluate differences in grasping approach based on visual cues for avatar

and thermal feedback representation.
6. Synthesize grasp instances in the first VR Taxonomy of Grasp Types.

7. Define and synthesize grasp patterns and potential applications of the tax-

onomy for virtual environment object grasping work.

1.3 Thesis Structure

The aim of this work is to evaluate grasping patterns in VR and develop the first
VR Taxonomy of Grasp Types. Firstly, current methods for developing real grasp-
ing and HCI taxonomies as well as grasp metrics for evaluating hand pose in real
environments were reviewed. Based on these and following adaptations to mit-

igate VR limitations, a novel method for developing the first VR Taxonomy of
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Grasp Types was proposed. Four user studies are then conducted to collect grasp
data under various conditions and synthesize the results in VR grasp taxonomies.
Findings from user studies are employed to inform grasping interaction design de-
cisions for achieving more intuitive and natural interactions in VR. The objectives

of this thesis are achieved throughout nine chapters (see Figure 1.3) as follows:

In Chapter 2, the background research into 3D hand interaction in virtual environ-
ments is presented. Firstly, an overview of input devices used for hand interaction
is presented, describing controller-based interactions and hand tracking based in-
teractions, where wearable-based and freehand interactions are detailed. This is
followed by an overview of interaction paradigms for freehand interactions, dis-
cussing advantages and limitations of gesture-based interaction and physical inter-
action. Finally, current methods for virtual grasping are discussed, together with
problems and limitations, presenting the need for a more systematic exploration

of grasping in VR.

In Chapter 3, the background research into existing real object grasping tax-
onomies is presented. It first presents the definition of grasping. Then, the biome-
chanics of the hand during grasping in real environments are presented, followed
by measures used to analyse grasp poses for real objects. This is followed by a
detailed overview of grasp taxonomies where the types of classification are pre-
sented. Finally, the most up to date real grasp taxonomy in literature, which is
used for classifying grasps in this thesis, is presented in detail, together with ter-

minology and use.

32



CEBE

Birmingham City University

“7°1 uondaS ur pajuasaxd 9ANd9[qo yors Jo sIaquINU JY) 0) J0AUUOD INTY SIY) UT SIdqUINU Y],
‘191deyd OB UI PIAIIYIL 9I9M SIANIIA[QO SISAY) [[BISAO Y] JO UYOIYM SMOYS YoIym ‘pajuasard ST payoeal saandafqo 1oydeyo
[oBa IO "SQIpmis Jasn Jo sasaylodAy yym 1oy3030) ‘sisayy s1y) ul pajuasald 19)deyd yoes Jo wire oy} Jo MIIAIIAQ ¢’ I

000 060 000 0 ©

= SSeaaiaD) — 3 =—==e soesmsin) z
===
==z m= == g === =< =z
==t Do == = === o= =
sse==tSec=xc T s omeaoe S S
= e wo=====.0u ===
S ==c So===S == o==F i ——& — = g 8 - ——"F -3
@ =ou=ngs Sess=re I Co==oc == A ss===c3s E——_— - @ °
—== —=oC D =s=T =S =g o= =fwo=s===a === 3= See-=s
oEscE=sT == =a=ss So=s=o=oc = oS == Sao=x
=" — = =37 === =s=ooc iy =—eses=sassiD) Coos=s =er=a0 === s
S=gaguss = sSec=f == = == = Secs=f ==t
S=s=sc=s==10 T Se= Smoos ) S ==cToo=S = i s===IfT=== =Susi=s o = Sore= ne
Ss0c0DmOs RESwOE DETsSe=ss = ==us == == === == o Sots=S == == Seageo xx o= D= Toeso == SO
=== Soec o —=ior »oy =5cs==m == acx === DSior soc =0 =< =D==c =0 Soooos=s = SuEC ESC maEsamess DEIieaT sSeSs
= = - =7 = -z =y
s=c=x 2 __ =] === === s=ce == s =ery ==

33



Birmingham City University CEBE

In Chapter 4, the current methods for developing HCI taxonomies are reviewed
and a novel method for developing a VR taxonomy of grasps is proposed based
on the real object taxonomy literature in Chapter 3. First, it provides an overview
of taxonomies in HCI, then it describes data collection methods used for devel-
oping taxonomies. This is then followed by an overview of the proposed method,
which is based on the reviewed literature. Next, the baseline environment for the
user studies presented in this thesis, together with the grasp metrics and labelling
methodologies are detailed. Finally, the modifications to the fundamental method

for each user experiment in Chapters 5-8 are presented.

In Chapter 5, a first user experiment to explore differences between grasping met-
rics in real and virtual environments is presented. Time to grasp, grasp aperture
and grasp labels are reported for both real and virtual objects. Key similarities and

differences in grasp metrics are discussed.

In Chapter 6, grasping patterns are explored for different object shapes and sim-
ple translate tasks, following assumptions made in Chapter 5 and real grasping
literature, namely that virtual object shape, might influence grasping patterns in
VR. Grasp aperture and grasp labels are collected and analysed for each object

shape, with results being synthesized in the first VR Taxonomy of Grasp Types.

In Chapter 7, a first user study to analyse grasping patterns for visual cues repre-
senting thermal haptic feedback and user hand avatar is presented. Assumptions
from Chapters 5 and 6 are addressed and grasp location, grasp aperture and grasp
labels are analysed for different visual thermal cues to understand how thermal

haptic feedback and realism of hand avatar influences grasping approach in VR.

In Chapter 8, a first user study to analyse the effect of different categorisation
methods which explore not only virtual object shape but virtual object stability

and complexity is presented, inspired by findings in Chapters 5-7 showing that

34



Birmingham City University CEBE

virtual object characteristics influence grasping approach in VR. To further the
work in Chapter 6, the grasp patterns are analysed during a mixed docking task
(rotation and translation) to evaluate how grasping patterns change for different
tasks, inspired by findings in real grasping literature. The results are synthesized
in an updated, more complete VR Taxonomy of Grasp Types, complementary to

the taxonomy presented in Chapter 6.

In Chapter 9, a set of recommendations based on findings from Chapters 5-8 is
presented. Findings in this work are discussed together with wider implications

for the VR and HCI community. Finally, limitations and future work is presented.

1.4 Contributions

The primary contribution of this thesis is the first evaluation of freehand grasp-
ing patterns in VR for common influencing factors, synthesised in the first VR
Taxonomy of Grasp Types. In achieving this, a number of other contributions are

made:
* Novel methodology for evaluating freehand grasping in VR (Chapter 4)

* First study to analyse differences in grasp metrics between real and virtual
environments (Chapter 5 and (Blaga, Frutos-Pascual, Creed, & Williams,

2021b))

* Development of the first VR Taxonomy of Grasp Types through synthesis-
ing the results from a comprehensive analysis of grasping patterns for object

shape (Chapter 6 and submitted and under review to ITHCI)

 Analysis of grasping patterns in VR based on visual cues for hand represen-
tation and thermal haptic feedback (Chapter 7 and (Blaga, Frutos-Pascual,
Creed, & Williams, 2020))
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* Novel virtual categorisation methods and development of an updated, more
complete VR Taxonomy of Grasp Types to reflect changes in grasp met-
rics based on virtual object characteristics (Chapter 8 and (Blaga, Frutos-

Pascual, Creed, & Williams, 2021a, 2021¢)

1.5 Published Papers
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* Andreea Dalia Blaga, Maite Frutos-Pascual, Chris Creed, and Ian Williams.
2020. Too Hot to Handle: An Evaluation of the Effect of Thermal Visual
Representation on User Grasping Interaction in Virtual Reality. 2020 CHI
Conference on Human Factors in Computing Systems (CHI °20). [Core A*

Ranking]

* Andreea Dalia Blaga, Maite Frutos-Pascual, Chris Creed and Ian Williams.
2021. Freehand Grasping: An Analysis of Grasping for Docking Tasks in
Virtual Reality. 2021 IEEE Virtual Reality and 3D User Interfaces (VR),
2021 [Core A Ranking]

* Andreea Dalia Blaga, Maite Frutos-Pascual, Chris Creed and Ian Williams.
2021. A Grasp on Reality: Understanding Grasping Patterns for Object In-
teraction in Real and Virtual Environments. 2021 IEEE International Sym-
posium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), 2021
[Core A* Ranking]

* Andreea Dalia Blaga, Maite Frutos-Pascual, Chris Creed, and Ian Williams.
2021. Virtual Object Categorisation Methods: Towards a Richer Under-
standing of Object Grasping for Virtual Reality. 27th ACM Symposium on
Virtual Reality Software and Technology (VRST ’21) [Core A Ranking]
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1.6 COVID-19

This work was undertaken before and during the period of the COVID-19 pan-
demic. User studies and data collected during and after the pandemic were fol-

lowing COVID-19 safety guidelines.
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2| Hand Interaction in VR

2.1 Introduction

While immersion has shown to play a key role in achieving realistic experiences
in VR (Tan, Niu, & Zhang, 2020), another important aspect that influences pres-
ence and realism in the VR experience is interaction. Interaction in VR is often
described as the ability of the user to move within the virtual world and to inter-
act with the objects of the virtual world (Bostan, 2006). People are accustomed
to interactions between people and surrounding objects in daily life where they
receive information via multiple sense organs in ways of seeing, listening, speak-
ing, touching and tasking (Shen, 2021). This inspired the development of various
interaction methods in VR, with researchers focusing on providing real-time in-
teractivity that allows the user to interact with a computer interface in a similar
way that they interact in real environments, to allow high immersion and presence
in VR (Khenak, Vézien, & Bourdot, 2020). These interaction methods make use
of speech (Azizo, Mohamed, Siang, & Isham, 2020), head movements (Yu, Liang,
Zhang, & Xu, 2019), eye-gazing (Piumsomboon, Lee, Lindeman, & Billinghurst,
2017), touch (Y. R. Kim, Choi, Chang, & Kim, 2020) and hands.

Hand interaction has gained popularity in VR with the rapid technological ad-
vancements that allow users to interact with virtual systems using their hands,
due to human and dexterity and humans’ ability to use their hands for acquiring
and manipulating objects with ease (Vogel & Balakrishnan, 2005). Thus, for VR
systems that aim to replicate real scenarios in VR, researchers focused on using
3D hand interaction tools such as hand-held controllers and hand tracking sensors
to allow interactions that are easy to learn in virtual environments. Taking into

consideration the dexterous versatility of the human hand, researchers have ex-
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plored different interaction paradigms to accommodate the needs and limitations
of virtual systems, with the main paradigms used in VR today being gestures and

physical interaction.

This section presents an overview of input devices used for 3D hand interaction as
well as interaction paradigms for state-of-the-art VR. Section 2.2 presents input
devices for hand interaction with the main categories being controller-based in-
teraction and hand tracking interaction (wearable-based interaction and freehand
interaction). Section 2.3 presents freehand interaction paradigms, detailing bene-
fits and limitations of gesture-based interaction and physical interaction. A more
detailed overview of current trends in physical interaction, namely virtual grasp-

ing is presented in Section 2.4.

2.2 Input Devices for Hand Interaction

Hand interaction with virtual objects can be achieved using a variety of techniques
in VR. Since standard devices such as keyboard and mouse are difficult to use in
a highly immersive VR environment (Jayaram, Vance, Gadh, Jayaram, & Srini-
vasan, 2001), researchers focused on creating alternative devices that retain the
authentic and universal sense of reality by preserving close ergonomic similar-
ities with human physical and manual dexterity and agility (Carmeli, Patish, &
Coleman, 2003). These alternative devices are now the state-of-the-art in immer-
sive VR interactions and can be divided in two main categories: controller-based
interactions and hand tracking interactions. The following sections present an

overview of these types of input devices together with their use and limitations.
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2.2.1 Controller-based Interaction

The most popular input devices for hand interaction in fully immersive environ-
ments are controllers, due to their accuracy and low cost, being mainly used to im-
prove the sense of immersion through interaction in virtual environments (Choi,
Ofek, Benko, Sinclair, & Holz, 2018). Controllers may be wired or wireless, are
hand worn and provide discrete input in the form of buttons and continuous input
by top-mounted joysticks or touch-pads which provide tracking of the position and
orientation of users’ hands with high accuracy and fast recognition speed (Zhang
et al., 2018), which has shown to increase user presence during interaction in VR

(Caggianese, Gallo, & Neroni, 2019; Tanjung et al., 2020).

Due to these interaction opportunities proposed by controllers, top VR HMD com-
panies such as Meta, HTC and PlayStation introduced controllers as the main
interaction tools to accompany their headsets, making them easily available and
affordable at consumer level. This led to an increased use of controllers for VR
entertainment applications (Vogel, Lubos, & Steinicke, 2018; H. Park, Faghihi,
Dixit, Vaid, & McNamara, 2021). This increased popularity of controllers was
also evident in the HCI community, where researchers focused on developing
and evaluating controller-based interactions to achieve highly interactive systems
(Suznjevic, Mandurov, & Matijasevic, 2017) by either mimicking interactions
from existing Uls in VR (mouse interactions such as pointing and selecting (Capece,
Erra, & Grippa, 2018)) or mimicking hand interaction behaviour from real envi-

ronments (picking and manipulating a virtual object (Suznjevic et al., 2017)).

However, researchers found that controller-based interactions might present chal-
lenges for users when learning how to correctly hold and manipulate the con-
troller for specific interactions (Tanjung et al., 2020). For example, Hartney et al.

(Hartney et al., 2019) developed an interactive application for upper-limb train-
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(a) Controller-based Interaction (b) Wearable-based Interaction

Figure 2.1: Controller-based interaction for a virtual scenario mimicking real in-
teractions as presented in (Hartney et al., 2019) and wearable-based interaction for
a virtual scenario mimicking real interactions presented in (Chheang et al., 2021)

ing in injured patients, where users were asked to perform daily tasks, such as
cleaning a virtual window using controllers (Figure 2.1 a). They showed that
even though users were educated on how to use the controllers, users reported that
the interaction took longer to learn and was challenging, due to the movements
required being very different from real-life activities, which was also found in
(D. Chen, Liu, & Ren, 2018; Lougiakis, Katifori, Roussou, & loannidis, 2020).
Moreover, researchers showed that the design between the most popular commer-
cially available controllers is incongruent, leading to inconsistent levels of acces-
sibility which hinder intuitive interactions in VR (Cook, Dissanayake, & Kaur,

2019).

While controllers are currently the most common input device for immersive hand
interactions, they have a higher correlation with individual bespoke functionalities
than with a standardised relationship for authentic HCI. These findings are partic-
ularly important to consider for virtual environments where replicating real tasks
and behaviour is needed, such as for training and simulations (Gonzalez & Gar-
nique, 2018), where input devices that do not rely on buttons and touchscreens

and in turn propose more natural and intuitive approaches can be considered.
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2.2.2 Hand Tracking Interaction

Another important branch of input devices for immersive interaction is hand track-
ing. Hand tracking focuses on allowing users to perform movements similar to
interactions in real environments, by tracking hand movements such as position
and orientation of the palm and fingers in 3D. This interaction technique allows
direct interactions between the hand and virtual objects and thus gained popularity
for VR systems that mimic realistic scenarios such as training (Levin, Magdalon,
Michaelsen, & Quevedo, 2015) and simulations (Q. Wang et al., 2021). The ap-
proaches for allowing hand tracking interactions in VR are diverse, however they
can be split in two main categories: wearable-based interaction, where wearable
devices are placed on the hand/or arm and freehand interaction where the hand
is not augmented with additional sensory or feedback devices. The next sections
present an overview of these two types of hand tracking interactions, presenting

their use and limitations.

2.2.2.1 Wearable-based Interaction

Wearable-based interactions in VR utilise wearable sensors or tracking markers
placed on the hand or arm used for recording data related to user hand config-
uration and motion (such as the bending angle and level of adduction of each
finger) (Dipietro, Sabatini, & Dario, 2008). The most common wearable devices
used in VR are data gloves, which gained popularity due to allowing interac-
tion paradigms where hand muscles are engaged in a similar way as humans use
them for everyday tasks, which cannot be achieved with traditional VR controllers
(Maldonado & Zetzsche, 2021) (Figure 2.1 b). This is evident in the work of
Almeida et al. (Almeida et al., 2019) who compared a data glove to a controller

for virtual object interaction and showed that the sense of embodiment and speed

42



Birmingham City University CEBE

of completion were significantly higher with the data glove, which was also found
in (J. Lee, Sinclair, Gonzalez-Franco, Ofek, & Holz, 2019). Moreover, users of-
ten reported that the glove interaction was more intuitive as it allowed them to

replicate movements they are familiar with from real interactions.

Due to the nature of the interaction paradigms proposed by wearable devices,
researchers focused on using them for training of the hand in injured patients
(Tsoupikova et al., 2014) and showed significant results for improving hand move-
ments for daily tasks as well as improving muscle balance and functional param-
eters (Reyes-Guzman et al., 2015). This potential of wearable devices to provide
interaction techniques that are easy to learn and intuitive, led to an increased popu-
larity of wearable input for various VR applications such as medical rehabilitation
(Levin et al., 2015), simulations (Moehring & Froehlich, 2011), training (Cao,
Gao, Wang, & Li, 2016), collaborative VR (Chheang et al., 2021), robotics (Fu,
Fu, Guo, Guo, & Li, 2020), sign language understanding (Anupama, Usha, Mad-
hushankar, Vivek, & Kulkarni, 2021), entertainment (Adamo-Villani & Wilbur,
2007) and mental health therapy (Q. Wang et al., 2021).

However, while using data gloves have shown to be beneficial for applications
where engaging the muscles of the hand is important for creating a realistic expe-
rience, data gloves that provide high accuracy are usually expensive and therefore
not easily accessible for consumer use (Han, 2010). This has led researchers to
develop glove systems using low-cost sensors for applications that are created to
be widely used by the population (Cao et al., 2016), however researchers often
find imperfections in hand tracking which affect the interaction quality (Borst &
Indugula, 2005). To reduce these inaccuracies, most wearable devices need to be
calibrated for particular users, which has show