
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Theses: Doctorates and Masters Theses 

2019 

Learning to grasp in unstructured environments with deep Learning to grasp in unstructured environments with deep 

convolutional neural networks using a Baxter Research Robot convolutional neural networks using a Baxter Research Robot 

Shehan Caldera 
Edith Cowan University 

Follow this and additional works at: https://ro.ecu.edu.au/theses 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Caldera, S. (2019). Learning to grasp in unstructured environments with deep convolutional neural 
networks using a Baxter Research Robot. https://ro.ecu.edu.au/theses/2170 

This Thesis is posted at Research Online. 
https://ro.ecu.edu.au/theses/2170 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F2170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ro.ecu.edu.au%2Ftheses%2F2170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/2170


Edith Cowan University 

Copyright Warning 

You may print or download ONE copy of this document for the purpose 

of your own research or study. 

The University does not authorize you to copy, communicate or 

otherwise make available electronically to any other person any 

copyright material contained on this site. 

You are reminded of the following: 

 Copyright owners are entitled to take legal action against persons

who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.



Learning to Grasp in Unstructured Environments 
with Deep Convolutional Neural Networks

using a Baxter Research Robot

A thesis submitted for the degree of 

Master of Engineering Science

Shehan Caldera

A/ Prof. Alex Rassau, Principal Supervisor 

Dr. Douglas Chai, Associate Supervisor

School of Engineering

Edith Cowan University

2019



This thesis is dedicated

to

My Parents

Sunil and Suba

For making me who I am and

teaching me to believe in hard work

My Fiancée

Anne

For providing unparalleled support

and encouragement



Acknowledgements

I would like to acknowledge my supervisory panel, Associate Professor

Alexander Rassau and Dr Douglas Chai, for their continuous mentoring,

support, and guidance throughout my research journey. I would like to ac-

knowledge the many opportunities bestowed upon me during my research

candidature.

Furthermore, I would like to acknowledge the School of Engineering at

Edith Cowan University for providing me with a scholarship to pursue

my research interests in a Masters by Research program. This gratit-

ude is extended to all of the staff of the school including the Executive

Dean, Professor Daryoush Habibi; Associate Dean (Research), A/ Prof.

Mehdi Khiadani; and all of the academic and professional staff who were

involved with my research work with guidance, assistance, and encourage-

ment. Then, I would like to acknowledge my colleagues who shared their

research interests with the topic.

Then, I would like to acknowledge the researchers such as Ian Lenz, Joseph

Redmon, and Sulabh Kumra whose work has inspired me to explore the

applications of deep learning in robotic grasping.

I would also like to express my most profound appreciation to my par-

ents, who have taught me to believe in hard work, to my brother who has

always shared similar interests into emerging technologies. Most import-

antly, to my fiancée who has always known me and who still encourages

me to pursue further when I’m on the verge of giving up.



Abstract

Recent advancements in Deep Learning have accelerated the capabilit-

ies of robotic systems in terms of visual perception, object manipulation, 
automated navigation, and human-robot collaboration. The capability 
of a robotic system to manipulate objects in unstructured environments 
is becoming an increasingly necessary skill. Due to the dynamic nature 
of these environments, traditional methods, that require expert human 
knowledge, fail to adapt automatically. After reviewing the relevant liter-

ature a method was proposed to utilise deep transfer learning techniques 
to detect object grasps from coloured depth images. A grasp describes 
how a robotic end-effector can be arranged to securely grasp an object 
and successfully lift it without slippage. In this study, a ResNet-50 con-

volutional neural network (CNN) model is trained on the Cornell grasp 
dataset. The training was completed within 30 hours using a workstation 
PC with accelerated GPU support via an NVIDIA Titan X. The trained 
grasp detection model was further evaluated with a Baxter research robot 
and a Microsoft Kinect-v2 and a successful grasp detection accuracy of 
93.91% was achieved on a diverse set of novel objects. Physical grasping 
trials were conducted on a set of 8 different objects. The overall system 
achieves an average grasp success rate of 65.0% while performing the grasp 
detection in under 25 milliseconds. The results analysis concluded that 
the objects with reasonably straight edges and moderately pronounced 
heights above the table are easily detected and grasped by the system.
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Chapter 1

Introduction

Recent advancements in robotics and automated systems have led to the expansion

of autonomous capabilities and more intelligent machines being utilised in ever more

varied applications [1, 2]. The capability of adapting to changing environments is a

necessary skill for task generalised robots [3, 4]. Machine learning plays a key role in

creating such general-purpose robotic solutions. However, most robots are still de-

veloped analytically, based on expert knowledge of the application background. Even

though this is considered an effective method, it is an arduous and a time-consuming

approach, and has significant limitations for generalised applicability. Due to the

recent successful results of deep learning methods in computer vision and robotics

applications, many robotics researchers have started exploring the application of deep

learning methods in their research.

The type of learning that is applied varies according to the feedback mechanism,

the process used for training data generation, and the data formulation. The learning

problem can vary from perception to state abstraction, through to decision making

[5]. Deep Learning, a branch of machine learning, describes a set of modified machine

learning techniques that, when applied to robotic systems, aims to enable robots

to autonomously perform tasks that come naturally to humans. Inspired by the

biological nervous system, a network of parallel and simultaneous convolutions and

other mathematical operations are performed directly on the available data to obtain a

set of representational heuristics between the input and output data. These heuristics

are then used in decision making. Deep Convolutional Neural Network (DCNN)

models have proven effective in diverse classification and detection problems [6, 7, 8]

and there is a great deal of interest in expanding their utilisation into other domains.

Recently, deep learning has achieved state-of-the-art results in many visual de-

tection applications such as image classification, autonomous driving, and natural

language processing. Therefore many robotics researchers have started exploring the
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application of deep learning methods for visual detection. Robotic grasping involves

detection of the graspable regions on an image. This is identified as the grasp or

grasping pose. Current research suggests that the use of a trained deep learning

method would generate better results for visual detectionof graspable regions. Deep

learning methods are also known for their ability to generalise. In robotic grasping,

the detection of the graspable region or a grasp pose from a given image is a crit-

ical step. The grasp or grasping pose describes how a robotic end-effector can be

arranged to successfully pick up an object. The grasping pose for any given object

is determined through a grasp detection system. Any suitable perception sensors in-

cluding cameras or depth sensors can be used to visually identify grasping poses in a

given scene. Grasp planning relates to the path planning process that is required to

securely grab the object and maintain the closed gripper contacts to hold and lift the

object from its resting surface [9]. Planning usually involves the mapping of image

plane coordinates to the robot world coordinates for the detected grasp candidate.

The control system describes certain closed-loop control algorithms that are used to

control the robotic joints or degrees of freedom (DOF) to reach the grasping pose

while maintaining a smooth reach [10].

This thesis comprises the literature review, methodology, results and discussions

associated with an investigation into the use of deep convolutional neural networks

to enable a Baxter research robot to learn to grasp in unstructured environments

using DCNNs and the robotic grasping with a Baxter research robot. The thesis

is organised as follows; Chapter 1 provides the introduction and the background

information for the project topic, Chapter 2 provides a thorough review into previous

literature of deep learning and robotic grasping, Chapter 3 describes the complete

method detailing specific steps, Chapter 4 presents all the results from the various

experiments, Chapter 5 provides a discussion and analysis of the results analysis, and

Chapter 6 provides conclusions and recommendations for future research directions.

This chapter introduces the project topic and aims to provide some background

information on general-purpose industrial robotics as well as identifying a sample

application environment with variable constraints. It is followed by a description of

the problem of formulating a learning method for robots to generalise tasks. The

subsequent sections introduce the objectives of this study, and their significance to

the related research community, finally the specific research questions aimed to be

addressed through this study are provide.
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1.1 Background

In order to control the operations of a robotic system using the analytical approaches

or ”hard coding” requires manually programming a robot with the necessary instruc-

tions to carry out a given task. These control algorithms are modelled based on expert

human knowledge of the robot and its environment for that specific task [4]. The out-

come of this approach explains a kinematic relationship between the parameters of

the robot and its world coordinates. Ju et al. [11] suggest that the kinematic model

helps in further optimising the control strategies. However, direct mapping of results

from a kinematic model to the robot joint controller is inherently open-loop and is

identified to cause task space drifts. Therefore, they [2] have, in addition, recommend

the use of closed loop control algorithms to address these drifts.

Even though such hard coded manual teaching is known to achieve efficient task

performance, such an approach has limitations; in particular the program is restricted

to the situations predicted by the programmer, but in cases where frequent changes of

robot programming is required, due to changes in the environment or other factors,

this approach becomes impractical [4]. According to Ju et al. [2], unstructured

environments remain a large challenge for intelligent robots that would require a

complex analytical approach to form the solution. While deriving of models requires

a great deal of data and knowledge of the physical parameters relating to the robotic

task, use of more dynamic robotic actuators make it nearly impossible to model

the physics, thus they conclude that manual teaching is an efficient but exhaustive

approach [2]. In such cases, empirical methods will provide an increased cognitive

and adaptive capability to the robots, while reducing or completely removing the

need to manually model a robotic solution [3]. Early work in empirical methods

takes a classical form that explores the adaptive and cognitive capability of robots to

learn tasks from demonstration. Non-linear Regression techniques, Gaussian process,

Gaussian mixture models, and Support Vector Machines are some of the popular

techniques related to this context [12]. Although these techniques have provided some

level of cognition for the robots, the task replication is limited to the demonstrated

tasks [12].

Deep learning has recently made significant advancements in the application back-

grounds of computer vision, scene understanding, robotic arts, and natural language

processing [10, 13]. Due to the convincing results that have been achieved in the scope

of computer vision, there is an increasing trend towards implementation of deep learn-

ing methods in robotics applications. Many recent studies show that the unstructured

3



nature of a generalised robotics task makes it significantly more challenging. How-

ever, in order to advance the state-of-the-art of robotic applications it is necessary

to create a generalised robotic solution for various industries such as offshore oil rigs,

remote mine sites, manufacturing assembly plants, and packaging systems where the

work environments and scenarios can be highly dynamic. A desired primary ability

for these general purpose robots is the capability to grasp and manipulate objects in

order to interact with their work environment. Even though the visual identification

and manipulation of objects is a simple task for humans, it is a challenging task for

robots that involves perception, planning, and control [14, 10]. Grasping can enable

the robots to manipulate obstacles in the environment or to change the state of the

environment if necessary. Early work such as [15, 16] show how far researchers have

advanced the research methods in robotic grasping. These studies discuss the early

attempts of grasping novel objects using empirical methods.

Object grasping is challenging due to the wide range of factors such as different

object shapes and unlimited object poses. Successful robotic grasping systems should

be able to overcome this challenge to produce useful results. Unlike robots, humans

can almost immediately determine how to grasp a given object. Robotic grasping

currently performs well below human object grasping benchmarks, but is being con-

tinually improved given the high demand. A robotic grasping implementation has

the following sub-systems [10]:

• Grasp detection system: To detect grasp poses from images of the objects

in their image plane coordinates

• Grasp planning system: To map the detected image plane coordinates to

the world coordinates

• Control system: To control a robotic hardware platform to reach the target

grasping pose and perform the object grasping

This is further discussed in the literature review in Chapter 2.

The first part of the project is to develop a detection system for graspable regions

from object images. Therefore, a deep learning based grasp pose detection method

needs to be developed. The objective for this detection system is to identify graspable

regions or object grasp poses from images. A popular deep learning method that

has been applied in most grasp detection related research is the Deep Convolutional

Neural Network or sometimes referred to as the Convolutional Neural Network (CNN)

due to the heavy involvement of convolutional layers in their architectures.
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There are two principle approaches to apply a CNN to a problem:

1. Create an application specific CNN model

2. Utilise a complete or part of a pre-existing CNN model through transfer learning

Creating a proprietary CNN model requires a deep understanding of the concepts

and a reasonable level of experience with CNNs. Therefore, most researchers that

implement CNNs in their grasp detection work have opted for transfer learning given

the reduced number of parameters to be dealt with. Training of such a CNN requires

a large volume of data [17]. The data can be labelled or unlabelled depending on

whether a supervised or unsupervised training method is used. Training is the pro-

cess of tuning the network parameters according to the training data. The studies

[18, 19, 10, 20] focus on simplifying the problem of grasp detection and build on the

transfer learning model in order to improve the results. While there are several plat-

forms to implement deep learning algorithms, most studies have used Tensorflow [21],

Theano [22], or Matlab [6]. With the recent advancements of software applications

and programming languages there are now more streamlined tools such as Keras [23],

Caffe [24] or DarkNet [25] to implement the same functionality of former deep learning

frameworks but in an easier and more efficient way. Even though most recent deep

learning approaches for robotic grasping follow purely supervised learning, software

platforms such as NVIDIA ISAAC [26], encourage unsupervised learning methods

with the support of virtual simulation capabilities.

Robots are widely employed in industries to improve the efficiency and productiv-

ity of emerging markets. Robots are also utilised to create work environments with

reduced hazards to humans. As a result the term Collaborative Robots has been intro-

duced to describe complex robots that are designed to work alongside humans. They

provide support to reduce human labour in a shared work environment and assistance

to reduce fatigue from repetitive exhausting work [27]. In this project, the robotic

grasping is performed on a Baxter Research robot. The Baxter robot is an advanced

humanoid robot with dual 7 degree of freedom (DOF) arms. It is a fully compliant

robot that is specially made for human-robot collaborative work environments. It was

designed and developed by Rethink Robotics in 2012 [28]. Rethink Robotics [28] has

created Baxter with a focus on industrial work safety, easy programming, and general-

purpose usage as key points for an industrial robotic solution. The robot has multiple

sensors on its joints, arms, and head as shown in Figure 2.11 that can be utilised in

various applications. The robot joints are actuated by Series Elastic Actuators (SEA)

providing human like interactions between its work environment. The display on its
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head is used to output various states and alerts from its operating system. Chapter 2

provides a review of the literature relating to the collaborative Baxter robot and its

capabilities. This thesis explores deep learning methods for robotic grasp detection

that can be used to enable a Baxter robot to work in an unstructured environment.

The application background for this project is utilisation of robotic systems in

environments that can change unpredictably. An example of this type of an envir-

onment is a Materials Recovery Facility (MRF). In an MRF slow moving conveyors,

optical sorting machines and lifting conveyors work hand in hand with human workers

to sort waste materials so that they can be processed and used in new products. The

major types of materials recycled are paper, plastic, metal and glass [29]. In current

MRFs there are human workers required at several points throughout the process

to recognise unwanted items in the conveyors. These workers need to remove these

materials manually to prevent any accidental harm they may cause in the sorting

machines of the MRF [30]. Automating this part of the process is challenging as the

ever-changing environment of an MRF requires task-generalised robots. Therefore

modelling an analytically expert robotic solution is nearly impossible due to highly

variable constraints. These kinds of challenging unstructured environments exist in

many industrial contexts outside of standard production line environments. Even

though it may be theoretically possible to overcome some of these challenges with a

suitably complex standard programming approach, the cost of such a solution will

remain unaffordable to most of the smaller to medium scale industries. In order to

overcome such problems data-based model learning algorithms are required [31].

Recently there have been numerous depth cameras available for academic research

for a reasonable cost. The Microsoft Kinect sensor is one of the more popular depth

cameras that has been used with object grasping research. Most of this research work

has used coloured depth images (RGB-D: Red, Green, Blue, and Depth channels)

arguing that the added depth information allows the system to more effectively isolate

the region belonging to the graspable object. The Microsoft Kinect sensor generates

point clouds with RGB images that can be combined to create RGB-D images. Over

the last few years, the field of robotic grasp detection with deep learning only just

begun to receive more attention, and therefore, the availability of collected data is,

unfortunately, very limited. One dataset that is available and that has been widely

used for research in this area is the Cornell Grasp dataset, a small-scale grasp dataset

with 885 RGB images and point clouds of 240 different objects. Each object image

has annotations for valid and invalid graspable regions denoted by oriented grasp

rectangles. The dimensions of these rectangles provide the area of the graspable
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region on the object image. Overall, there are about 5110 valid ground truth grasps

and 2909 invalid ground truth labels.

1.2 Problem Statement

Compared to robots, humans show significantly higher success rates in manipulating

objects in a dynamic environment by observing the environment first. Inspired by

this approach to give the robots in an industrial environment the ability to learn

their tasks autonomously, deep learning methods are identified as a promising way of

achieving this goal with the proven results of [32, 33, 31, 34, 18, 19]. A deep learning

architecture is identified by its capability to model a desired mapping of inputs to

outputs using a large set of non-linear transformations of input data [31].

The training data and the testing data for many machine learning algorithms are

obtained from the same data distribution. When the distribution or the feature space

changes, most machine learnt statistical models need to be remodelled by collecting

data anew. It can be expensive and nearly impossible to collect a fresh data set that

would generate similar results. Therefore it would be advantageous to use transfer

learning when data collection is not an option [35].

A Deep Neural Network (DNN) or a Deep Convolutional Neural Network (DCNN)

is built with multiple layers of information representations [36]. The representa-

tions are found by convolutional layers thus identifying a deep learning network as

a Convolutional Neural Network (CNN) [17]. Deep learning networks solve prob-

lems with high-dimensional observation spaces, but can only handle discrete and

low-dimensional action spaces. Many tasks of interest, most notably physical control

tasks, have continuous (real valued) and high dimensional action spaces.

On occassion, the deep learning methods are adapted to continuous domains by

simply discretising the action space. However, this has many limitations, most not-

ably the curse of dimensionality: the number of actions increases exponentially with

the number of degrees of freedom. In such higher dimensional applications it would

require new deep learning architectures customised to the problem specification [37].

The input representation is important for a DNN. Given that DNNs identify

multiple representations from input raw data [36], the raw data must be formulated

in a way such that it is clearly differentiated from one input to another [17]. A

grasp rectangle is represented as shown in Figure 1.1 with the grasp parameters:

G = {x, y, θ, h, w}. The force grasping is removed considering this research only
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considers rigid objects that are not easily deformed within the grasp force range of

the Baxter robot.

Figure 1.1: A rectangle grasp representation showing the center point (x, y), the
height (h), the width(w), and the orientation (θ) with the horizontal axis.

Taking all of this in-to consideration, in this work a method is proposed for im-

plementation of deep learning methods applied to the operation of a Baxter robot for

object handling in an unstructured environment. A deep convolutional neural net-

work is trained on the Cornell grasp data [38] to successfully identify grasp rectangles

from coloured depth images to use with an inverse kinematic solver to determine the

joint angle solution to control the Baxter robotic arm to grasp the objects in order

to move them within the workspace.

1.3 Objective

The purpose of this research study is to investigate the use of deep learning to enable

a Baxter robot to learn to identify objects and their grasping poses in order to suc-

cessfully grab the objects between the robotic end-effector and lift them up without

slippage. This project explores task generalisation for robotic systems through the

utilisation of deep learning.

Most recent changes to the industrial workplace have introduced dynamically

varying work environments for robotic systems where structured programming ap-

proaches require nearly exhaustive effort to produce effective results. Highly dynamic

environments such as off-shore oil rigs or small to medium scale manufacturing plants

that have minimal batch sizes of products require continuously adaptable robotic

solutions. Deep learning has recently shown the potential to provide this utility.

This study will investigate the application of deep learning methods for detection

of grasp poses for objects and will explore robotic grasping with the Baxter robot.

Robotic grasping involves the following steps:
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1. Identifying and localising the object in its workspace

2. Identifying the object orientation in the workspace

3. Localising the grasping point for the robotic end-effector

4. Controlling the robotic arm to pick-up and move the object to a pre-defined

drop-off zone in the workspace.

The first three steps require training of a DCNN from previously collected and

annotated grasp data from the Cornell grasp dataset. A suitable DCNN architecture

is proposed based on a review of the recent robotic grasp detection work.

1.4 Significance

The Deep Learning community will benefit from the contribution of a deep learning

application for robotic motion control. From the literature relating to applications of

Baxter robots, it can be assumed that application of deep learning in motion control

of a Baxter robot is an area of research that is still under development. There are

several methods of applying deep learning in such a task, principally:

• Developing a new deep learning algorithm

• Using a pre-trained deep learning algorithm (Transfer learning [6])

Each method has its own challenges and advantages. To date, most machine

learning algorithms have been applied in a variety of computer vision problems. It

is only recently that robotic motion control is being explored using the methods of

machine learning. As deep learning has the power to allow task generalisation for

robots it is a valuable topic to explore in the hopes of finding a lower cost solution to

facilitate motion planning for robots in dynamic industrial environments. Once the

neural network model is completely trained, the detection model is used to identify

grasp poses for the objects that are visible from the images. The located grasp regions

are re-mapped to world coordinates. Afterwards, a joint angle solution for the specific

Baxter robotic arm is found by solving the inverse kinematic equations. Then, the

Baxter robotic arm is actuated to manipulate the detected object.
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1.5 Research Questions

This research study has aimed to answer the following questions:

1. What are the suitable Learning methods for object recognition and grasping

with a Baxter robot?

2. How to effectively implement Deep Learning methods for grasp detection from

images?

(a) How to best represent the data for training?

(b) How to select the training algorithm?

(c) How can the performance of the deep learning model be measured and

improved?

3. How to best relate the learnt grasp detection model to the physical robotic

grasping?

4. How can the selected robotic grasping method be compared with the current

state-of-the-art?
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Chapter 2

Literature Review

This chapter provides a thorough review of the relevant literature and focuses on

analysing the previous approaches in order to inform the methodology. Section 2.1

discusses different steps associated with a robotic grasping application. Sections 2.2

and 2.3 provide a discussion on various robot learning methods and the importance of

data for training such methods. Section 2.4 discusses various neural network architec-

tures and their associated properties relating to grasp pose detection DCNNs. Section

2.5 provides some discussion into physical grasping with a real robot. Finally, Sec-

tion 2.6 compares various robotic systems with their specifications and collaborative

capabilities.

2.1 Robot Learning

This section examines the recent literature relating to robot learning methods. Refer-

ring to the literature, three different types of learning approaches have been identified.

Traditional methods of robotic control have focused on manually teaching tasks to

robots. These robot control methods have been developed based on the expert know-

ledge of human operators regarding completing such tasks. The next part of the

literature describes the incorporation of humans as demonstrators to the robots to

learn the tasks. This has taken a task imitation approach in the context of learning.

While demonstration based learning has been shown to require a large amount of

varying types of data in training, modern approaches of deep learning explore meth-

ods of teaching a robot only using perceptual data, which in turn reduces the required

amount of data. Another direction for deep learning explores the use of reinforcement

to allow the robots to explore and learn the tasks by themselves based on a reward

value that is increased or decreased based on whether the action taken is more cor-
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rect or more incorrect. The following subsections explore each of these types in more

detail.

2.1.1 Manual Programming

The first type of control systems were developed using a model developed by human

expertise. This model identified the relationships between the robotic features and

the real environment [4]. In motion control of industrial robots, this developed model

explained a kinematic relationship between the robotic coordinates and the world

coordinates. This model was then used in simulation of the control strategies[2]. Most

of the industrial environments were cluttered with obstacles within the workspace of

robots being employed. The importance of a model development was recognised in

the sense of operating the robots in a manner where there is no harm or damage

to the robots or to the work environment. The objective of control design for these

industrial robots was accomplished by referring to the previously mentioned model.

This process of manual modelling is identified as Manual Teaching.

The models used in programming robots in the position control mode were iden-

tified as kinematic models [11]. The Denavit-Hartenberg (DH) notations were widely

used to describe the kinematic model of a robot [39]. The robotic programmer’s task

was to find the method of mapping DH parameters of the robot links used in the

mechanism to its environment. However, for the case of the Baxter Research Robot,

this parametric information was not provided by the Baxter software wiki informa-

tion, instead it was provided in a file known as a Unified Robot Description Format

(URDF). This is an XML representation of the robot model (kinematics, dynamics,

sensors) describing the Baxter robot [40]. Therefore Ju et al. [11] devised a method

to find the DH parameters from the URDF and they were able to summarise the key

steps to extract the DH parameters.

Ju et al. [2] suggested that unstructured environments remain a big challenge

for machine intelligence. Thus, it was generally believed not feasible for a robot to

deal with variable surroundings autonomously. Therefore, their view was that semi-

autonomous and human-in-loop methods were to be preferred for the majority of

applications. The process where an operator controlled a robot remotely, was iden-

tified as Teleoperation [2]. Ju et al. also presented that the sector of telemedicine

was going to be highly interested in teleoperated robots, since they were able to

perform various elaborate tasks including remote surgery and teleoperated rehabilit-

ation. Historically, input devices like keyboards and joysticks had been widely used in

teleoperating systems. Through the advance of technology, haptic devices had moved
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into the focus of research projects during the last decades. The major advantage of

these types of devices was to provide the operator with a tactile feeling of the remote

environment through force feedback. The forward kinematics model had described

the relationship between the joint angles of the serial manipulator and the position

and orientation of its end-effector.

As Ju et al. [11] suggested, having the kinematic model would help in design

and optimisation of the control strategies. However mapping the joint angles of the

master to the slave directly is inherently open-loop and unavoidably causes numerical

drifts in the task space. In order to overcome this drawback, the CLIK (Closed Loop

Inverse Kinematics) algorithm is applied [2].

Even though the manual teaching method is known to make the learning efficient,

such an approach has its own drawbacks; the teaching is limited to the situations

predicted by the programmer, but manufacturing plants having smaller batch num-

bers of products require frequent changes of robot programming [4]. While deriving

of models requires a lot of data and knowledge of the physical model relating to the

robotic task, use of more dynamic robotic actuators make it nearly impossible to

model the physics, thus meaning manual teaching is an efficient but a tedious task

requiring lots of data and a lot of physical analysis techniques. Providing increased

cognitive and adaptive capabilities to the robots would help in reducing or completely

avoiding the need to analyse the data allowing the robots to learn autonomously [3].

2.1.2 Learning from Demonstrations

Another direction identified from the literature has focused more on incorporating

humans as demonstrators for robot task learning. This section reviews the literat-

ure that explores the adaptive and cognitive capability of robots in autonomously

learning demonstrated tasks. This method will reduce or remove the need to find

the relationship between provided data for teaching, thus avoiding the heavy cal-

culations and modelling of physical states. The general idea is for robots to learn

new tasks autonomously by observing, thus allowing the end-users to teach robots

without programming. It is found that statistical analysis for observation data in im-

itation learning has been done with various non-linear regression techniques extended

from machine learning with some of the popular methods being Gaussian Process,

Gaussian Mixture Models, and Support Vector Machines [12].

In [41], Calinon et al. identifies two approaches for achieving imitation learning:

One approach aims at extracting and encoding low-level features, Low-level features
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of a task can be identified as the states of joints on a robotic actuator through-

out the demonstration. The second approach aims at higher level features such as

complete actions. The paper’s authors performed different demonstrations of the

same tasks and estimated the relevance using a probabilistic method. This method

provides a continuous representation of the constraints, given by a time-dependent

co-variance matrix, which can be used to decompose, generalise, and reconstruct ges-

tures. Furthermore, they proved how such a statistical representation of motion can

be combined with classical solutions to the inverse kinematics problem, in order to

find a controller which optimally satisfied the constraints of the tasks with the use

of several experimental setups. They used a kinesthetic approach in demonstrating

for the learning. Concluding the discussion they jointly stated how to extract the

most important features with spatio-temporal correlations, how to determine a gen-

eric metric to evaluate the imitative performance, and how to optimise the robot’s

reproduction of the demonstrated task after modelling the signals through a probab-

ility density function and analysed with non-linear regression techniques of Gaussian

Mixture Models (GMM) [41].

Ratliff et al. in [42] presented imitation learning as a large-scale classification

problem considering actions as labels for a given state. They further investigated a

multi-class function that scored each action, thus finding the optimal action consid-

ering the one having the highest score. They have stated that the learning was to be

finding of this particular scoring function. During the time period of their study the

functional gradient techniques were being used for such predication functions. There-

fore it was pointed out that they were interested in adopting binary classification or

regression techniques that were developed by their peers in order to find this scoring

function. They applied these new-found approaches in robotic grasping and quad-

ruped locomotion experiments. In improving the number of labels, simple brute-force

enumeration was used. In furthering their investigation they had presented a set of

functions and optimisation. The Structured-Margin Loss function would provide a

notion of loss when a wrong action was selected. The Functional Gradient Optim-

isation provided a cumulative improvement on increasing the score achieved. When

it was required to keep the score function always positive or when scores were added

together in multiple states the Exponentiated Gradient Variant provided a general-

isation. This generalisation increased the number of actions that could be trained for

a given state.

Gribovskaya et al. [43] proposed that by encoding demonstrated data statistically

with Gaussian Mixtures, non-linear multi-dimensional dynamics of motion could be
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learnt. Furthermore they had presented methods to prove the stability of the resultant

control algorithm in two steps. First, they had formulated conditions for parameters

of GMMs to be satisfied to guarantee local asymptotic stability. Secondly, to verify

boundaries of the region of applicability of the control algorithm, they had proposed

a numerical method. They had tested these hypothesis using two experiments. The

first one learnt theoretical dynamics with known mathematical relationships to check

the accuracy of learning. The second one focused on applicability of data, which re-

quired some optimisation prior to learning. Interestingly they had used the kinesthetic

teaching for demonstrations. They identified this method as being advantageous as

it allows the human to gain awareness of the physical limitations of the robot. They

had further investigated the extensive requirement of data acquiring and data cat-

egorising required for imitation learning. Also optimising of data prior to learning

was identified as a major challenge. And robotic control is considered kinematical

since the concerned learning is focused on mimicking the trajectory provided in the

demonstration [43].

Billard et al. in [44] identified that there were three ways of interfacing a demon-

stration for imitation learning;

1. Directly recording human motions:

This is used when the the kinematics of the motion was solely to be imitated.

Several types of motion tracking systems or sensor were used. This approach

was ideal when explicitly mapping human joints with robot joints.

2. Kinesthetic Learning:

The robot is physically guided throughout the task. This method allowed the

human to gain awareness of the physical limitations of the robot. But this

approach was not suitable for situations where synchronisation between several

robotic links was required.

3. Immersive teleoperation scenarios:

This approach was identified as quite useful for teaching complex tasks. Tele-

operation allowed complex manoeuvres to be performed that needed teaching,

tasks that required higher precision and accuracy. Usually these scenarios in-

volve manipulation of redundant robotic arms with multiple links.

The literature concluded that imitation learning had provided the cognitive cap-

abilities to the robots to learn the tasks in a purely autonomous way requiring only

demonstrations from humans [3]. In [1], Lopes et al. stated that in addition to visual
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demonstrations the motor and sensor information also had assisted in learning the

tasks. Thus it proved that imitation learning requires a lot of data and data arrange-

ment prior to the learning. Another drawback of imitation was that the robot was

able to learn only the tasks that humans were capable of demonstrating. Additional

information was lacking to improve the learning [44].

2.1.3 Deep Learning

An investigation of recent literature found that deep learning methods provided a

promising solution for capabilities such as recognising a facial expression or recog-

nising a spoken word, which are easily realised by humans, but have been difficult

to achieve for a machine. The scope of these kinds of problems has an overflow with

imitation learning, solutions for which require computers to have a capability to learn

from experience. The relevant experience is built up during training prior to opera-

tion. In a similar manner to how the human brain is thought to work, through deep

learning approaches the computers would learn a hierarchy of concepts that arranges

complex concepts as a collection of simpler ones [17]. Since the knowledge is to be

gathered by experience the need to specify all of the knowledge required, as identified

by Lenz et al. [18] was not necessary. It was found that the concepts are built on top

of each other deepening with many layers thus identifying as Deep Learning [17].

Most of the literature in deep learning has focused primarily on visual data, with

the theory being that it is processed in deep learnign systems in a similar manner to

how the human brain processes information for experience based knowledge. Good-

fellow et al. [17] identifies the basic concept of neurons of such a system as similar

to the ones in a human brain, and proceeds to explain how the same concept has

been formalised in literature. In an attempt to standardise the theoretical approach

of creating a deep learning network they explain that the neurons of a deep learn-

ing network are referred to as the features that have been extracted from the input

data. The next part of the deep learning network analyses these features using a

probabilistic calculation and ranks the probable candidate neurons. The last part

of the network selects the highest ranking neurons as the outputs required for the

application.

Brownlee [45] identified there were three different learning approaches in machine

learning.

1. Supervised Learning: The input data was manually corresponded with output

labels and the system then tries to predict the mapping between input and
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output.

2. Unsupervised Learning: The system only has an input data set and tries to

find the coherence between probable labels thus making the learning without

supervision.

3. Semi-supervised Learning: There is a partially arranged correspondence between

input and output data.

Krizhevsky et al. [46] showed that using purely supervised learning, they were

able to achieve remarkable results in identifying objects in the images from a highly

challenging image database known as Imagenet [47]. They had created a deep convo-

lutional neural network and improved the learning avoiding unsupervised approaches

in training. They further had studied how computational power helped them in

increasing the network size. Their conclusions were that longer duration training

helped in improving the results and they also stated that to match the human infero-

temporal pathway in image recognising there would be several orders of magnitude

more experiments to be conducted. Krizhevsky et al. [46] hypothesised that to obtain

information that was missing or less obvious in static images, using video sequences

with deeper neural networks would help.

Lenz et al. [18] presented a deep learning system to identify robotic grasps using

RGB-D data. They further stated that instead of hand-engineering the features for a

grasp detection problem, deep learning had been used in learning the features. They

had conducted several experiments for detecting optimal grasping points for a number

of different objects. A multimodal feature learning algorithm was formed based on

group regularisation. They identified multimodal data as audio with video, images

with text, and RGB-D data. In order to improve the efficient but near-exhaustive

method of searching for the optimal grasping points on an object, they used a two-

stage cascaded system. In the first iteration they identified the possible candidates

for the grasping points with a lower feature set for the learning. Feeding the output to

the next iteration along with complex feature extractions they selected the optimal

grasping modes from the selected candidates. However, their approach took 13.5

seconds to deliver results with a maximum accuracy of 75%.

In an approach to interact with human hands, attempting to predict their future

locations Lee and Ryoo [48] had proposed a convolutional neural network for future

representation regression. They suggested that the hand locations at each time-step

along with the robot positions could be considered as the inputs for the learning

17



system. After sufficient training, this would allow the system to predict the next

hand location with respect to time [48]. They performed several experiments to prove

their approach achieving a higher precision of 36.58 ± 16.91 with the Intersection of

Union (IOU) between the predicted and ground truth hand locations. Compared to

previously achieved 29.97± 15.37 IOU this was considered as a performance boost.

Polydoros et al. [31] identified the difficulties in manually identifying a dynam-

ical model for a robot and proposed a neural network approach for learning inverse

dynamics of manipulators using sensory data. They tested an initial hypothesis with

several robotic platforms including a Baxter research robot [28]. Their algorithm

was found to be better exploited when the model was continuously updated, which

was partly due to the recurrent structure of their proposed network model. They

further identified that their method was more adaptable than traditional approaches

in object manipulation tasks, i.e. picking and releasing of objects.

The inverse kinematics problem in robotics was classified by Xia and Wang [49] to

be a time-varying quadratic optimisation problem. They further identified that neural

networks had conveniently reduced the computational complexity of motion planning

referring to various literature [50, 51]. They jointly stated that most cases relating to

kinematic control used feed-forward networks, where they had identified that the use

of recurrent networks could avoid the need for off-line supervised learning and would

be more suitable for unstructured environments. Therefore they had proposed the

use of a single layer recurrent neural network reducing the network complexity and

focusing on real-time learning. Through this work, they also proved the stability of

their network.

In an attempt to win the Amazon Picking Challenge 2016 [52], Schwarz et al.

[53] designed a complete robotic solution incorporating deep learning approaches. In

it, they extended the DenseCap deep network [54] for its capability in captioning

interesting areas of the scene using bounding boxes. The CNN in DenseCap was

pre-trained using image data from ImageNet [47]. Throughout the project, they

identified the importance of optimal performance of each individual network towards

the success of a multiple deep network system. They concluded that the amount of

training had acted towards the impressive end result that enabled their system to

pickup 10 objects out of the test set of 12, with the grasp solutions obtained in under

340 milliseconds [53].

Mahler et al. [34] developed a deep learning architecture for robotic grasping

known as Grasp Quality Convolutional Neural Network (GQ-CNN). It predicted an

evaluation metric identified as the grasp robustness. The grasp robustness metric
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provided valuable information required in grasping such as probability of grasp suc-

cess, resistance to arbitrary forces and torques, etc. Mahler et al. trained their

GQ-CNN on the Dex-Net 2.0 dataset, which comprised 6.7 million point clouds,

parallel-jaw grasps, and robust grasp metrics. They had developed Dex-Net 2.0 for

the purpose of reducing the training time through the use of cloud computing. When

releasing the Dex-Net 2.0 cloud dataset Mahler [55] explained that a probabilistic

model is used by Dex-Net 2.0 to generate synthetic point clouds (from physics based

mesh models), grasps, and grasp robustness labels from 3D object mesh models. The

main insight behind the method had been that robust parallel-jaw grasps of an ob-

ject were strongly correlated with the shape of the object. Further referring to their

attempt in [34] Mahler [55] described that deep CNNs were able to learn the correla-

tions among the data in Dex-Net 2.0 using a hierarchical set of filters that recognise

geometric primitives.

Considering the development and the proven results of Deep Convolutional Neural

Networks (Deep CNNs) this research study has further explored the capabilities of

Deep CNNs to detect grasping poses for objects in images and the use of inverse

kinematics to control a Baxter robot to grasp and manipulate these objects within

an unstructured environment.

2.2 Robotic Grasp Detection

Grasp detection is identified as the ability to recognise the grasping points or the

grasping poses for an object in any given image [34]. As shown in Figures 2.1 and

2.2, a successful grasp describes how a robotic end-effector can be orientated on top

of an object to securely hold the object between its gripper and pick the object

up. As humans we use eyesight to visually identify objects in our vicinity and to

find out how to approach them in order to pick them up. In a similar manner,

visual perception sensors on a robotic system can be used to produce information

on the environment that can be interpreted into a useful format [19]. A mapping

technique is necessary to classify each pixel of the scene on the basis of belonging or

not belonging to a successful grasp. Recent robotic grasping work has used several

different definitions for successful grasp configurations [10, 19, 18, 20]. In this regard,

a representation or a definition of a good grasp is necessary. This section reviews some

of the promising grasp representations and their method of detection. Section 2.2.1

discusses several grasp configurations and how they are represented in images. Section

2.2.2 discusses how these grasp representations are detected from images. While this
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section provides an overview of how grasps can be represented and detected in deep

learning applications, the reader is directed towards the articles [9, 56] for further

information.

2.2.1 Grasp representation

In most of the earlier works, grasps were represented as points on images of actual

scenes or from 3D mesh models based on simulations. Using a supervised learning

approach, Saxena et al. [15] investigated a regression learning method to infer the

3D location of a grasping point in a Cartesian coordinate system. They used a

probabilistic model over possible grasping points while considering the uncertainty

of the camera position. Extending their investigation, they had discretised the 3D

workspace in order to find the grasping point g, given by g = (x, y, z). They reported

that taking object images from different viewpoints greatly helped to increase the

effectiveness of the grasping. Smaller graspable regions were considered as grasp

points. An example of this grasp representation is shown in Figure 2.1 [16]. In their

reinforcement learning approach for grasp point detection, Zhang et al. [32] simply

defined a grasp as a point in a 2D image plane. A major drawback of point defined

grasps such as these, however, was that it only determined where to grasp an object

and it did not determine how wide the gripper had to be opened nor the required

orientation for the gripper to successfully grasp the object.

Figure 2.1: Example of the point grasp representation by Saxena et al. [16].

As a way to overcome this limitation, another popular grasp representation that

has been proposed is the oriented rectangle representation that was used in [57, 18,

19, 10, 20, 58]. According to Jiang et al. [57] their grasping configuration has a

seven dimensional representation containing the information of a Grasping point,

Grasping orientation, and Gripper opening width. In world coordinates, their
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grasp representation, G is stated as G = (x, y, z, α, β, γ, l). Their grasp representation

is shown in Figure 2.2 (a). The red lines represent the opening or closing width of the

gripper along with the direction of the motion. The blue lines represent the parallel

plates of the end-effector.

Simplifying the previously introduced seven dimensional grasp rectangle repres-

entation from [57], Lenz et al. [18] proposed a five dimensional representation. This

was based on the assumption of a good 2D grasp being able to be projected back

to 3D space. While they failed to evaluate their approach, Redmon et al. [19] con-

firmed the validity of the method with their own results. They further supported

the statements by Jiang et al. [57] and Lenz et al. [18], that detection of grasping

points in this manner was analogous to object detection methods in computer vision

but with an added term for the gripper orientation. Adapting the method of [57, 18],

they also presented a slightly updated representation of a grasp rectangle as shown

in Figure 2.2 (b). This modified rectangle grasp representation has been used in a

number of later publications demonstrating its usefulness [10, 20, 58]. In their work

to use deep learning algorithms for robotic grasping detection, Kumra et al. [10] have

used this grasp rectangle originally proposed by Redmon et al. [19]. A very recent

online project page [20] has cited the same Redmon grasp rectangle in their work.

Figure 2.2: Grasping rectangle representations. (a) The representation by Jiang et
al. [57]: The upper-left corner (rG, cG), length mG, width nG and its angle from
the x-axis, θG for a kitchen utensil. It has multiple grasps defined as shown. (b)
The simplified representation by Redmon et al. [19] for a hammer, showing its grasp
centre at (x, y) oriented by an angle of θ from its horizontal axis. The rectangle has
a width and height of w and h respectively.

Despite not employing a CNN in their dictionary learning method for grasp de-

tection, Trottier et al. [59] used the same grasp rectangle that was used in previous

methods, most likely due to its similarity to the object detection representations that
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were widely used at that time. In another study conducted by Park et al. [60], the

same grasp rectangle representation was again used. They argued that the grasp rect-

angle was analogous to the standard object detection bounding box with the added

feature being the orientation. In their novel classification method for grasp detection

Zhou et al. [61] used the similar 5-element grasp rectangle representation following

the previous work in [18, 19, 10, 20, 58, 59, 60, 62]. Wang et al. [63] proposed a minor

variation to this approach that differed simply by excluding the parameter for gripper

plate height (h). They argued that this parameter can be controlled in the robotic

set-up configurations thus the authors used a four-element grasp representation of

G = (x, y, θ, w).

Another grasp representation introduced in more recent research is the combined

location and orientation representation. In [64], the authors have used the simple

G = (x, y, θ) representation that dropped the dimensional parameters (h,w). The

dimensional parameters provided a sense of the physical limitations for certain end-

effectors. Similar representations were used in [65, 66]. This representation described

a grasp in a 2D image plane. This representation was improved by Calandra et

al. to include the 3D depth information just by adding the z coordinates to the

representation, resulting in a grasp representation, Gz = (x, y, z, θ) [67, 68]. In their

approach to detect robotic grasps using tactile feedback in addition to visual sensing,

Murali et al. [69] used the same representation, (Gz).

From the three grasp representations described in this section, the Rectangle rep-

resentation can be identified as the most commonly used for any grasp detection

applications. While a detailed analysis of the relative suitability of the approaches

has not been conducted, the literature survey suggests that any preference is applic-

ation specific. Table 2.1 summarises the characteristics of each grasp representation

type with regards to depth, pose, and physical limitations of the end-effector. Lenz et

al. [18] argued that in most cases, the depth information can be manually controlled

specific to the application. Therefore the rectangle representation can be selected as

the most suitable grasp representation in most cases.

Table 2.1: Comparison between different grasp representations [70]

Type Parameters Depth Pose Limitations

Point (x, y) No No No
(x, y, z) Yes No No

Location + Orientation (x, y, θ) No Yes No
(x, y, z, θ) Yes Yes No

Rectangle (x, y, θ, h, w) No Yes Yes

22



Pixel-wise grasp representations were used when structured grasps were not use-

ful. Ku et al. [71] used convolutional layer activations to find the anthropomorphic

grasping points in images. They created a mask that represented the grasping points

for the robotic index finger and the thumb. The mask contained all the pixels that

were part of the grasp [71]. Their method only worked for cuboid and cylindrical

shaped objects. They reported that only one trial failed from the complete set of 50

trials achieving an average success rate of 96%.

In applications where simple object localisation translates back to the simple pick-

up points in the 2D image plane, dense captioning was used to localise objects in

order to pick them up. In their work with Amazon Picking Challenge [52], Schwarz

et al. [53] used the popular dense captioning [54] to localise objects in images. Dense

captioning provides a textual description of each region of the image and it can

be used to identify or localise objects in an image. During the testing they had

successfully picked up 10 objects out of the 12 test object set, and their fine-tuned

system responded within 340 milliseconds during the testing.

These graspable region representations are widely used in picking or sorting ob-

jects in clutter when there are no particular requirements on the order in which

objects are picked up. More structured grasp representations are generally employed

in conjunction with object recognition in order to grasp the identified objects [19].

The works discussed in this section demonstrate that a consistent grasp represent-

ation method must be adopted in order to start working with learning algorithms

for the detection of robotic grasps. The ground truth labels should have the optimal

number of parameters to represent a grasp while ensuring that it is not over-defined.

The five dimensional grasp representation originally presented by Lenz et al. [18] for

a 2D image should, thus, be further explored.

2.2.2 Grasp detection

The conventional analytical method of robotic grasp detection is performed on the

premise that certain criteria such as object geometry, physics models, and force ana-

lytics are known [9]. The grasp detection applications are built based on a model

developed with this information. The modelling of such information is often chal-

lenging due to the current rapidly changing industry requirements. An alternative

approach is to use empirical methods, also known as data-driven approaches, that rely

on previously known successful results. These methods are developed using existing

knowledge of object grasping or by using simulations on real robotic systems [56]. A

major drawback of analytical methods is that they rely on the assumption that the
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object parameters are known, therefore they cannot be used for a generalised solution

[56]. There are two types of empirical approaches in robotic grasp detection:

1. Methods that use learning to detect grasps and use a separate planning system

for grasp planning

2. Methods that learn a visuomotor control policy in a direct image-to-action

manner

In the literature, direct grasp detection has been carried out using two different

techniques. The most popular method is to detect structured grasp representations

from images. Another portion of the research has approached the grasp detection

problem by learning a grasp robustness function. Both of these method require a sep-

arate grasp planning system to execute the grasp. During the last few years, there has

been a growing interest into learning a visuomotor control policy using deep learning.

The introduction of tools such as NVIDIA Isaac [26] has enabled the extensive use

of reinforcement learning in simulated environments with domain adaptation. These

visuomotor control policy learning methods do not require a separate grasp planning

system.

The most popular method for structured grasp detection was the sliding window

approach proposed by Lenz et al. [18]. In their approach, a classifier is used to

predict if a small patch of the image contains a potential grasp. The image is divided

into a number of small patches and each patch is run through the classifier in an

iterative process. The patches that contain higher ranking grasps are considered as

candidates and pushed as outputs. This method yielded a detection accuracy of

75% and a processing time of 13.5 seconds per image. Similar results were reported

from the studies by Wang et al. [72] and Wei et al. [51] who followed a similar

approach. Guo et al. [62] used the reference rectangle method to identify graspable

regions of an image. This method was adapted from region proposal neural networks

[73]. The locations of the reference rectangle were identified using the sliding window

approach. Due to the repetitive scanning method for identifying graspable regions

of images, this method was largely considered unsuitable where a real-time detection

speed is necessary. As an alternative, Redmon et al. [19] proposed the one-shot

detection method.

In most one-shot detection methods, a direct regression approach for predicting a

structured grasp output is used. In these approaches, the structured output repres-

ents the oriented grasp rectangle parameters in the image plane coordinates. In the

first one-shot detection approach, the authors argued that a faster and more accurate
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method was necessary and proposed to use transfer learning techniques to predict

grasp representation from images [19]. They reported a detection accuracy of 84.4%

in 76 milliseconds per image. This result produced a large performance boost com-

pared to the then state-of-the-art method, the sliding window. The one-shot detection

method assumed that each image contained one graspable object and predicted one

grasp candidate as opposed to the iterative scanning process of the sliding window ap-

proach [19]. Following a similar strategy, Kumra et al. [10] reported an improvement

whereby a detection accuracy of 89.21% for their multi-modal grasp detector with a

processing speed of 100 milliseconds per image was achieved. They explained that it

was due to the deeper network architecture that they had used in their experiment-

ations. Therefore, it was evident that most work in one-shot detection followed deep

transfer learning techniques to use pre-trained neural network architectures [20, 58].

Although the preferred method for one-shot detection is the direct regression of the

grasp representation, there were numerous occasions where the combined classification

and regression techniques were employed for one-shot detection. While arguing that

the orientation predictions of a structured grasp representation lay in a non-Euclidean

space, where standard regression loss (L2) had not performed well, Chu et al. [74]

proposed to classify the orientation among 19 different classes in the range of (0◦ :

360◦). They used a direct regression method to predict the bounding box of the grasp.

The authors reported a detection accuracy of 94.4% with RGB images. Building on

the concept by Guo et al. [62], Zhou et al. [61] proposed to use the anchor boxes for

predefined regions of the images. Each image was divided into N × N regions. The

orientation of the anchor box was classified between k classes. The authors argued

that the k can be a variable integer. By default it was set to k = 6. The angles ranged

between (−75◦ : 75◦) [61]. Zhou et al. [61] achieved a detection accuracy of 97.74%

for their work. The literature reasoned that these improvements were achieved as

it was easier to converge to a classification during the training and the associated

errors were minimum, but a classification would limit the output to a predefined set

of classes [64].

Learning a grasp robustness function also had been the central idea of many studies

in deep grasp detection. The researchers used this function to identify the grasp pose

candidate with the highest score as the output. Grasp robustness described the grasp

probability of a certain location or an area of an image [34]. Binary classification was

a well researched technique for this approach that classified the grasp points as valid

or invalid (1, 0). Park et al. [60] used a multi stage spatial transformer network to

predict the success of a grasp candidate. They reported a grasp detection accuracy of
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89.60% in 23 milliseconds per image [60]. Using end-to-end learning, Ten Pas et al.

[75] performed a binary classification to identify graspable regions in a dense clutter

of object, the authors presented 77% detection accuracy with passive point cloud

data. In their work, Lu et al. [76] performed a CNN based grasp probability study to

achieve a detection accuracy of 75.6% for previously unseen novel objects and 76.6%

for previously seen objects during the training. In addition to the applicability of

this method to cluttered objects, researchers concluded its usefulness when partial

information was observed [60].

A method to learn an optimal grasp robustness function was proposed by Mahler

et al. [34]. They considered the robustness as a scalar probability in the range of

(0−1). The authors compiled a dataset known as Dex-Net 2.0 with 6.7 million point

clouds and analytic grasp quality metrics with parallel-plate grippers planned using

robust quasi-static grasp wrench space analysis on a dataset of 1,500 3D object mesh

models. They have further trained a grasp quality convolutional network (GQ-CNN)

that was used to learn a robustness metric for a grasp candidate. They have tested

their CNN with their dataset achieving an accuracy of 98.1% for grasp detection.

Robust grasp detection was explored in [77]. Johns et al. reported that they achieved

a grasp success rate of 75.2% with minor gripper pose uncertainties and 64.8% with

major gripper pose uncertainties. They described the gripper pose uncertainties as

resulting from the varying shapes and contours associated with the objects.

The literature survey suggested that a direct mapping of images to robot actions

could be predicted by learning a visuomotor control policy. This method would not

require a separate grasp planning system and, thus was also considered a pixel-to-

action method. Using their previous findings in [34], Mahler et al. [66] proposed a

method to find deep learnt policies to pick objects from amongst clutter. The authors

reported that by using a transfer learning technique with their previous findings in

[34], they achieved a grasp detection accuracy of 92.4%. When they tested their

learnt policies on robotic grasping, they achieved a success rate of 70% with 5 trials

for each of 20 objects of the test dataset [66]. The winning team from the Amazon

Picking Challenge 2017 [52], Zeng et al. [78] proposed a visuomotor control policy

prediction method for images of objects in clutter. The authors proposed an action

space with four individual actions: (a) suction down, (b) suction side, (c) grasp down,

(d) flush grasp. They reported a maximum accuracy of 96.7% for grasping and 92.4%

for suction with the Top-1 confidence percentile [78]. Zhang et al. [32] proposed a

method to use reinforcement learning [79] to determine the action to extend the robot

end-effector to a point in a 2D image plane. Closely following the proposed deep Q
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network by Mnih et al. [79], the authors managed to adapt it to a robotic system using

synthetic images. They tested their system to achieve a 51% success rate in reaching

the target point [32]. They further concluded that these results were largely affected

by not having an optimal domain adaptation from synthetic to realistic scenes.

In summary, it is identified that most of the work in grasp pose detection has

focused on the detection of a structured grasp representation. For structured grasp

representation detection, the one-shot detection method has achieved state-of-the-art

results according to recent research studies. Most of one-shot detectors use deep

transfer learning techniques to use pre-trained deeper convolutional networks to pre-

dict the grasp candidates from images. This sections has introduced the popular grasp

detection methods and the reader is directed to Section 5 for an in-depth discussion

of the convolutional network approach for deep detection.

2.3 Learning from Data

Research has consistently shown that deep learning requires a large volume of labelled

data to effectively learn the features during the training process [17]. This requirement

is also apparent in supervised learning methods in robotic grasp detection [18, 19, 10,

20]. In recently published work, researchers either use training data from a third

party or introduce their own application specific proprietary data sources or methods

to automate the data generation [34, 64]. Johns et al. [77] highlighted that the

major challenge with deep learning is the need for a very large volume of training

data, thus they opted to generate and use simulated data for the training process.

Another challenge of training deep neural networks is the lack of domain specific data

as mentioned by Tobin et al. [14]. They proposed a method to generate generalised

object simulations in order to address this challenge, although it is yet to be proven

how effective the results can be. For real-time applications, use of simulated data and

the availability of 3D object models is not practically achievable [19, 10]. As a way

to overcome this, there are reports of network pre-training as a solution when there

is limited domain specific data [19, 10, 20].

2.3.1 Quality and Quantity of Training Data

Brownlee [80] specified that annotations of the available data will be more important

if the learning was purely supervised and less important for unsupervised learning.

The author further described the importance of the three subsets of the data for

training, validation, and testing. In [19, 10, 20, 58], the authors had followed the same
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argument. A comprehensive explanation can also be found in [81]. The literature

survey suggests, in addition to the larger training datasets, domain specific data is

necessary for effective results.

Multi-modal Data

Use of multi-modal data has become popular in many research studies into robotic

grasp pose detection. Early work from Saxena et al. [15] stated that most grasping

work assumed prior knowledge of the 2D or 3D model of the object to be grasped, but

such approaches encounter difficulties when attempting to grasp novel objects. The

authors experimented with depth images for five different objects in their training.

They reported the grasp success rates for basic objects such as mugs, pens, wine

glasses, books, erasers, and cellphones. An overall success rate of 90% with a mean

absolute error of 1.8 cm was reported.

Following this work, Jiang et al. [57] scaled the problem space to 194 images of

9 classes. They stated that the availability of multi-modal data could be useful in

identifying edges and contours in the images to clearly differentiate graspable regions.

Lenz et al. [18] supported the same claim in their work that used multi-modal RGB-

D data. In a few recent transfer learning applications, the authors have used the

multi-modality in a way that overcame the 3-channel data limitation with existing

pre-trained CNNs. The authors in [19, 58, 20] replaced the Blue channel in RGB

images with depth disparity images and created 3-channel RG-D images.

Kumra et al. [10] proposed a novel method to use pre-trained DCNN architec-

tures with 3-channel input limitations. Instead of replacing the Blue channel, the

authors trained two convolutional networks for RGB and depth features individually.

They used a similar encoding to [82] in order to create 3-channel depth disparity

images. They further reported that proper pre-training for the depth CNN was not

available since all of the pre-trained networks were pre-trained on RGB images. More

streamlined methods such as [83] would help in this endeavour. While most of these

works used visual information, there were some reported studies that had used tactile

sensing with deep learning approaches in grasp detection.

In [69], Murali et al. explored using tactile sensing to complement the use of visual

sensors. This method involved a re-grasping step to accurately grasp the object. The

authors reported a success rate of 85.92% with a deep network and 84.5% with an

SVM. A similar approach was followed by Calandra et al. [67] in their work to use

tactile sensing in robotic grasp detection.
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Some researchers had also experimented with uni-modal data as well. Kumra et

al. [10] trained their neural network with uni-modal RGB images and achieved an

accuracy of 88.84%.

The literature survey indicates there are several types of multi-modalities involved

in grasp pose detection research with the most popular one being the RGB-D data.

Evidence suggests that the added benefit of edge and contour information in RGB-D

images has an advantage over uni-modal RGB images. There is not yet enough evid-

ence to suggest whether tactile sensing has an added advantage over depth imaging

for grasp detection work using RGB images. A major challenge with respect to using

RGB-D data, however, is the access to suitable training data sets.

2.3.2 Datasets

Goodfellow et al. [17] stated that the performance of a simple machine learning al-

gorithm relied on the amount of training data as well as the availability of domain

specific data. The recent publications suggested that the availability of training data

was a prevailing challenge for this learning method. Some researchers combined data-

sets to create a larger dataset while others collected and annotated their own data.

Pre-compiled datasets

The Cornell Grasp Dataset (CGD) from [38] was identified as a popular grasp dataset

that was compiled for most transfer learning approaches in robotic grasping [19, 10,

20, 58]. The CGD was created with grasp rectangle information for 240 different

object types and it contained about 885 images, 885 point clouds and about 8019

labelled grasps including valid and invalid grasp rectangles. A sample of a set of

images is shown in Figure 2.3. The grasps were specifically defined for the parallel

plate gripper found on many robotic end-effectors. The CGD appeared in a number of

research studies during the recent past, which might suggest that it has a reasonable

diversity of examples for generalised grasps [19]. The recent trend of using RGB-D for

learning to predict grasps was covered with the CGD dataset through the inclusion of

point cloud data by its creators. Lenz et al. argued that having the depth information

would result in a better depth perception for an inference system that was trained on

depth data [18]. A sense of good and bad grasps was also necessary to differentiate a

better grasp from the alternatives [18, 19]. Therefore, the CGD could be selected as

a suitable dataset for its quality and adaptability. The CGD was extensively used in

[18, 19, 10, 20, 58, 74, 62, 60].
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Figure 2.3: Sample of Cornell Grasp dataset [38].

In the grasp detection work by Wang et al. [63], the authors used the Washington

RGB-D dataset [82] for its rich variety of RGB-D images. The authors self-annotated

as they preferred to combine the resulting dataset with the CGD. The authors further

stated that the combined Washington data instances of 25,000 with the 885 instances

from the CGD would help in pre-training a deep network [63].

Collected datasets

When application specific data was necessary, researchers have provided intuitive

methods for data collection. Murali et al. [69] used a previously learnt grasping

policy to collect valid grasp data and performed random grasps to collect invalid

grasp data. They have collected data for 52 different objects. Calandra et al. [67]

collected data from 9,269 grasp trials for 106 unique objects. Pinto et al. [64] stated

how time consuming it was to collect data for robotic grasping and proposed a novel

approach inspired from reinforcement learning. Their approach would predict centre

points for grasps from a policy learnt using reinforcement learning and the orientation

was classified for 18 different classes using grasp probability. The authors scaled the

data collection to 50,000 grasp trials using 700 robotic hours. They used a Mixture of

Gaussians (MOG) background subtraction that identified graspable regions in images

in order to avoid random object-less spaces in images. Levine et al. [84] further
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improved this approach through the collection of grasping data from nearly 900,000

grasp trials using 8 robots.

Domain adaptation and simulated data

As pointed out by Tobin et al. [14], most applications lacked domain specific data.

While arguing the importance of a large volume of domain specific data, the authors

proposed a method to use physics simulations to generate domain specific data us-

ing 3D mesh models for a set of primitive shapes. Most of the work that has used

simulation and 3D model data relies on domain adaptation to its real world equival-

ent set of objects. Bousmalis et al. [85] conducted several experiments to verify the

domain adaptation capability of a deep grasp detection application that was trained

on 3D mesh models randomly created by the authors. The authors randomly mixed

simulated data with realistic data to compile a dataset of 9.4 million data instances,

using this a grasp success rate of 78% was achieved. In a similar approach, Viereck

et al. [65] proposed a method for learning a closed-loop visuomotor controller from

simulated depth images. The authors generated about 12,500 image-action pairs for

the training. They reported a grasp pose detection success rate of 97.5% for objects

in isolation, and 94.8% for objects in clutter [65]. Mahler et al. [34] suggested popu-

lating a dataset containing physics based analyses such as caging, grasp wrench space

(GWS) analyses and grasp simulation data for different types of object shapes and

poses. They further suggested that cloud computing could be leveraged to train a con-

volutional neural network with this dataset that would in turn, predict a robustness

metric for a given grasp instead of directly predicting a grasp. The proposed dataset

was called Dex-Net 2.0 [55] and contained about 6.7 million point clouds and analytic

grasp quality metrics with parallel-jaw grasps planned using robust quasi-static GWS

analysis on a dataset of 1,500 3D object models [34].

Summary

Mahler et al. [34] concluded that human annotation is a tedious process that re-

quires months of work and the simulations would have to be run for a large number

of iterations on a robotic system. With the limited availability of domain specific

data, Redmon et al. [19] proposed to use pre-training. Pre-training assumes that by

using the weights of the convolutional overhead of a CNN model that was trained on

a large dataset such as ImageNet [47] would transfer the universal filtration capab-

ilities to a smaller dataset, providing better results compared to the usual training

approach. Even though most of the prior work used 3D simulations to find suitable
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grasp poses for objects, Kumra et al. [10] stated that despite those previous works

having performed well they required a known 3D model of the object to calculate

a grasp. This 3D model would not be known a priori and the complex modelling

techniques of forming the 3D model was beyond the capacity for most of the general

purpose robots as their desired primary function was faster adaptation to dynamic

scenarios [19]. In such cases, a learning algorithm would produce the necessary results

provided that there were enough, domain-specific data instances for the training.

In conclusion, the amount of training data plays a key role in the outcome of

the trained algorithm. Approaches such as [64, 84, 86] try to reduce or completely

avoid the challenges of compiling such huge datasets. In cases where an extended

information set is necessary to produce a grasp prediction, a dataset such as the Dex-

Net 2.0 [34] could be used. For most generalised grasp prediction networks, however,

the CGD [38] would be an optimal starting point considering its adaptability for more

generalised object shapes and poses with the added benefit of the inclusion of depth

information.

2.4 DCNNs for Grasp Detection

Most recent work in robotic grasp detection apply different variations of convolu-

tional neural networks to learn the optimal end-effector configuration for different

object shapes and poses [20, 10, 18, 34, 64, 19]. They do so by ranking multiple grasp

configurations predicted for each object image instance. Ranking is done based on

the learnt parameters from the representation learning capability of deep learning. As

opposed to the manual feature design and extraction steps of classical learning ap-

proaches, deep learning can automatically learn how to identify and extract different

application specific feature sets [17]. The authors of [17, 79] explained the importance

of the CNN architecture towards learning. It was further reported that networks with

greater depth would be able to learn more complex hierarchical representations from

images [46].

In analytical approaches, various grasping application specific parameters such as

closure properties and force analysis are combined to successfully model the grasps

[9]. Closure properties describe the force and momentum exerted at the point of

contact, also known as a Grasp Wrench. Depending on the level of friction at each of

these points, the point of contact could be further elaborated. According to Bicchi

et al. [9] force analysis describes the required grasping force that should be applied

by the robotic gripper on the object so as to grasp it securely without slipping or
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causing damage. Kinematic modelling between the contact points is a function that

describes the relative motion between two different contact points. Reviews such as

[9] suggested how practically impossible it would be to prepare a generalised grasping

model using just analytical data. Given how well certain learning algorithms [10,

19, 18, 20] performed in the past, however, it could be concluded that using visual

representation of successful grasps as training data with these learning algorithms

would result in usable generalised solutions.

2.4.1 Architecture

A deep CNN is built with multiple layers to extract information representations [36].

Goodfellow et al. [17] has stated that the representation of the learning process of a

deep neural network has similar attributes to the method through which information

is processed by the human brain. During the last five years there have been many

active improvements for DCNN architectures. Most of these approaches use ImageNet

[47] tests for benchmarking. From inspecting many CNN methods that are originally

evaluated on ImageNet data, it is evident that all of them have followed the general

structure shown in Figure 2.4. Literature suggests that more lower level features

are identified using the convolutional layer while application specific features are

extracted by the fully connected portion of the network where pooling and activations

are widely employed [87]. This suggests that the results on the ImageNet data provide

a reasonably useful evaluation of the architecture even though it is not specific to

robotic grasping.

Figure 2.4: General structure of a CNN

The literature survey suggested two types of convolutional layer placements in

DCNNs. Early approaches used a stacked architecture where each layer was placed

one after the other. More recent DCNNs have used convolutional layers in parallel.

Szegedy et al. [87] reported that this trend was accelerated due to the availability of

increased computational capacities.
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Both of the popular AlexNet and VGG-Net were stacked deep neural network

architectures. With AlexNet, Krizhevsky et al. [46] produced a reduced error rate of

16.6%. Simonyan et al. further reduced the error rates to 7.0% with their introduction

of VGG-Net [88]. Redmon et al. [19] were the first authors to implement AlexNet

with their work in robotic grasp detection. They fine-tuned the DCNN architecture

to accommodate their hardware. Their model is shown in Figure 2.5. Their direct

regression model that was trained on RG-D images achieved an accuracy of 84.4% and

the MultiGrasp model that divided an original image to N×N sub-images achieved an

accuracy of 88%. Their work was later followed by Watson et al. [58] who achieved an

accuracy of 78% with one fold cross validation. Ebert et al. [20] achieved an accuracy

of 71% closely following the same work in [19].

Figure 2.5: Neural network model proposed by Redmon et al. [19].

Modern dense DCNN architectures are developed under the premise that deeper

networks are capable of extracting more advanced features from data. Szegedy et al.

[87] reported that the drawbacks of increasing the depth of a DCNN are two-fold. In

order to train such deep network models there should be a distinguishable variation

between the training data and this was challenging even with human labelling. When

the depth of a DCNN is increased, the number of trainable parameters automatic-

ally increases, which requires higher computational power for training [87]. Therefore

they suggested sparsely connected deep network architectures. They proposed their

DCNN architecture known as GoogleNet, with a reduced error rate of 6.8% in Im-

ageNet testing [47]. Following that He et al. [89] proposed a DCNN architecture with

skip connections that further reduced the error rates to 3.57% using their ResNet
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architecture. A sample residual block is shown in Figure 2.6. By combining [89]

with their original approach in [90], Szegedy et al. proposed the Inception-ResNet

architecture [91].

Figure 2.6: Example of a residual block [10].

Denser deep networks have appeared in recent robotic grasp detection work.

Kumra et al. [10] used the 50 layer version of the popular ResNet [89] architecture to

extract features from RGB-D images in order to detect grasp configurations for the

objects in the images from the Cornell grasp dataset [38]. The authors presented two

different network models that were aimed at grasp detection using uni-modal and

multi-modal images named Uni-modal and Multi-modal architectures respectively.

They achieved the highest grasp detection accuracy of 89.21% using their multi-

modal DCNN architecture with image-wise splitting. This architecture is shown in

Figure 2.7. Zhou et al. [61] used the ResNet-50 and ResNet-101 networks as feature

extractors in their grasp detection work and achieved accuracies over 98% for both

versions. Chu et al. [74] have used the same ResNet-50 architecture [89] with their

grasp detection work. As opposed to the previous approach in [10], they used grasp

labels from the grasp data [38] to propose regions of interest in the images to ulti-

mately propose multiple grasps at once. They achieved a detection accuracy of 96%

using image-wise splitting.

Another research direction in robotic grasp detection is the use of custom neural

network models inspired from the popular region proposal convolutional networks

known as R-CNN [73]. Lenz et al. [18] developed their two cascaded CNN models

for grasp detection using a sliding window approach. The first neural network model

extracted higher level features such grasp locations whereas the larger second network

verified the valid grasps from those detected. In the first stage the authors used a
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variant of the Sparse Auto Encoder [92] to initialise the weights of the hidden layers.

Pre-training in this way was a necessary step to avoid overfitting. The authors repor-

ted a grasp detection accuracy of 75% that was tested with a Baxter robot by carrying

out object grasping. The creation of application specific DCNNs has received greater

attention recently. When there has been enough higher quality training data avail-

able, researchers have used their own custom neural network models. Most of these

works were motivated from recent DCNN success stories in ImageNet classification

tests [47]. Lu et al. [76] used a custom architecture for their work in multi-fingered

grasp prediction. The max-pooling and rectified linear units were used as activation

functions in their work. They further concluded the adaptability of their work into

the realm of two-fingered grasp detection [76]. The detection accuracies of 75.6% for

novel objects and 76.6% for previously seen objects were claimed.

The literature survey has further suggested that researchers have used DCNN or

CNN methods to find the inverse kinematic or dynamic solutions. The kinematic and

dynamic modelling of robotic manipulation were focused in [49] and [31] respectively.

The proposed methods were further experimented with by various authors in motion

planning in unstructured environments [50, 51]. Even though these works do not

directly align with robotic grasp detection, they can be extended to grasp planning.

Szegedy et al. in [87] stated that advances in the quality of image recognition

had relied on newer ideas, algorithms, and improved network architectures as well

as more powerful hardware, larger training data sets, and bigger learning models.

They further commented that neither the deep networks nor the bigger models alone

would result in such improvements but combining them in order to create a deeper

architecture would suggested these improvements over the classical theories. They

experimentally presented that by increasing the depth (the number of deep levels)

and the width (the number of units at each level) of a deep network would improve

the overall network performance. However, it would also require a commensurately

larger set of training data that would result in the following drawbacks:

Figure 2.7: Multi-modal grasp predictor [10].
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1. Larger data sets would result in increased features to be extracted while limited

data sets would result in overfitting.

2. Deeper networks would require increased computational resources during the

training.

The authors evaluated their original DCNN performance in [87] that had an error

rate of 6.67% with their own improved version in [90] with an error rate of 3.5%.

They concluded in [90] that this performance boost was a result of going deeper with

convolutions.

2.4.2 Transfer Learning Techniques

The most successful robotic grasp detection work has used transfer learning methods

to achieve accuracies close to 90%. Any transfer learning approach includes the

following steps:

1. Data pre-processing

2. Pre-trained CNN model

Compared to image classification, robotic grasp detection requires the capability

of a DCNN to identify grasp configurations for novel objects. This requires training on

generalised object scene images. Therefore, most researchers limit their pre-processing

techniques to just accommodate CNN input dimensions such as image width and the

number of channels. Unlike in image classification, the ground truth data for grasping

was less augmented. Redmon et al. [19] reported the minimum amount of necessary

pre-processing for RGB-D datasets as centre cropping of images and replacing the

blue channel of RGB images with depth data while normalising the depth data to (0,

255) range, which is the default RGB colour space range. While following the exact

same procedure in [19], Watson et al. [58] normalised all RGB values and grasp labels

to (0, 1) arguing that training targets should be in the same range as the training

data. In their method, Pinto et al. [64] resized images to 227 × 227 which was the

input size for their model. Their network had a similar architecture to AlexNet [46]

as shown in Figure 2.8.

Due to the problem of overfitting with the limited available datasets, the deep

learning robotic grasp detection literature indicates that many authors have used pre-

training. Pre-training was identified as a transfer learning technique where the deep

network was pre-trained on larger datasets prior to the training on domain specific
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Figure 2.8: 18-way binary classifier by Pinto et al. [64].

data. The weights of the convolutional layers that were originally learnt during the

pre-training were kept frozen during the training on domain specific data.

In their one-shot detection method, Redmon et al. [19] used the AlexNet [46] con-

volutional network architecture in compiling their network model [19] which achieved

a grasp detection accuracy of 84.4%. The same approach was used in [20, 58] with

similar results reported. They modified the orientation parameter from the grasp rep-

resentation while arguing that the angle predictions are two-fold (positive or negative)

[19]. Therefore the authors replaced θ with (sin 2θ, cos 2θ) following the trigonometric

definitions. The argument was further supported in [20, 58].

A similar pre-training approach was employed in [10] using the deeper ResNet-

50 architecture as opposed to the variant of the AlexNet from [19]. They reported

that the deeper network model afforded them an increased accuracy of 89.21%. They

further reported a second model as shown in Figure 2.9. It was aimed at uni-modal

data such as RGB or RG-D images. This model achieved an accuracy of 88.84%.

Even though the transfer learning made it less challenging to use a pre-trained

model for the convolutional part of a DCNN, researchers still had to design the fully

connected part of the DCNN. While there is not enough evidence to determine the

optimal number of units required, Redmon et al. [19] used two fully connected layer

that had 512 units in each individual layer. In [10], Kumra et al. used one fully

connected layer with 512 units for their Uni-modal architecture and two layers with

512 units for their Multi-modal architecture. A model similar to the deep network in

[19] was later followed in [20] and [58]. In DCNN training applications, the popular
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learning optimiser is the Stochastic Gradient Decent (SGD). In deep grasp detection

most authors used the SGD but they argued that it was not an optimal optimiser and

reported more advanced optimisers were necessary. Ruder provided a comprehensive

overview of different learning optimisers in [93].

While most transfer learning approaches employed pre-trained network models in

an end-to-end learning process some researchers used them as feature extractors for

shallow network models. Chollet [94] stated that due to the 2-step method of feature

extraction it was impossible to employ data augmentation techniques if required as

the learnt features would not be the same as the training images. Also running end-

to-end learning was costlier as it required the convolutional base of the network to be

run on data repetitively.

Figure 2.9: Uni-modal grasp predictor [10].
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Table 2.2: Comparison between different transfer learning techniques in one-shot
grasp detection. Results were reported from tests performed on the Cornell Grasp
Dataset [70]

Method Architecture Accuracy (%) Accuracy (%)
(image-wise) (object-wise)

Direct regression AlexNet [46] 84.4% 84.9%
by Redmon et al. [19]

Regression+Classification AlexNet [46] 85.5% 84.9%
by Redmon et al. [19]

MultiGrasp Detection AlexNet [46] 88.0% 87.1%
by Redmon et al. [19]

Uni-modal, SVM, RGB ResNet-50 [89] 84.76% 84.47%
by Kumra et al. [10]

Uni-modal RGB ResNet-50 [89] 88.84% 87.72%
by Kumra et al. [10]

Uni-modal RGD ResNet-50 [89] 88.53% 88.40%
by Kumra et al. [10]

Multi-modal SVM, RGB-D ResNet-50 [89] 86.44% 84.47%
by Kumra et al. [10]

Multi-modal RGB-D ResNet-50 [89] 89.21% 88.96%
by Kumra et al. [10]

Direct Regression (RG-D) AlexNet [46] 71% NA
by Basalla et al. [20]

Direct Regression (RG-D) AlexNet [46] 78% NA
by Watson et al. [58]

Detecting object grasping configurations from images is still accurately solved

using analytical methods but the use of empirical methods is exponentially increasing

due to successful results in recent publications. One commonly used method is to

train a visuomotor controller using deep learning that iteratively corrects the grasping

point until the object is successfully grasped between the gripper jaws. The next best

method is to learn a function that scores the possible grasps on an image and use it

to select the highest scored grasp as the candidate. There are other methods that

learn a certain heuristic and exhaustively search for possible grasps on the images.

Training CNNs to detect grasps requires a high volume of manually labelled data.

As a solution, most researchers opt to use simulated training data as in [77, 65,

14]. Alternatively, data collection can be automated as in [64]. Recent approaches

have suggested network pre-training can help to avoid overfitting due to the limited

availability of training data [19, 10, 20]. As shown in Table 2.2, AlexNet [46] and

ResNet-50 [89] were widely used in these studies. The reasoning for the reduced

results in [20] and [58] compared to [19] was not clarified by any author. However,
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the literature survey suggested that these methods utilised a lower number of training

data instances and a varied set of data augmentation techniques as compared to [19].

This, further supported the arguments made by many different researchers regarding

the limited availability of high quality annotated training data for such robotic grasp

detection work.

2.4.3 Evaluation of Results

Each grasp configuration that was predicted by the learning algorithms should go

through an evaluation process to identify if it is in fact a valid grasp. There are two

evaluation metrics for grasps: rectangle metric and point metric [19, 10, 20]. The

point metric evaluates the distance between the predicted grasp centre and the actual

grasp centre relative to a threshold value, but the literature does not provide further

insight as to how best to determine this threshold value. Furthermore, this metric

does not consider the grasp angle, which neglects the object orientation in the 2D

image plane.

The rectangle metric defined a successful grasp under the following two conditions.

1. Difference between the grasp angles to be less than 30◦

2. Jacquard index between the two grasps to be less than 25%

The Jacquard index is given by Equation 2.1:

J(A,B) =
|A ∩B|
|A ∪B|

(2.1)

This method evaluates grasp poses in their image plane. Watson et al. [58] argued

that further evaluation metrics would be necessary in order to evaluate grasps on the

fly. They proposed an on-line evaluation method known as ”Marker based evaluation

method”. The process evaluates grasps detected on images which had objects with

the labels marked by the authors. In Figure 2.10 a marked banana is shown with

red markers. The authors evaluated the distance to the predicted grasp centres from

these markers and reported the grasp success based on this [58].

Further to this the authors validated their results with one-fold cross validation

and implemented an inverse kinematic grasp planner with a Baxter robot [58]. An

implementation of grasp planning supported their conclusions in [58] as opposed to

previous attempts in [19, 10] that failed to further validate grasp detection results on

a real robot.
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Figure 2.10: Marker based evaluation method [58]

In most of the studies in robotic grasp detection, researchers have proposed the

grasp detection as a computer vision problem and presented their results as detection

accuracy, mean error of orientation, and the mean jacquard index for predictions.

The only conclusion that can be drawn from these results is an evaluation metric for

the grasp detection. There are very few approaches that have carried out grasping

with real robotic hardware. Although the evaluation metrics draw an acceptable

conclusion for the grasp detection, the additional results from actual robotic grasping

will further confirm the results from grasp detection.

2.5 Baxter Research Robot Platform

The Baxter Robot shown in Figure 2.11 is a collaborative robot designed and de-

veloped by Rethink Robotics in 2012 [28]. Rethink Robotics [28] has designed Baxter

with a focus on Industrial Work Safety, Easy Programming, and General-purpose us-

age as key points for an industrial robotic solution. Baxter is a redundant robot with

two 7 degrees of freedom (DOF) humanoid arms. A redundant robot is identified

as having more DOF than that required for reaching a given position and orienta-

tion in its workspace [49]. There is also a separate platform of the same robot for

research and education known as the Baxter Research Robot (BRR). The support

documentation provides additional details required in setting up the BRR, setting up

a workstation, and the first programming tutorial for the BRR in its wiki [95].

It is desirable to control a robot in an environment in which it will be alongside

human colleagues with impact prevention control strategies. This practice is mutually

beneficial as damage on impact for humans or the robot are both highly undesirable.

Conventional actuators become more stiff over time because of the precise control

42



Figure 2.11: The Baxter robot in the ECU Robotics Lab

of force. This results in poor joint compliance and results an unsafe work place

collaboration with robots. In order to accomplish safety compliance, the Baxter

robot has Series-Elastic Actuators (SEA) in each of its joints. Instead of directly

coupling the motors to robot joints via gear boxes, the coupling is made through

springs which provides the torque by the twists of these springs [11]. This allows a

degree of compliance in the joints, meaning that human-robot impacts are significantly

less dangerous, and when coupled with accurate force sensing means that the Baxter

robot is safe to operate alongside humans.

Figure 2.12: Baxter robot joints [96]

The Baxter robot is identified as a humanoid robot having two arms with each

arm having 7 DOF. The 7 robotic joints are identified as S0, S1, E0, E1, W0, W1,

and W2 respectively as shown in Figure 2.12 [96].
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• S0 - Shoulder Roll

• S1 - Shoulder Pitch

• E0 - Elbow Roll

• E1 - Elbow Pitch

• W0 - Wrist Roll

• W1 - Wrist Pitch

• W2 - Wrist Roll

2.5.1 Hardware Specification

The physical specifications [97] of the Baxter robot state that it has a maximum reach

of 1210 mm, a maximum payload of 2.2 kg including the weight of the end-effector,

and a gripping torque of 4.4 kg. The additional physical specifications are listed in

Table 2.3.

Table 2.3: Physical specifications of the Baxter robot [97]

Physical Dimension Value
Robot height 1778 mm - 1905 mm (adjustable)
Maximum Reach 1210 mm
Torso mounting plate diameter 337.82 mm
Weight (Including the pedestal) 138.8 kg
Pedestal foot print 914.4 mm x 812.8 mm
Payload (Including the end-effector) 2.2 kg
Gripping torque 4.4 kg

According to the specification [97], the BRR comes with an on-board computer

including an array of sensors: Three cameras, one on its head and one on each of

the two arms, sonar sensors on its head, infrared range sensors on its two arms,

accelerometer, and navigational cuff buttons. The head also incorporates a display

unit with various uses in applications. The components are shown in Figure 2.11.

The cameras are shown by red colour rectangles, the infrared range sensor is shown

by a green colour rectangle and the display unit is shown by a blue colour rectangle.

The computer and sensor specifications are listed in Table 2.4.
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Table 2.4: Computer and sensor specifications of the Baxter robot [97]

Specification Type or Value
Computer Processor Intel Core i7-3770 Processor

(8MB, 3.4GHz) with HD4000 Graphics
Memory 4GB, NON-ECC, 1600MHZ DDR3
Storage 128GB Solid State Drive
Camera Max Resolution 1280 x 800 pixels
Camera Effective Resolution 640 x 400 pixels
Camera Frame Rate 30 frames per second
Camera Focal Length 1.2 mm
Screen Resolution 1024 x 600 pixels
Infrared Sensor Range 4 cm - 40 cm

2.5.2 BRR in Research

The BRR has been used in several previous experiments including verification of

kinematic models, teleoperation applications, human- robot collaboration and deep

reinforcement learning. Ju et al. [11] had verified the kinematic model of the BRR,

hoping it would help in further applications requiring a kinematics model for motion

control. In a different attempt Ju et al. [2] used this kinematics model in a tele-

operation control application for the BRR with leading attempts at tele-controlled

industrial robotic solutions.

In [32], Zhang et al. used deep reinforcement learning for training the BRR in a

virtual simulation to reach a target location. Having promising results in simulations

they further investigated the applicability into physical implementations. The noise

levels on the live images, however, had resulted in failure on the reinforcement learning

network trained with simulation images [32].

In an attempt to learn effective robotic grasps Lenz et al. [18] used the BRR

in their experiments to verify their results. They had used a two cascaded system

in optimising the training time and improving the overall outcome [18]. Instead of

manually labelling all of the training inputs for possible grasps, the first network

would identify possible grasps on the objects using point-cloud data and output the

selected grasp candidates. Making this as the input for the second network, it would

identify the effective grasp that would have the higher probability of success. In an

attempt to learn to interact with humans focusing on their hand locations on the

world, Lee et al. [48] had used the BRR with their experiments. Overall, Table 2.5

lists these studies that were conducted based on the research platform of the Baxter

robot.
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Table 2.5: Studies conducted on the BRR

Authors Type of Study

Z. Ju, C. Yang, and H. Ma Kinematics modeling [11]

A. Smith, C. Yang, C. Li,
H. Ma, and L. Zhao, Dynamics model [98]

Z. Ju, C. Yang, Z. Li,
L. Cheng, and H. Ma Teleoperation using haptics [2]

H. Reddivari, C. Yang, Z. Ju,
P. Liang, Z. Li, and B. Xu Teleoperation using motion tracking [99]

L. Pinto and A. Gupta Self-supervised/ unsupervised
object grasping [64]

I. Lenz, H. Lee, and A. Saxena Supervised object grasping [18]

J. Lee and M. S. Ryoo Human collaboration [48]

F. Zhang, J. Leitner, M Milford,
B. Upcroft, and P. Corke Reinforcement learning for target reaching [32]

There are numerous examples in the recent literature that explore using the BRR

as a robotic manipulator in their experiments covering various types of learning prob-

lems. Given the preliminary stages of much of this research, it would suggest that

there is considerable scope to explore possible applications of deep learning methods

with a Baxter Research Robot.
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Chapter 3

Methodology

This chapter describes the methodology adopted for the project. Firstly, informa-

tion regarding the various deep learning software frameworks that were utilised for

the project is provided. The hardware requirements and materials involved with the

project are then listed, followed by a discussion relating to image pre-processing and

the steps involved with the convolutional neural network training. The section is

concluded with a detailed discussion of the overall experimental setup.

This project has investigated the use of deep learning methods to train robot sys-

tems to be able to manipulate objects in unstructured environments. The use of

convolutional neural networks to detect grasps from RGB-Depth (RGB-D) images in

order to plan successful grasp manoeuvres that can be carried out by a Baxter robot

using inverse kinematics has been explored. Several deep learning software frame-

works have been tested for training of the CNN models. Another requirement for

training CNNs is access to suitable hardware for accelerated computing. A high-end

graphical processor (GPU) is compulsory. An external depth camera is also utilised

with the project for acquiring depth images. Image pre-processing is a key step dur-

ing the network training. Various image processing software libraries have been used

for this purpose. Once the training data is ready for the training, neural network

training involves several key steps and carefully selection of the optimiser and the

cost function to produce optimal results. Once the neural network is trained for a

sufficient number of steps, it can then be used to detect grasp rectangles from images.

Using inverse kinematics, a joint angle solution can be generated that can be used to

move the Baxter robotic arm to grab the object.
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3.1 Deep Learning Frameworks

Various software frameworks are used for training of deep learning neural network

models in recent literature. According to [100], deep learning software frameworks

are developed to provide the capability to design, build, train, and validate neural

network models. Some of the popular frameworks are:

• Caffe2

• Cognitive toolkit

• MXNet

• PyTorch

• TensorFlow

Most of these programming interfaces rely on GPU-accelerated libraries such as

cuDNN or NCCL to deliver multi-GPU accelerated training.

Initially, the experiments were done with Matlab’s Neural Network Toolbox, but

after discovering various limitations and licensing issues with Matlab a decision was

made to transfer into open-source software. All of the experiments have thus been

performed using the Keras [23] Python deep learning libraries with TensorFlow back-

end [101] support.

3.1.1 Matlab Deep Learning

Matlab R2017b provides a set of tools specifically for deep learning applications under

its Neural Networks toolbox [6]. The toolbox introduces deep learning as a machine

learning technique referring to the recent state of the art applications made possible

with the use of deep learning. The toolbox provides the methods and functions to

create and configure a CNN for classification and regression applications. For this

purpose, the layers listed in Table 3.1 are provided within the Matlab deep learning

toolbox. Table 3.1 also describes what each of the available layers is specialised for.

The documentation also provides support for transfer learning by allowing multiple

configuration to fine tune parameters with availability of a good selection of the most

well known deep learning networks. The documentation further confirms that using

the pre-trained networks would allow immediate solutions for small scale deep learning

applications [6].
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Table 3.1: Supported CNN layers by the Matlab Neural Networks Toolbox [6].

Layer Description
Image input Layer Defines the size of the input images of

a CNN.
Convolutional Layer Extracts the features from input images.

A CNN can have multiple convolutional
layers depending on the input data.

ReLU Layer A nonlinear activation function.
It performs the threshold function
for all of the elements.

Cross Channel Normalisation This layer performs a channel-wise
(Local Response Normalisation) Layer local response normalisation.

It usually follows the ReLU
activation layer.

Max and Average Pooling Layers These layers follow the convolutional
layers for down-sampling,
hence, reducing the number of
connections to the following layers
in order to reduce the para-
meters for learning

Dropout Layer A dropout layer randomly sets
the layer’s input elements to zero
with a given probability

Fully Connected Layer It connects neurons of the layer
with the neurons of the previous layer
in order to combine the features
learnt in each layer.
It helps in pattern recognition

Softmax and Classification Layers For classification applications a
Softmax and a Classification layer must
follow the last Fully Connected layer

Regression Layer For continuous variable outputs
the last Fully Connected layer
must be followed by a Regression layer

Transfer Learning with Matlab

The Matlab documentation [102] identifies transfer learning as re-configuring a previ-

ously trained network to tailor a specific set of application requirements. It is useful

to use pre-trained neural network models for similar learning problems. Figure 3.1

provides an illustration of how input images are processed through neural networks.

Matlab also provides the capability to extract features from images. The success of
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neural networks relies on large amounts of training data. It is evident that neural

networks learn a huge number of features from these images and these learnt features

can be leveraged in different applications.

Figure 3.1: An example illustration of how input images are processed through neural
networks [102]

The Matlab R2017b provides a limited set of cost functions and learning optim-

isers. The capability to create custom functions to create other learning optimisers is

neither available or the documentation is lacking to describe the process. Therefore,

this research project experienced challenges with carrying out the experimentation in

Matlab. It was later revealed this capability is available in the newer versions, how-

ever, it was challenging to acquire another set of software licenses for a license that

was just purchased. Therefore, all the experiments were transferred to open-source

as the necessary capability was available as well as the support from the open-source

software community. The experiments were then performed with Keras under the

TensorFlow backend support.
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3.1.2 TensorFlow Deep Learning Backend

Table 3.2: Important TensorFlow backend functions

Function Description
arange() Creates a 1D tensor containing a sequence of integers
argmax() Returns the index of the maximum value along an axis
argmin() Returns the index of the minimum value along an axis
backend() Publicly accessible method for determining the current

backend
batch flatten() Turn a nD tensor into a 2D tensor

with same 0th dimension
batch normalization() Applies batch normalisation on x given mean, var,

beta and gamma
batch dot() Batchwise dot product
bias add() Adds a bias vector to a tensor
categorical crossentropy() Categorical crossentropy between an output

tensor and a target tensor
concatenate() Concatenates a list of tensors alongside the

specified axis
constant() Creates a constant tensor
conv1d() 1D convolution
conv2d() 2D convolution
conv3d() 3D comvolution
expanddims() Adds a 1-sized dimension at index ”axis”
flatten() Flatten a tensor
floatx() Returns the default float type, as a string
l2normalize() Normalizes a tensor wrt the L2 norm alongside

the specified axis
mean() Mean of a tensor, alongside the specified axis
pool2d() 2D pooling
pool3d() 3D pooling
pow() Element-wise exponentiation
relu() Rectified linear unit
reshape() Reshapes a tensor to the specified shape
sin() Computes sin of x element-wise
softmax() Softmax of a tensor
sqrt() Element-wise square root
square() Element-wise square
std() Standard deviation of a tensor, alongside

the specified axis
sum() Sum of the values in a tensor, alongside

the specified axis
tanh() Element-wise tanh
var() Variance of a tensor, alongside the specified axis
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TensorFlow is an open-source software library for machine learning, specifically for

deep learning purposes. TensorFlow performs numerical computations using data flow

graphs. The Nodes and Edges of a graph represent mathematical operations and mul-

tidimensional data arrays (tensors) respectively. The Google Brain Team’s researchers

and engineers are responsible for creating TensorFlow, a generalised tool for machine

learning applications. It has a flexible architecture which provides cross-platform

deployment of numerical computations. The TensorFlow Application Programming

Interface (API) enables deployment of computations across one or more CPUs or

GPUs in a desktop, server, or a mobile device. Although its preliminary application

scope is machine learning or deep learning, the library has a wider application range

in Linear Algebra, Image Processing, and Computer Vision [101].

Keras is popular as a model-level Python deep learning library. It provides high-

level building blocks for developing neural network models. It does not contain any

function to handle low-level operations such as tensor products and convolutions. In

this regard it requires a well-optimised tensor manipulation library which is known

as the Backend. TensorFlow is such an open-source symbolic tensor manipulation

backend developed by Google. Some important TensorFlow backend functions [103]

are listed under Table 3.2.

3.1.3 Keras: Deep Learning with Python

Keras is a software toolset that enables fast prototyping with neural networks in a

modular approach. It is a high-level neural networks API written in Python to use

several low-level tensor manipulation backends. Also it has the capability to run con-

volutional, recurrent, or a combination of neural network models on CPU or GPU

accelerated programming environments.

The development team of Keras follows four key guiding principles [94]:

• User friendliness: Keras consists of consistent simple APIs and requires a

minimum number of user actions to get the required output. Also it provides

direct and actionable feedback upon user error.

• Modularity: . Keras provides fully-configurable modules that can be plugged

together with fewer user actions. All of the neural network layers, cost func-

tions, optimisers, initialisation methods, activation functions, and regularisation

methods are all standalone modules that can be combined to create new models.
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• Easy extensibility: Users can create new program blocks following the

existing modules. This enables advanced research into neural networks.

• Work with Python: No declaration is required in separate module config-

uration files. Python is used to describe neural network models. This makes it

compact and easier to debug and the source code is easily extensible to advanced

programs when necessary.

Currently, there is support for several backends seamlessly integrated into the Keras

libraries. The backend support currently available are for: the TensorFlow backend,

the Theano backend, and the CNTK backend. In this project, the TensorFlow

backend is used as it is the default backend for Keras.

The core data structure of Keras is a model. The simplest type of model is the

sequential model, a linear stack of neural network layers. For more complex architec-

tures, it is advised to use the Keras Functional API. A sequential model is created as

below:

from keras.models import Sequential

model = Sequential()

To add neural layers, the add() function is used. The Dense layer is a core layer

in Keras. It implements the operation: output = activation(dot(input, kernel) +

bias). The activation is the element-wise activation function passed as the activation

argument. The kernel is the weight matrix created by the layer, and the bias is the

bias vector.

from keras.layers import Dense

model.add(Dense(units=32, activation=’relu’, input_dim=150))

model.add(Dense(units=5, activation=’softmax’))

Once all the layers are stacked properly, the neural network model is compiled for

training as shown below:

model.compile(loss=’categorical_crossentropy’,

optimizer=’sgd’,

metrics=[’accuracy’])
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The network training is initiated by using the fit() function with training data and

targets. The following will train the model for 30 epochs with a batch size of 32.

model.fit(x_train, y_train, epochs=30, batch_size=32)

3.2 Materials

This project involves several hardware components that will be described in this sec-

tion. Any significant deep machine learning application requires a workstation PC

with a high computational power, or access to online cloud computing for neural

network training. The workstation PC that was used with this project will be dis-

cussed along with some discussion on the trade-offs involved in using local machines

compared to cloud services. Some information relating to the utilised Baxter robotic

platform and its ROS infrastructure will also be discussed, with attention given to the

inverse kinematic solver available with the Baxter software. Another key component

of this research is the parallel plate gripper of the robot, and the characteristics of

this will be described. For 3D image acquisition, a Microsoft Kinect v2 is modified

to interface with the workstation PC. That configuration process is also described in

this section.

3.2.1 Workstation PC

Training a deep learning model can take a long time, and some models may even take

several days or weeks to complete the training [10, 19]. Using Graphical Processing

Unit (GPU) acceleration can speed up the process significantly. It is reported that

training neural network models in Matlab with a GPU reduces the time required to

train a network [6]. It and can cut the training time for such an image classification

problem from days down to hours. When training deep learning models, MATLAB

uses GPUs (when available) without requiring an understanding of how to program

GPUs explicitly [104]. TensorFlow, however, requires CUDA 7.5 support for GPU-

accelerated network training. And it requires CUDA 8.0 if the GPUs use the nVidia

Pascal architecture. The accelerated training also requires cuDNN version 5.1 or

version 6 depending on the version of TensorFlow. Due to these complexities with

TensorFlow, Matlab was selected as the initial platform for the training of the Deep

Learning network in this study [105]. However, the very latest TensorFlow versions

come with a clear documentation to properly setup the deep learning environment.
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The open-source software license was found to make it significantly easier to exper-

iment with different deep learning libraries, therefore all later work was conducted

using Keras and TensorFlow.

Table 3.3: Current specifications of the Workstation PC

Hardware Description
GPU NVIDIA GTX GeForce TITAN X (2015) (12GB VRAM)
RAM DDR4 16GB, 8 extra slots for upgrading
Storage 250GB SSD, 2TB HDD
CPU Intel Xeon E5, 22 cores/ 44 threads

Recently, the use of cloud computing has appeared in many research works in

the field of deep learning. Google and Amazon each have their own cloud GPU

computing solutions that can be accessed by paying a premium fee monthly depending

on the usage. There have been several reports of the complexities involved with

setting up cloud GPU instances and running multiple network training instances

per day can multiply the cost involved with the cloud services. As an alternative,

researchers suggest the use of a local workstation PC built with a deep learning

capable GPU [106]. The most popular GPU manufacturer is NVIDIA and they are

the only facilitators of GPU accelerated training with modern deep learning software

frameworks. Researchers suggest to use an NVIDIA GTX Titan X series GPU as it

is the most capable consumer version available on the market. The current flagship

model is the NVIDIA GTX Titan Xp. For research work it is recommended to

use at least 2 GTX TItan X GPUs. The next important component is the random

access memory (RAM). The minimum required is around 16GB but the researchers

recommend at least 32GB of RAM to allow larger batch sizes. For storage of datasets,

it is recommended to use a solid sate drive (SSD) as they offer high-speed data reading

and writing. Even though the central processing unit (CPU) is not heavily used during

the network training, it is recommended have one with a higher thread count as they

increase the parallel computing capability of the GPUs. The least acceptable thread

count is 8, requiring at least a quad-core CPU. Table 3.3 lists the specifications of

the workstation PC used for this work.

3.2.2 Robotic Gripper

A Baxter research robot is used in this project. It is controlled via the Robot Oper-

ating System (ROS), an open-source control software for advanced industrial robots.

This also provides an inverse kinematics solver that can be used to solve for joint
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angles given the end-effector position and orientation vectors. The Baxter robot has

3 cameras but all of them are standard RGB cameras and are not useful with the

specific requirement of the project to have the capability to capture RGB-D. The

robotic structure is half of a humanoid with dual 7-DOF arms and a head. Each arm

can accommodate various end-effectors such as a vaccum suction cup or a parallel

plate gripper as shown in Figure 3.2.

(a) Vaccum suction cup (b) Parallel plate gripper

Figure 3.2: Various robotic end-effectors for the Baxter robot: a vaccum suction cup
as shown in (a), and a parallel plate gripper as shown in (b).

In this project, the use of the parallel plate gripper is explored. The parallel

plate gripper has 4 different gripper plate sets that can be swapped according to the

grasping application. The gripper plates shown in the top-right of the image are used

as it allows reasonable depth while still allowing the robot to grab the smaller objects

involved with the project. The different gripper plates are shown in Figure 3.3.

Figure 3.3: Various gripper plates of the Baxter parallel plate gripper. The top-right
gripper plate set was used in the project considering the size of the objects involved
with the project.
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The selected parallel plate gripper has a maximum opening width (w) of 151mm

and a gripper plate height (h) of 12mm. The opening width can be configured accord-

ing to the object dimensions by using different finger positions as shown in Figure

3.4. The stoppers can be used to limit the gripping depth.

Figure 3.4: Opened gripper dimensions

3.2.3 Microsoft Kinect v2

Microsoft Kinect is a motion sensor that was initially introduced for the Xbox 360

and there-after for the Xbox One as Kinect v2. It is a webcam-style input peripheral

that allow users to interact with applications in their gaming consoles via their body

motion. THe interaction also includes spoken commands and hand gestures. The

latest version Kinect for Xbox One (v2) that is shown in 3.5, was released in 2013

alongside the new gaming console. This version has seen much improvements com-

pared to the previous version. The resolution of the camera has been improved to

1920 × 1080. The infrared vision has been improved to detect changes in the room

lighting and adapt accordingly [107].

Figure 3.5: Microsoft Kinect for Xbox One (Kinect v2) [107]
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Table 3.4: Microsoft Kinect v2 specifications and requirements.

Property Specification
Colour camera 1920× 1080 @ 30fps
Depth sensor 512× 424 @ 30fps
Sensor type Time of Flight (ToF)
Horizontal/ Vertical angle of view 70◦/60◦

Range 0.5 - 4.5 (m)
Connection Interface USB 3.0
Minimum required RAM/ Processor 2GB/ 3.1 Ghz Dual core processor

The Kinect sensor tracks motion and gestures by creating a 3D point cloud of the

scene infront of it. Although the colour images can be generated in a higher resolution,

the point cloud data has a width of 512 and a height of 424 pixels at a rate of 30 frames

per second (fps). Each pixel contains the distance to objects and people in front of the

sensor. In addition to the point cloud, the Kinect generates standard coloured images

with its RGB camera. By combining coloured images with an additional channel of

depth values extracted from the point cloud data, the coloured depth images (RGB-D

images) can be generated. Considering the limited availability of computing resources,

it was decided to use the RGB-D images with a reduced scale as appropriate to the

neural network training. The output of the Kinect sensor images have four channels

and they are: {Red, Green, Blue, Depth}. Some specifications of the Kinect v2 is

listed in Table 3.4.

3.3 Image Pre-processing

In this project, the Cornell Grasp Dataset is used for the training data. The dataset

contains 885 RGB images and point clouds for 240 various objects such as tools, cups,

fruit, vegetable, shoes, etc. These images are 640 pixels in width and 480 pixels in

height. When the depth and colour images are combined they form 4-channel RGB-D

images. However, the neural network model only accepts 224× 224 3-channel images

as the pre-trained network models are trained on RGB images from large datasets

such as the ImageNet [47]. As the point clouds are providing the depth information,

a conversion technique is implemented to re-generate the grayscale depth images. In

depth images the white value will be increased as the depth increases. The depth

values are normalised between [0, 255] from their actual range (0.5, 4.5) m. Some

pixels of the depth image have non-numerical values (NaN) due to the occlusion in the

stereo image. These pixels are replaced by zeros. Once the grayscale depth images (D
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images) are ready, the Blue channel (B channel) of coloured RGB images are replaced

by the D images creating the RG-D images. An RG-D image of a whisk is shown in

Figure 3.6. Matlab image processing is used to generate these images.

Figure 3.6: A pre-processed RG-D image from the Cornell grasp data showing an
image of a whisk; the pixels with higher depth values are in blue, and the grasp
rectangles are overlaid.

It is visible from the RG-D image that by incorporating depth information in this

way, it is possible to easily visualise the object area or specific regions of interest for

grasping. From these RG-D images, a centre crop of 400×400 is extracted around the

grasp centre and it is then re-scaled to 224×224. During the neural network training

all the pixel values are normalised between [0,1] to reduce the initial loss occurrence.

While OpenCV libraries have been used with RG-D image generation, all of the image

manipulation tasks such as image reading, cropping, and re-scaling are carried out

with the Python Pillow image processing libraries. The image pre-processing process

is visualised in Figure 3.7.

59



Figure 3.7: Image pre-processing flowchart

Image Compression

The images are stored as numerical Python arrays once they are read from the raw

files. When a substantial number of images are read it creates a large array, sometimes

making it impossible to proceed within the limited computing resources available.

Therefore, it is convenient to use compression techniques in order to read a large

amount of training data. The HDF5 algorithm is one such technique to compress data.

The HDF5 for Python library is H5PY and it is available at: https://www.h5py.org.

These arrays are stored in storage drives as opposed to storing them in the RAM.

The library allows easier manipulation of HDF databases similar to numerical Python

array manipulation. The HDF files can contain different datasets and folders. The

folders are referred to as groups in HDF files. All the image and grasp labels were read

into Python arrays and after pre-processing with batch processing, the image arrays

were stored in a dataset named ”training data” within an HDF file. When necessary

this HDF file was accessed to import the training data into the neural network training

program. This resulted in a reduced delay at the start of the network training by

avoiding the need to access the hard drive to read raw image data every time the

network training is initiated. Even though this has not resulted in a significant

improvement in this study, with extended datasets such as [84], the HDF5 algorithm

can be noticeably helpful.

3.4 CNN Training for Grasp Detection

The workstation is installed with Ubuntu Linux 16.04 LTS. TensorFlow was installed

with CUDA enabled GPU support under its own Python virtual environment. Then
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Keras was installed to use the TensorFlow backend. The scikit learn and pillow Py-

thon libraries were used for the image pre-processing requirements. Pre-training is a

necessary step when domain specific data is limited to avoid overfitting. Pre-training

the network models on larger datasets such as ImageNet [47] allows for broad training

of the first few layers of a network model, which are considered to learn high-level

features. This intuitively reduces the number of parameters to be trained during

the more application specific training stage, while also reducing the susceptibility to

overfitting due to the limited availability of training data. The Keras Applications

module provides pre-trained ResNet50 network models that can be used for this pro-

ject. Only the convolutional part of the pre-trained model is used. This convolutional

base provides a set of universal filters for domain specific data while the application

specific fullyconnected layers extract the much lower-level features that are important

for grasp prediction. The weights of the convolutional base are fixed with pre-trained

weights during the end-to-end training.

3.4.1 Data for Training, Validation, and Testing

Brownlee [45] identified that there were three different learning approaches in ma-

chine learning according to the availability of data and further categorised learning

algorithms into three categories as explained before: supervised, unsupervised, and

semi-supervised.

The effective accuracy of a learning algorithm relies heavily on how extensively it

was trained. The outcome accuracy of any learning algorithm depends mostly on the

following three factors [17, 79]:

• Data for training

• Architecture of the algorithm

• Self-exploration capacity of the algorithm

In an online article, Brownlee [108] explained the three different categories of

training data. They broke down the training data into training data, testing data,

and validation data and further explained the following terms as mentioned below

[108]:

1. Training data: Sample of the data that was used to fit the neural network

model.
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2. Validation data: Sample of data that was used to evaluate the network model

that was fit using the training data while tuning model hyper-parameters.

3. Testing data: Sample of previously unseen data during the training that was

used to evaluate the model.

Goodfellow et al. [17] stated that the performance of a simple machine learning

algorithm could rely on the input data representation. Furthering their statement

they explained that for an AI system that was intended to diagnose a patient, the

system would not have enough information to perform the diagnosis if the only input

for the AI system is a MRI (Magnetic Resonance Imaging) scan image. There should

also be enough guidelines to identify which type of data and what kind of data labels

are represented by this particular input [17]. In similar terms Tobin et al. [14]

stated that it is important to have a large volume of domain specific data to fit a

model in any learning algorithm and proposed a method to use physics simulations to

generate domain specific images of a particular set of generic object shapes to use in

a generalised robotic grasping application. Preparing such a large database, however

would require a tedious amount of human annotations. In this case, Mahler et al.

[34] suggested to populate a dataset containing physics based analyses such as caging,

grasp wrench space (GWS) analyses and grasp simulation data for different types

of object shapes and poses. They further suggested that cloud computing could be

leveraged to train a convolutional neural network with this dataset that would in turn,

predict a robustness metric for a given grasp instead of directly predicting a grasp

[34]. The proposed dataset was called Dex-Net 2.0 and contained about 6.7 million

point clouds and analytic grasp quality metrics with parallel-jaw grasps planned using

robust quasi-static GWS analysis on a dataset of 1,500 3D object models [34].

In this project, there are 885 image instances available from the Cornell grasp

dataset. Given that one valid grasp is selected for each image as the ground truth

data the number of total available data instances become 885. And the first 100

images are allocated for the validation data, the next 35 images are allocated for

the testing data, and the rest of the 750 image instances are allocated to the main

training data portion.

3.4.2 Network Model

Even though the proposed ResNet50 network is much deeper compared to the stand-

ard feed-forward networks, it requires less computing capabilities for training due to

the presence of the residual learning. The skip connections also reduce the number of
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learn-able parameters resulting in quicker training times. The pre-trained ResNet50

is complemented with our own Fully-Connected shallow network for the detection

purposes. After flattening the output from the ResNet50, a fully-connected layer is

attached with 512 units, and it is followed by a 0.5 drop-out factor. A rectifier linear

unit is used for activation. The output layer does not have an activation as this is a

continuous variable prediction application. The complete network model is shown in

Figure 3.8.

Figure 3.8: Proposed CNN network model

The network model is compiled with the Adam optimiser algorithm. The name

Adam is derived from adaptive moment estimation. The optimisation algorithm is

63



required to find the direction of the weight updates in order to reduce the loss and

it decides how fast a network model is completely trained to converge to a lower loss

value. In contrast to the classical optimiser algorithm, Stochastic Gradient Decent

(SGD), which maintains a constant learning rate throughout the weight updating,

Adam maintains different learning rates for updating the weights of the parameters

during the training and the learning rate is separately adapted as the training unfolds.

The Adam optimiser is known to converge faster and it also has factors to control the

learning rate decay whereas the SGD has no learning rate decay option.

The ResNet50 is a 50 layer convolutional neural network that produced state-of-

the-art image detection results in 2015 with the ImageNet competition. The complete

ReseNet50 neural network model is shown in Figure 3.9.

Figure 3.9: Complete ResNet50 CNN Architecture [109]
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3.4.3 Vector Regression

We propose a direct regression method to predict the grasp coordinates directly from

the raw RGB-D images. Large scale image datasets only contain RGB images, thus

the networks are limited to pre-training with 3 channel data. Therefore, the raw

RGB-D data is converted to 3 channel RG-D images by replacing the Blue channel

with Depth values. As a baseline we have used RGB images during the training

removing the depth channel information altogether. These 3 channel images are then

fed to the convolutional overhead to extract features. The extracted features are then

sent through the fully-connected layers to extract the predictions which produces a

five element vector. The five elements are the location and the lengths of the grasp

rectangle along with its orientation. Therefore, this method is identified as the five

element vector regression. This model is trained with the strong assumption that

each image contains only one grasp label. This step is enforced to avoid the need for

the sliding window approach. During the training each image is mapped with the

first ground truth grasp to avoid the averaging effect during the prediction stage. In

the training stage, the weights of the convolutional overhead are kept fixed while the

weights of the fully-connected layers are randomly initialised.

3.4.4 Training Evaluation

In this research work, the root mean squared error function that is given by

rmse =
√
mean((ypred − ytrue)2) (3.1)

is used to calculate the prediction loss in each training iteration.

There are two different types of evaluation metrics that can be used in this re-

search context. In previous work authors have argued that the Rectangle metric

evaluates the regions and the orientations of the predictions whereas the Point met-

ric only evaluates the regions of the predictions. Since it is important to evaluate

the orientation of the grasp predictions in our work, we use the rectangle metric in

validating the predicted grasps from our DCNN. The rectangle metric validates a

grasp if both of the following conditions are met:

1. Grasp angle difference between the orientation of the predicted and the ground

truth grasps is less than 30◦

2. Jacquard index given by

J(Gpred, Gtrue) =
|Gpred ∩Gtrue|
|Gpred ∪Gtrue|

(3.2)
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is greater than 25%.

The rectangle metric follows an effective validation method compared to the point

metric for suitable grasps and it is much closer to the metrics used in object detection

other than having a reduced threshold at 25% for the Jacquard index.

Initially, we have used five-fold cross validation with Image-wise splitting and

Object-wise splitting. However, this did not show the expected improvement in

results. We believe that this is due to the presence of objects with similar shapes but

different colours such as different sunglasses or different kitchen utensils in various

colours. Considering the limited variations in the data instances, we have opted for

one-fold cross validation as in [58].

3.5 Experimental Setup

The Baxter research robot [28] has been used to demonstrate the robotic grasping

capability of the trained model. The Baxter is a humanoid robot with dual 7 degrees of

freedom arms with the capability to manipulate objects in human-like fashion. Each

arm and the head have attached cameras. The complete robotic system is controlled

through its ROS infrastructure. The software development kit also provides an inverse

kinematic solver for the Baxter robot, which can be easily accessed to control the

Baxter arms to pick objects up once their grasp points are recognised. A Microsoft

Kinect v2 sensor mounted on top of the work space is used to capture colour and

depth (RGB-D) images of the work area. The experimental setup is shown in Figure

3.10.
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Figure 3.10: Experimental setup

3.5.1 The Grasping System

The complete grasping mechanism starts with the Microsoft Kinect v2 capturing a

coloured RGB image and a depth mask for each scene with an object on the table

that is intended for grasping. Then the captured images will be combined together

to create coloured depth (RG-D) images. The Blue channel of colour images will be

replaced by the depth mask. The depth mask is a grayscale image that contains values

between [0, 255] to represent how close or far away the objects that are viewed from

the Kinect v2 camera are. The combined RG-D images will then be sent through the

trained convolutional neural network (CNN) and the grasp parameters (x, y, θ, h, w)

are then predicted. These parameters represent an oriented rectangle on the image

plane with a centre point at (x, y), a height (h), and a width (w). The rectangle is

oriented to the horizontal axis (x-axis) by an angle of (θ). The grasp parameters are

then fed to the inverse kinematic solver to re-map them into the world coordinates in

order to find an acceptable robotic joint solution that can be reached by the Baxter

robot for object grasping. After the object has been successfully placed at the drop-

off zone, the robotic arm will be reset for the next object. This process is shown in

Figure 3.11.
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Figure 3.11: The complete system for robotic grasping with deep learning based grasp
detection.

3.5.2 Image Acquisition

The Microsoft Kinect v2 requires a proprietary interfacing hardware to properly con-

nect with a computer before retrieving images. It is understood that the standard

interface that is accepted for the game consoles is a customised version of the USB

3.0 protocol. Therefore a custom interfacing method was implemented to provide

separate 12 VDC power and USB 3.0 communication as shown in Figure 3.12.
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(a) Microsoft’s proprietary cable (b) Customised connection

Figure 3.12: Manually customised interface for Microsoft Kinect v2

The Kinect requires several software interfacing libraries to read images. As most

of the functionality is limited for Windows operating systems, the open-source soft-

ware community has developed libfreenect2, an open-source software interface writ-

ten in C++ for accessing a Microsoft Kinect v2. Recently, a Python wrapper known

as pylibfreenect2 for this software library was developed and it is available at:

https://github.com/r9y9/pylibfreenect2. The flowchart in Figure 3.13 shows

the image reading process using these software interfaces.

Figure 3.13: Capturing live RG-D images from the Kinect v2
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3.5.3 Robotic Pick and Place

Once the Baxter robot control PC was setup with Baxter SDK as described in Ap-

pendix A and the Kinect v2 is completely setup, a coordinate mapping is performed

to convert the detection results back to the Robot workspace. A 45cm× 45cm work-

space area is identified that allows the camera to be at a safe distance without inter-

fering with the Baxter robot arm movements. After a camera calibration, a pixel to

workspace distance relationship is found showing 0.2cm per pixel. A ROS topic as

described in Appendix B was then developed to enable the right limb of the Baxter

robot to be controlled and to use the inverse kinematic solver to determine the joint

angle solution for each grasp point detected. Another ROS topic was developed to

move the Baxter arm over the object location, orient the gripper, open the gripper,

move downward to grab the object, rise 15cm above the table, move to the drop-off

point, move downward, and drop the object at the position. After the process the

robotic arm will be reset to a standby position for the next pick. The waypoints that

are included in the object pick-and-place trajectory are as follows:

1. HOME: Starting position/ Reset position

2. PRE-PICK: 15 cm above the object location with the gripper oriented with the

required grasp pose before picking the object

3. PICK: Picking point

4. POST-PICK: 15 cm above the object location after picking

5. PRE-DROP: 15 cm above the drop zone before the object drop

6. DROP: Object drop-off point

7. POST-DROP: 15 cm above the drop zone after the drop

This process is shown in Figure 3.14.
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Figure 3.14: The sequence of object pick and place with the Baxter robot

3.6 Limitations

This project has the following limitations.

1. The amount of available application-specific data is lower than the optimal

amount.

2. The original RGB-D images or the coloured depth images are 4-channel numer-

ical tensors and ideally require pre-trained CNN architectures with the capabil-

ity to input 4-channel data. However, at the time of writing there is no known

pre-trained network architectures that accomodate such input modalities.

3. The Kinect v2, which is the utilised depth camera has a considerably lower depth

resolution than anticipated. Therefore, minor variations in depth information

are not visible.

4. The open-source hardware drivers for Kinect v2 has limited support from the

manufacturer and it has resulted in slower developments for image optimising

techniques. This has affected the automatic white-balancing of the camera.

5. The region in the workspace that the Baxter robotic arms can be arranged

to in order to achieve a gripper pose that is normal to the surface is smaller

than expected. This ultimately results in a work area of 35cm × 45cm. This

restriction also limits the overall size of the objects that can be grasped. In
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this project, only objects that have a width less than 7cm are considered. The

weight of the objects must also be less than 2kg as the Baxter arms have a

payload capacity of 4kg and 2kg of this are taken up by the gripper weight.

6. On some occasions, the system fails to detect objects under certain variations

of light conditions and background colour. In some research studies, the back-

ground colour has been subtracted in order to improve the results. However,

with this project there was no improvement observed with this approach.

3.7 Budget

Table 3.5 provides detailed information of the expenses associated with the project.

The important materials of the project are the workstation PC for deep learning, data

for training, the Baxter robot, a depth camera, and camera mounts. The speed of

the neural network training depends on the performance capability of the workstation

PC. In this project, it was decided to use the existing workstation PC available within

the ECU robotics lab. The training data is shared under an open-source license with

the intention of academic knowledge sharing. Currently, the lab is equipped with a

Baxter research robot. All of the software used in the project is open-source and

involves no licensing fees.

Table 3.5: Budget Proposal

Item Value (AU$)
Microsoft Kinect v2 $150.00
Data cable for the Kinect v2 $20.00
Power adaptor for the Kinect v2 $50.00
Camera tripod $250.00
Camera mount for the tripod $50.00
Tools $150.00
Total required $670.00

3.8 Project Timeline

The time-line that is included in Appendix C describes the task-specific work plan

against the time period that is spent on each task. The project included the following

seven milestones.

1. Formulation of the research topic
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2. Identification of the key research questions

3. Inverse kinematic control of the Baxter robot

4. Acquiring of training data and annotations

5. Running the first successful neural network training

6. Evaluation of the trained CNN with grasping and compilation of the results

7. Thesis preparation and submission including review and feedback
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Chapter 4

Results and Discussion

The network model was compiled with the Adam optimiser and trained for more

than 30 hours until a trained accuracy of 93.91% was achieved. The trained CNN

was tested for its accuracy and it was processed through other evaluation metrics

to evaluate the grasp detection effectiveness. A mean jacqurd index of 0.6523 was

achieved during the training and 0.4356 during the testing. During the evaluation of

the trained neural network model an orientation error of −5.4◦ was achieved during

the testing and the training orientation error was 6.78◦. During the physical grasping

trials the Lego EV3 brick and the Lego Large motor both scored the maximum success

rate of 65% for successfully grasping 13 times out of the overall 20 trials per each

object. The minimum success rate, 10% was achieved by the pen through it only

being successful in 1 round out of the 20. From the grasp trials it was observed that

linearly formed objects with greater than average height above the table were easier

to detect through the depth camera as there was a clear overlay of depth information

available compared to shallower objects.

4.1 Grasp Detection

Training Process

The network was compiled with the Adam optimiser with an initial learning rate of

0.001, β1 = 0.99, and β2 = 0.9. The learning rate was plateaued if the training accur-

acy had not improved within the preceding 10 training epochs. The fully connected

layers of the network model were randomly initialised. We followed an end-to-end

training process as opposed to [10] as the 2-stage training did not produce effective

results for us. We have trained the DCNN with a batch size of 128 for a maximum
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epochs of 30. The maximum accuracy of 93.91% was achieved at the 25th epoch. The

complete training has taken about 32 hours to approach the 30 epoch milestone.

Testing the CNN

Table 4.1 shows that the trained CNN has achieved a state of the art training ac-

curacy when compared to the previous approaches at a value of 93.91%. The table

only includes the accuracies from the image-wise split training data for the previous

methods as the one-fold cross validation is employed. It has been concluded previ-

ously, based on the evidence of [10] and [19], that the image-wise splitting and the

object-wise splitting have not made any difference for the training results other than

reducing the variation of the training dataset.

Table 4.1: Accuracy comparison with previous approaches by training on the Cornell
Grasp Dataset

Authors Algorithm Acc. (%)
Jiang et al. [57] Fast search 60.5
Lenz et al. [18] Sliding window, two stage 73.9
Redmon et al. [19] One-shot detection, direct regression 84.4
Kumra et al. [10] Uni modal, ResNet50 88.84
Kumra et al. [10] Multi modal, ResNet50 89.21
Watson et al. [58] Direct regression, AlexNet 78.00
Ours Vector regression, ResNet50 (RG-D) 93.91
Ours Vector regression, ResNet50 (RGB) 78.71

All of the detected valid grasp rectangles were evaluated using the rectangle metric

that has been introduced in the previous section. A predicted grasp is to be validated

by the rectangle metric. The rectangle metric provides a binary result as either PASS

or FAIL according to the conditions outlined previously. The trained network model

has achieved the results shown in Table 4.2. The mean of Jacquard index (J) and the

orientation error (θ) are listed for each stage of the network model. The success rate

(S.R.) which is calculated as

%S.R. =
(J − 25) + (30− θerror)

105
× 100 (4.1)

provides an indication of how likely the predicted grasp will be to accurately grasp

an object.
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Table 4.2: Rectangle metric evaluation of the trained network model

Stage J (mean) θ (◦) S.R. (%)
Training 0.6523 -5.4 61.74
Testing 0.4356 6.78 39.79

Two types of valid grasps were identified during the prediction stage. True pos-

itive grasp is a predicted grasp that aligns well with the ground truth grasps. Con-

versely, False positive grasp is an acceptable grasp that does not pass the rectangle

metric evaluation. Figure 4.1 illustrates a sample of this phenomenon.

Figure 4.1: Examples of grasps detected from the Cornell Grasp Dataset, showing
(a) true positive and (b) false positive grasp predictions. The ground truth grasp
rectangles are shown in green while the predicted grasp rectangles are shown in red.

Figure 4.2 illustrates the training progress. From the graph, it is evident that the
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training has reached its maximum accuracy of 93.91% towards its final stage while

the cost has converged to its minimum value.

Figure 4.2: Training loss and training accuracy plots

The vector regression network model has processed 448, 000 images per epoch

during the training with a mini-batch size of 128 images. Based on the literature,

this performance outcome is due to the computing capability of the NVIDIA GeForce

GTX Titan X GPU used. This network model is trained using the first grasp from the

ground truth grasps to avoid the averaging introduced by [58]. All the ground truth

grasps were also tested but the results showed reduced training accuracies supporting

the conclusions by Redmon et al. [19].

At the time of this study, pre-trained ResNet50 models are unavailable for 4-

channel data. Therefore, we have formed the RG-D training data from RGB-D data

to overcome this limitation. Since the original ResNet50 is trained on RGB data,
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the features that are learnt from RG-D data would not be the same as those ori-

ginally learnt from RGB images. The full impacts of this are difficult to conclude

without further experiments, but as better training datasets become available further

improvements can be expected. Our baseline network model that was trained with

RGB images resulted in a final accuracy of 78.71%, which supports the conclusion in

[10]. Figure 4.3 shows some valid and invalid grasp predictions from our network.

Figure 4.3: Some grasp predictions from our network showing (a) invalid and (b) valid
grasp predictions from the images of Cornell Grasp Dataset [38]. Green rectangles
show the ground truth grasp rectangles while Red reatcngles show the predictions.

Previous studies have conducted separate ground truth labelling to evaluate the

jacquard index and orientation error with live images. A similar step has also been

carried out to analyse the results from grasp detection from live images. However,

it has been concluded that the ground truth labelling is heavily reliant on semantics

and the labels can be biased based on the human understanding of a good grasp.

However, there could be numerous other ways to label a valid grasp on an image.

Therefore jacquard index would not provide an effective evaluation metric for false

positive grasps even though they can be considered as valid grasp predictions. Figure

4.4 shows some instances where grasps were successfully and unsuccessfully achieved.
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Figure 4.4: Some grasping instances with live RG-D images showing (a) successful
grasps and (b) unsuccessful grasps.

4.2 Physical Grasping Trials

For a physical grasping system, it is difficult to further analyse the results beyond a

PASS or FAIL. In this study, a Baxter robot has been used to grasp objects once

their grasp points are identified.

4.2.1 Initial Experiment

In this initial experiment, eight different objects were used for the grasp trials and they

are: Lego Mindstorm EV3 Brick, Stress Cube, Robotic Wheel, Lego Large Motor,

HTC Vive Joystick, Sunglasses, Rubber Ball. A sample of the objects are shown in

Figure 4.5. Each object received 20 trials. Each trial was classified as a PASS or

FAIL.
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Figure 4.5: A sample of objects involved with the grasp trials.

The Lego Large Motor and Lego Mindstorm EV3 Brick successfully completed

13 grasps out of the 20 trials. The Pen successfully passed only 1 grasp trial, while

failing all the rest of the trials. The Rubber Ball also scored a close to minimum

result, passing only 2 trials. It was identified that due to the fixed distance from

the camera and the shorter object height of the Pen it was almost undetectable with

depth data. A similar issue was observed with the Sunglasses. The spherical shape

of the Rubber Ball was challenging to securely grasp between the narrow parallel

plate gripper. A similar challenge was observed with the Robotic Wheel due to its

cylindrical shape. The grasp trial data are listed in Table 4.3.

Table 4.3: Grasp trials data

Object Pass Fail Success Rate (%) Avg. Duration (s)
Pen 1 19 5 133.2
Rubber Ball 2 18 10 111.4
Sunglass 5 15 25 121.4
HTC Vive Joystick 12 8 60 118.2
Lego Large Motor 13 7 65 122.3
Robotic Wheel 7 13 35 129.5
Cube 11 9 55 119.7
Lego Mindstorm EV3 Brick 13 7 65 120.9

The maximum success rate achieved was 65%, which is close to the theoretical

values calculated in the previous section. Figure 4.6 illustrates that the objects that

were taller and had straighter edges are more easily grasped with the deep learning

based detection system. Almost all trials were completed within 2 minutes with initial

grasp detection as low 25 milliseconds.
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Figure 4.6: Grasp success from 20 trials per object.

4.2.2 Extended Experiment

An additional round of experiments was conducted with an extended set of objects

in order to verify the initial results. The object set was included with fifteen differ-

ent objects such as Aluminium Container, Metal Plate, Combination square, Pliers,

Rubber Ball, Whiteboard Eraser, Sunglasses, Wooden wedge, Bottle, Sports Watch,

Calculator, Stapler, Highlighter, Pen, Medicine container. Each object received 40

trials. Each trial was classified as a PASS or FAIL. A sample of the set of objects

are shown in Figure 4.7 and they are: aluminium container, combination square,

pliers, whiteboard eraser, sunglasses, bottle, calculator, stapler, medicine container,

highlighter.

81



Figure 4.7: A sample of the extended set of objects showing random grasp predictions
for an aluminium container, a combination square, a set of pliers, a whiteboard eraser,
a pair of sunglasses, a bottle, a calculator, a stapler, a medicine container, and a
highlighter

During this extended experiment, it was found that the Pen and the Metallic

plate recorded no grasp rectangles at all. Given the fixed distance from the objects

recorded a minimum information in the depth images and were undetectable for the

neural network model. This is shown in Figure 4.8.

(a) Metallic Plate (b) Pen

Figure 4.8: Visually undetectable objects with minimum depth registration showing
the (a) Metallic Plate and the (b) Pen

Although the set of pliers was detected successfully, it was challenging to grasp

and hold it securely due to its weight distribution. Only 47.5% of the time it was

successfully grasped and held by the Baxter parallel plate gripper. The aluminium

container and the sports watch were successfully grasped by increasing the plate width

of the Baxter parallel plate gripper. The aluminium container and the sports watch

recorded a success rate of 67.5% and 55% respectively. The increment of the plate
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width also increased the chances of the rubber ball being grasped successfully. Infact

compared to the initial experiment, the rubber ball was successfully grasped 52.5%

of the time.

The complete set of grasp success rates are illustrated in Figure 4.9. The maximum

grasp rate was 72.5% and it was obtained with the bottle.

Figure 4.9: Grasp success rates in the Extended Experiment with 40 trials per object.
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Chapter 5

Conclusions

This study explores the application of deep learning methods to operate a medium

scale general purpose robot, such as the Baxter robot, in an unstructured environ-

ment. Recent literature suggests that modelling a robotic solution for the type of

problem considered calls for a very tedious process of identifying variables given that

the environment is dynamic. The Deep Convolutional Neural Network (DCNN) or

the Convolutional Neural Network (CNN) has shown its success in many computer

vision problems. In recent years there have been a number of breakthroughs in new

CNN applications with promising results. CNNs have been developed that have sur-

passed the current state-of-the-art in a number of fields including image classification,

object recognition, and localisation. The application of variations of these networks

have led to recent advancements in robotic grasping applications. This thesis has ex-

plored an extension of these recent deep learning based robotic grasping works with

an implementation of a layered deep learning network for identifying and localising

object grasps from images captured with an external depth camera system to enable

a Baxter robot to manipulate objects in unstructured environments.

Grasp pose detection is an important step to enable general purpose robots to

manipulate objects that can be found in their dynamic environments. In this project,

the use of the one-shot detection methods have been the focus, as these have become

the state-of-the-art compared to the sliding window approach that was originally used

by Lenz et al. [18]. It is shown that DCNNs can be used to learn features from multi-

modal data to use with grasp pose detection. This thesis has explored the use of the

denser, 50 layer, ResNet CNN architecture to train a grasp pose detection model.

The sole challenge for network training was the limited availability of training data.

It has been shown previously that residual learning requires less training data as

there are a significantly lower quantity of parameters to be trained compared to other

architectures. Several other steps were additionally taken to avoid overfitting. These
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included pre-training of the ResNet-50 network architecture with ImageNet data and

performing heavy image augmentation techniques were performed on the training

images. The model generated after training the CNN for more than 30 hours was

able to achieve the state-of-the-art detection accuracy of 93.91% with object grasps

detected in under 25 milliseconds.

The trained grasp pose detection model was configured to detect the pixel locations

of grasp poses in live images and it was mapped to world coordinates. By using an

inverse kinematic solver, the world coordinates were converted back into the robot’s

frame of reference to get the robotic joint space solution. A ROS topic was created to

move the Baxter right hand side arm through several waypoints such as HOME, PRE-

PICK, PICK, POST-PICK, PRE-DROP, DROP, POST-DROP, and HOME. A set

of 8 physical objects were selected as a test set for evaluating object grasping. Each

object was allocated with 20 trials. Evaluaiton of object grasping with live images

was limited to a PASS or FAIL metric. More complex evaluation metrics such as

the jacquard index and the orientation were omitted as these metrics were heavily

reliant on semantics of object grasping and their ground truths. With grasping trials,

a maximum success rate of 65% was achieved for physical grasping. It was observed

that objects with a greater than average height and a linearly distributed volume are

comparatively easier to detect and securely grasp whereas shorter and smaller objects

are prone to miss grasp detection. Spherical or cylindrical objects are challenging to

grasp with the two-fingered gripper due to their surface curvature when the detected

grasp is not accurately centred with the object centres.

Analysis of the results shows that even though there is considerable evidence to

prove that the grasp detection is highly accurate, with physical grasping there are

several further challenges to real-world grasp success. One of the major reasons is

identified to have been a hardware limitation with the depth sensor that was used

with the project. The limited availability of the training data was identified as a

prevailing challenge of the project. The training dataset only contained about 885

object instances with 240 different objects. With the number of parameters of modern

CNN architectures it is necessary to have a reasonably large amount of data to avoid

overfitting. Previous research suggested a reasonable number of data instances would

be between 10,000 - 1,000,000. But collecting such large-scale datasets is highly

challenging as it requires heavy human involvement with annotations and extended

hours of access to equipment.
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Future Improvements

Going forward, it is worthwhile to extend the experimentation with transfer learning

approaches for robotic grasping work as the robotic grasping is one of the primary

tasks for a general purpose robotic system. Handling multi-modal data is much more

important considering the different sensor types that are available on modern robotic

systems. A major bottleneck for this research was the limited availability of training

data for robotic grasp pose detection. While pre-training and image augmentation

managed to reduce the overfitting, it would be extremely valuable to have a large

annotated robotic grasps dataset. Another key challenge with transfer learning is

the number of input dimensions. Currently, the ResNet-50 architecture is pre-trained

with with 3-channel ImageNet RGB images. Therefore, it can only learn from data

with 3 dimensions. In order to use 4-channel RGB-D data with training it is required

to pre-train the network with 4-channel data. Once a sufficient dataset is collected

and annotated, a ResNet-50 model with 4 input dimensions could be pre-trained to

use with 4-channel RGB-D data. Song et al. [83] has effectively used 4-channel RGB-

D data with DCNN training by feeding coloured images and depth information in

two different CNN architectures and by merging the learnt features in the end. Some

attention should also be given to their approach.

Recently, unsupervised learning techniques have emerged in generalised robotic

solutions for providing effective results. By combining reinforcement learning as in [64,

84], researchers have automated the large-scale data collection for robotic grasping.

Further experiments with such large-scale datasets are expected to perform better

compared to the current achievements. In supervised learning techniques, a trained

grasp detection model requires a separate path planner to manipulate the robotic

arms to successfully grasp the object. Regardless to the collected dataset, the trained

neural network trains best to predict grasps that are validated by human annotators.

It is commonly identified that the grasp annotations are heavily biased by semantics

perceived by the human annotators. In such cases, learning an algorithm for robotic

grasping in an unsupervised manner would allow a robotic system to comb through

any unpredictable scenario through which an object can be identified and grasped.

By combining reinforcement learning, the training can be converged to an optimal

model in an effective manner with a sense of right or wrong. However, the trial-and-

error step of such methods are heavily limited due to the numerous precautions that

are necessary to mitigate the harm and damage to and from the robotic equipment.

The release of platforms such as NVIDIA Isaac [26] will accelerate the research with
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reinforcement learning by removing the challenges and limitations involved with the

trial-and-error approaches by allowing the learning to be carried out in simulated

environments with the domain adaptation capability.
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Appendix A

Upgrade the Baxter Robot SDK

This chapter walks through the upgrading procedure for updating and installing Bax-

ter robot software development kit (SDK) in Ubuntu Linux 16.04 LTS. Standard SDK

documentation only provides instrtuctions to setup Ros Indigo in Ubuntu 14.04. This

operating system version is old to handle most of the modern deep learning drivers

provided by NVIDIA.

Install ROS Kinetic

The complete desktop version of ROS Kinetic was installed following the official

instructions from here: http://wiki.ros.org/kinetic/Installation/Ubuntu.

Install Latest Baxter SDK

1. A catkin workspace was created by running the following commands in the terminal:
mkdir -p ~/baxter ws/src

cd /baxter ws/src

catkin init workspace

2. Build and install the Baxter workspace
cd ~/baxter ws

catkin make

3. Setup environmental variables
echo "source ~/baxter ws/devel/setup.bash" >> /.bashrc

4. Install Baxter SDK dependencies
sudo apt-get update

sudo apt-get install git-core

python-argparse python-wstool

pythonvcstools
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python-rosdep ros-kinetic-control-msgs

ros-kinetic-joystickdrivers

5. Install Baxter SDK packages
cd ~/baxter ws/src

wstool init

wstool merge https://raw.githubusercontent.com/RethinkRobotics

/baxter/master/baxter sdk.rosinstall

wstool update

cd ~/baxter ws

catkin make

catkin make install

6. Configure Baxter shell
cp ~/baxter ws/src/baxter/baxter.sh ~/baxter ws

chmod +x baxter.sh

7. Open baxter.sh file in a text editor and edit the following:
your ip="192.168.XXX.XXX"

ros version=kinetic
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Appendix B

Source Code: ROS Topic for Pick
and Place with a Baxter Robot

Prepare the Baxter robot for Object Grasping

rosrun deep-grasping enable baxter pnp.py -l right

#!/usr/bin/env python

import argparse

import struct

import sys

import time

import rospy

import baxter_interface

from baxter_interface import RobotEnable

import cv2

import cv_bridge

from geometry_msgs.msg import (

PoseStamped,

Pose,

Point,

Quaternion,

)

from std_msgs.msg import Header

from baxter_core_msgs.srv import (

SolvePositionIK,

SolvePositionIKRequest,

)

102



from sensor_msgs.msg import (

Image,

)

def ik_solution(limb, p_x, p_y, theta, depth):

"""

Object Pick and Place script

by Shehan Caldera(shehancaldera@gmail.com)

Uses IK solver service client and baxter_interface classes.

The following arguments are required:

’-l’ [left or right],

’-x’ [x-coordinate],

’-y’ [y-coordinate],

’-th’ [orientation around z-axis]

"""

ns = "ExternalTools/" + limb + "

    /PositionKinematicsNode/IKService"

iksvc = rospy.ServiceProxy(ns, SolvePositionIK)

ikreq = SolvePositionIKRequest()

hdr = Header(stamp=rospy.Time.now(), frame_id=’base’)

poses = {

’left’: PoseStamped(

header=hdr,

pose=Pose(

position=Point(

x=0.58,

y=0.18,

z=0.10,

),

orientation=Quaternion(

x=-0.13,

y=0.99,

z=0.01,

w=0.02,

),

),

),

’right’: PoseStamped(

header=hdr,

pose=Pose(
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position=Point(

x=p_x,

y=p_y,

z=0.0 + depth,

),

orientation=Quaternion(

x=0.0,

y=0.1,

z=0.0,

w=0.0,

),

),

),

}

ikreq.pose_stamp.append(poses[limb])

try:

rospy.wait_for_service(ns, 5.0)

resp = iksvc(ikreq)

except (rospy.ServiceException, rospy.ROSException), e:

rospy.logerr("Call for IK service failed: %s" % (e,))

return 1

limb_joints = 0

# Check if result valid, and type of seed

ultimately used to get solution

# convert rospy’s string representation of uint8[]’s to int’s

resp_seeds = struct.

unpack(’<%dB’ % len(resp.result_type), resp.result_type)

if (resp_seeds[0] != resp.RESULT_INVALID):

seed_str = {

ikreq.SEED_USER: ’User Provided Seed’,

ikreq.SEED_CURRENT: ’Current Joint Angles’,

ikreq.SEED_NS_MAP: ’Nullspace Setpoints’,

}.get(resp_seeds[0], ’None’)

print("SUCCESS -

            Valid Joint Solution Found from Seed Type: %s" %(seed_str,))

# Format solution into Limb API-compatible dictionary

limb_joints =

dict(zip(resp.joints[0].name, resp.joints[0].position))

104



print "\nIK Joint Solution:\n", limb_joints

# print "------------------"

# print "Response Message:\n", resp

else:

print("INVALID POSE - No Valid Joint Solution Found.")

return limb_joints

if __name__ == ’__main__’:

arg_fmt = argparse.RawDescriptionHelpFormatter

parser = argparse.

ArgumentParser(formatter_class=arg_fmt,

description=ik_solution.__doc__)

parser.add_argument(

’-l’, ’--limb’, choices=[’left’, ’right’], required=True,

help="the limb to use with object pickup"

)

args = parser.parse_args(rospy.myargv()[1:])

rospy.init_node("Enable_Baxter_PnP")

RobotEnable().enable()

# Change the Baxter Face

baxter_display_face

= cv2.

imread("path_to_face_image.jpg")

baxter_display_face_rosmsg

= cv_bridge.CvBridge().

cv2_to_imgmsg(baxter_display_face, encoding="bgr8")

head_display = rospy.Publisher(’/robot/xdisplay’, Image, latch=True)

head_display.publish(baxter_display_face_rosmsg)

# Sleep to allow for image to be published.

rospy.sleep(1)

navigator_arm = baxter_interface.Navigator(args.limb)

navigator_torso = baxter_interface.Navigator(’torso_right’)

navigator_arm.inner_led = True

navigator_arm.outer_led = True

navigator_torso.inner_led = True

navigator_torso.outer_led = True

robot_arm = baxter_interface.Limb(args.limb)
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pre_start_pos = ik_solution(args.limb, 0.1, -0.9, 0.0, 0.25)

robot_arm.move_to_joint_positions(pre_start_pos)

home_pos = ik_solution(args.limb, 0.45, 0.0, 0.0, 0.20)

robot_arm.move_to_joint_positions(home_pos)

sys.exit()
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Pick and Place sequence for the Baxter robot

rosrun deep-grasping baxter pnp.py -l right -x X COORDINATE -y Y COORDINATE

-th GRASP POSE ORIENTATION

#!/usr/bin/env python

"""

Object Pick and Place script by

Shehan Caldera(shehancaldera@gmail.com)

that uses IK solver service client

and baxter_interface classes.

"""

import argparse

import struct

import sys

import rospy

import baxter_interface

from geometry_msgs.msg import (

PoseStamped,

Pose,

Point,

Quaternion,

)

from std_msgs.msg import Header

from baxter_core_msgs.srv import (

SolvePositionIK,

SolvePositionIKRequest,

)

def ik_solution(limb, p_x, p_y, theta, depth):

"""

Object Pick and Place script

by Shehan Caldera(shehancaldera@gmail.com)

Uses IK solver service client

and baxter_interface classes.
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The following arguments are required:

’-l’ [left or right],

’-x’ [x-coordinate],

’-y’ [y-coordinate],

’-th’ [orientation around z-axis]

"""

ns = "ExternalTools/" + limb +

"/PositionKinematicsNode/IKService"

iksvc = rospy.ServiceProxy(ns, SolvePositionIK)

ikreq = SolvePositionIKRequest()

hdr = Header(stamp=rospy.Time.now(), frame_id=’base’)

poses = {

’left’: PoseStamped(

header=hdr,

pose=Pose(

position=Point(

x=0.58,

y=0.18,

z=0.10,

),

orientation=Quaternion(

x=-0.13,

y=0.99,

z=0.01,

w=0.02,

),

),

),

’right’: PoseStamped(

header=hdr,

pose=Pose(

position=Point(

x=p_x,

y=p_y,

z=0.0 + depth,

),

orientation=Quaternion(

x=0.0,

y=0.1,

z=theta,

w=0.0,

),

),
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),

}

ikreq.pose_stamp.append(poses[limb])

try:

rospy.wait_for_service(ns, 5.0)

resp = iksvc(ikreq)

except (rospy.ServiceException, rospy.ROSException), e:

rospy.logerr("Call for IK service failed: %s" % (e,))

return 1

limb_joints = 0

# Check if result valid, and type of seed

# ultimately used to get solution

# convert rospy’s string representation of uint8[]’s to int’s

resp_seeds =

struct.unpack(’<%dB’ % len(resp.result_type), resp.result_type)

if (resp_seeds[0] != resp.RESULT_INVALID):

seed_str = {

ikreq.SEED_USER: ’User Provided Seed’,

ikreq.SEED_CURRENT: ’Current Joint Angles’,

ikreq.SEED_NS_MAP: ’Nullspace Setpoints’,

}.get(resp_seeds[0], ’None’)

print

("SUCCESS - Valid Joint Solution

        Found from Seed Type: %s" %(seed_str,))

# Format solution into Limb API-compatible dictionary

limb_joints =

dict(zip(resp.joints[0].name, resp.joints[0].position))

print "\nIK Joint Solution:\n", limb_joints

# print "------------------"

# print "Response Message:\n", resp

else:

print("INVALID POSE - No Valid Joint Solution Found.")

return limb_joints

if __name__ == ’__main__’:

arg_fmt = argparse.RawDescriptionHelpFormatter
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parser = argparse.ArgumentParser(formatter_class=arg_fmt,

description=ik_solution.__doc__)

parser.add_argument(

’-l’, ’--limb’, choices=[’left’, ’right’], required=True,

help="the limb to use with object pickup"

)

parser.add_argument(

’-x’, type=float, required=True,

help="x-coordinate of centre of pickup"

)

parser.add_argument(

’-y’, type=float, required=True,

help="y-coordinate of centre of pickup"

)

parser.add_argument(

’-th’, type=float, required=True,

help="Gripper orientation about z-axis"

)

args = parser.parse_args(rospy.myargv()[1:])

rospy.init_node("IK_Baxter_PnP")

robot_arm = baxter_interface.Limb(args.limb)

robot_gripper = baxter_interface.Gripper(args.limb)

robot_gripper.calibrate()

robot_gripper.close()

home_pos = ik_solution(args.limb, 0.62, -0.6, 0.0, 0.20)

robot_arm.move_to_joint_positions(home_pos)

before_pick_pos =

ik_solution(args.limb, args.x, args.y, args.th, 0.20)

robot_arm.move_to_joint_positions(before_pick_pos)

robot_gripper.open()

pick_pos = ik_solution(args.limb, args.x, args.y, args.th, 0.05)

robot_arm.move_to_joint_positions(pick_pos)

rospy.sleep(2)

robot_gripper.close()

rospy.sleep(2)

robot_arm.move_to_joint_positions(before_pick_pos)

before_drop_pos = ik_solution(args.limb, 0.35, -0.8, 0.0, 0.20)

robot_arm.move_to_joint_positions(before_drop_pos)

drop_pos = ik_solution(args.limb, 0.35, -0.8, 0.0, 0.05)
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robot_arm.move_to_joint_positions(drop_pos)

rospy.sleep(2)

robot_gripper.open()

rospy.sleep(2)

robot_arm.move_to_joint_positions(before_drop_pos)

robot_gripper.close()

robot_arm.move_to_joint_positions(home_pos)

sys.exit()

111



Appendix C

Project Timeline

The time-line in Figure C.1 describes the task-specific work plan against the time

period that is spent on each task. The project included the following seven milestones.

Figure C.1: The project timeline
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