21 research outputs found

    Axiomatic Characterization of the Median and Antimedian Function on a Complete Graph minus a Matching

    Get PDF
    __Abstract__ A median (antimedian) of a profile of vertices on a graph G is a vertex that minimizes (maximizes) the sum of the distances to the elements in the profile. The median (antimedian) function has as output the set of medians (antimedians) of a profile. It is one of the basic models for the location of a desirable (obnoxious) facility in a network. The median function is well studied. For instance it has been characterized axiomatically by three simple axioms on median graphs. The median function behaves nicely on many classes of graphs. In contrast the antimedian function does not have a nice behavior on most classes. So a nice axiomatic characterization may not be expected. In this paper an axiomatic characterization is obtained for the median and antimedian function on complete graphs minus a matching

    Axiomatic Characterization of the Median and Antimedian Functions on Cocktail-Party Graphs and Complete Graphs

    Get PDF
    __Abstract__ A median (antimedian) of a profile of vertices on a graph GG is a vertex that minimizes (maximizes) the remoteness value, that is, the sum of the distances to the elements in the profile. The median (or antimedian) function has as output the set of medians (antimedians) of a profile. It is one of the basic models for the location of a desirable (or obnoxious) facility in a network. The median function is well studied. For instance it has been characterized axiomatically by three simple axioms on median graphs. The median function behaves nicely on many classes of graphs. In contrast the antimedian function does not have a nice behavior on most classes. So a nice axiomatic characterization may not be expected. In this paper an axiomatic characterization is obtained for the median and antimedian functions on complete graphs minus a perfect matching (also known as cocktail-party graphs). In addition a characterization of the antimedian function on complete graphs is presented

    Profile Closeness in Complex Networks

    Full text link
    We introduce a new centrality measure, known as profile closeness, for complex networks. This network attribute originates from the graph-theoretic analysis of consensus problems. We also demonstrate its relevance in inferring the evolution of network communities. Keywords: Complex networks, Centrality, Community, Median, Closeness, Consensus theor

    Medians in Median Graphs and Their Cube Complexes in Linear Time

    Get PDF
    The median of a set of vertices P of a graph G is the set of all vertices x of G minimizing the sum of distances from x to all vertices of P. In this paper, we present a linear time algorithm to compute medians in median graphs, improving over the existing quadratic time algorithm. We also present a linear time algorithm to compute medians in the ??-cube complexes associated with median graphs. Median graphs constitute the principal class of graphs investigated in metric graph theory and have a rich geometric and combinatorial structure. Our algorithm is based on the majority rule characterization of medians in median graphs and on a fast computation of parallelism classes of edges (?-classes or hyperplanes) via Lexicographic Breadth First Search (LexBFS). To prove the correctness of our algorithm, we show that any LexBFS ordering of the vertices of G satisfies the following fellow traveler property of independent interest: the parents of any two adjacent vertices of G are also adjacent

    The Wiener index and the Wiener Complexity of the zero-divisor graph of a ring

    Full text link
    We calculate the Wiener index of the zero-divisor graph of a finite semisimple ring. We also calculate the Wiener complexity of the zero-divisor graph of a finite simple ring and find an upper bound for the Wiener complexity in the semisimple case

    Medians in median graphs and their cube complexes in linear time

    Full text link
    The median of a set of vertices PP of a graph GG is the set of all vertices xx of GG minimizing the sum of distances from xx to all vertices of PP. In this paper, we present a linear time algorithm to compute medians in median graphs, improving over the existing quadratic time algorithm. We also present a linear time algorithm to compute medians in the ℓ1\ell_1-cube complexes associated with median graphs. Median graphs constitute the principal class of graphs investigated in metric graph theory and have a rich geometric and combinatorial structure, due to their bijections with CAT(0) cube complexes and domains of event structures. Our algorithm is based on the majority rule characterization of medians in median graphs and on a fast computation of parallelism classes of edges (Θ\Theta-classes or hyperplanes) via Lexicographic Breadth First Search (LexBFS). To prove the correctness of our algorithm, we show that any LexBFS ordering of the vertices of GG satisfies the following fellow traveler property of independent interest: the parents of any two adjacent vertices of GG are also adjacent. Using the fast computation of the Θ\Theta-classes, we also compute the Wiener index (total distance) of GG in linear time and the distance matrix in optimal quadratic time

    On multimodality of obnoxious faclity location models

    Get PDF
    Obnoxious single facility location models are models that have the aim to find the best location for an undesired facility. Undesired is usually expressed in relation to the so-called demand points that represent locations hindered by the facility. Because obnoxious facility location models as a rule are multimodal, the standard techniques of convex analysis used for locating desirable facilities in the plane may be trapped in local optima instead of the desired global optimum. It is assumed that having more optima coincides with being harder to solve. In this thesis the multimodality of obnoxious single facility location models is investigated in order to know which models are challenging problems in facility location problems and which are suitable for site selection. Selected for this are the obnoxious facility models that appear to be most important in literature. These are the maximin model, that maximizes the minimum distance from demand point to the obnoxious facility, the maxisum model, that maximizes the sum of distance from the demand points to the facility and the minisum model, that minimizes the sum of damage of the facility to the demand points. All models are measured with the Euclidean distances and some models also with the rectilinear distance metric. Furthermore a suitable algorithm is selected for testing multimodality. Of the tested algorithms in this thesis, Multistart is most appropriate. A small numerical experiment shows that Maximin models have on average the most optima, of which the model locating an obnoxious linesegment has the most. Maximin models have few optima and are thus not very hard to solve. From the Minisum models, the models that have the most optima are models that take wind into account. In general can be said that the generic models have less optima than the weighted versions. Models that are measured with the rectilinear norm do have more solutions than the same models measured with the Euclidean norm. This can be explained for the maximin models in the numerical example because the shape of the norm coincides with a bound of the feasible area, so not all solutions are different optima. The difference found in number of optima of the Maxisum and Minisum can not be explained by this phenomenon

    OPTIMIZATION OF RAILWAY TRANSPORTATION HAZMATS AND REGULAR COMMODITIES

    Get PDF
    Transportation of dangerous goods has been receiving more attention in the realm of academic and scientific research during the last few decades as countries have been increasingly becoming industrialized throughout the world, thereby making Hazmats an integral part of our life style. However, the number of scholarly articles in this field is not as many as those of other areas in SCM. Considering the low-probability-and-high-consequence (LPHC) essence of transportation of Hazmats, on the one hand, and immense volume of shipments accounting for more than hundred tons in North America and Europe, on the other, we can safely state that the number of scholarly articles and dissertations have not been proportional to the significance of the subject of interest. On this ground, we conducted our research to contribute towards further developing the domain of Hazmats transportation, and sustainable supply chain management (SSCM), in general terms. Transportation of Hazmats, from logistical standpoint, may include all modes of transport via air, marine, road and rail, as well as intermodal transportation systems. Although road shipment is predominant in most of the literature, railway transportation of Hazmats has proven to be a potentially significant means of transporting dangerous goods with respect to both economies of scale and risk of transportation; these factors, have not just given rise to more thoroughly investigation of intermodal transportation of Hazmats using road and rail networks, but has encouraged the competition between rail and road companies which may indeed have some inherent advantages compared to the other medium due to their infrastructural and technological backgrounds. Truck shipment has ostensibly proven to be providing more flexibility; trains, per contra, provide more reliability in terms of transport risk for conveying Hazmats in bulks. In this thesis, in consonance with the aforementioned motivation, we provide an introduction into the hazardous commodities shipment through rail network in the first chapter of the thesis. Providing relevant statistics on the volume of Hazmat goods, number of accidents, rate of incidents, and rate of fatalities and injuries due to the incidents involving Hazmats, will shed light onto the significance of the topic under study. As well, we review the most pertinent articles while putting more emphasis on the state-of-the-art papers, in chapter two. Following the discussion in chapter 3 and looking at the problem from carrier company’s perspective, a mixed integer quadratically constraint problem (MIQCP) is developed which seeks for the minimization of transportation cost under a set of constraints including those associating with Hazmats. Due to the complexity of the problem, the risk function has been piecewise linearized using a set of auxiliary variables, thereby resulting in an MIP problem. Further, considering the interests of both carrier companies and regulatory agencies, which are minimization of cost and risk, respectively, a multiobjective MINLP model is developed, which has been reduced to an MILP through piecewise linearization of the risk term in the objective function. For both single-objective and multiobjective formulations, model variants with bifurcated and nonbifurcated flows have been presented. Then, in chapter 4, we carry out experiments considering two main cases where the first case presents smaller instances of the problem and the second case focuses on a larger instance of the problem. Eventually, in chapter five, we conclude the dissertation with a summary of the overall discussion as well as presenting some comments on avenues of future work

    Facility location problems and games

    Get PDF
    We concern ourselves with facility location problems and games wherein we must decide upon the optimal locating of facilities. A facility is considered to be any physical location to which customers travel to obtain a service, or from which an agent of the facility travels to customers to deliver a service. We model facilities by points without a capacity limit and assume that customers obtain (or are provided with) their service from the closest facility. Throughout this thesis we consider distance to be measured exclusively using the Manhattan metric, a natural choice in urban settings and also in scenarios arising from clustering for data analysis with heterogeneous dimensions. Additionally we always model the demand for the facility as continuously and uniformly distributed over some convex polygonal demand region P and it is only within P that we consider locating our facilities.We first consider five facility location problems where n facilities are present in a convex polygon in the rectilinear plane, over which continuous and uniform demand is distributed and within which a convex polygonal barrier is located (removing all demand and preventing all travel within the barrier), and the optimal location for an additional facility is sought. We begin with an in-depth analysis of the representation of the bisectors of two facilities affected by the barrier and how it is affected by the position of the additional facility. Following this, a detailed investigation into the changes in the structure of the Voronoi diagram caused by the movement of this additional facility, which governs the form of the objective function for numerous facility location problems, yields a set of linear constraints for a general convex barrier that partitions the market space into a finite number of regions within which the exact solution can be found in polynomial time. This allows us to formulate an exact polynomial-time algorithm that makes use of a triangular decomposition of the incremental Voronoi diagram and the first order optimality conditions.Following this we study competitive location problems in a continuous setting, in which the first player (''White'') places a set of n points in a rectangular domain P of width p and height q, followed by the second player (''Black''), who places the same number of points. Players cannot place points atop one another, nor can they move a point once it has been placed, and after all 2n points have been played each player wins the fraction of the board for which one of their points is closest. The goal for each player in the One-Round Voronoi Game is to score more than half of the area of P, and that of the One-Round Stackelberg Game is to maximise one's total area. Even in the more diverse setting of Manhattan distances, we determine a complete characterisation for the One-Round Voronoi Game wherein White can win only if p/q >= n, otherwise Black wins, and we show each player's winning strategies. For the One-Round Stackelberg Game we explore arrangements of White's points in which the Voronoi cells of individual facilities are equalised with respect to a number of attractive geometric properties such as fairness (equally-sized Voronoi cells) and local optimality (symmetrically balanced Voronoi cell areas), and explore each player's best strategy under certain conditions

    Robustness in facility location

    Get PDF
    Facility location concerns the placement of facilities, for various objectives, by use of mathematical models and solution procedures. Almost all facility location models that can be found in literature are based on minimizing costs or maximizing cover, to cover as much demand as possible. These models are quite efficient for finding an optimal location for a new facility for a particular data set, which is considered to be constant and known in advance. In a real world situation, input data like demand and travelling costs are not fixed, nor known in advance. This uncertainty and uncontrollability can lead to unacceptable losses or even bankruptcy. A way of dealing with these factors is robustness modelling. A robust facility location model aims to locate a facility that stays within predefined limits for all expectable circumstances as good as possible. The deviation robustness concept is used as basis to develop a new competitive deviation robustness model. The competition is modelled with a Huff based model, which calculates the market share of the new facility. Robustness in this model is defined as the ability of a facility location to capture a minimum market share, despite variations in demand. A test case is developed by which algorithms can be tested on their ability to solve robust facility location models. Four stochastic optimization algorithms are considered from which Simulated Annealing turned out to be the most appropriate. The test case is slightly modified for a competitive market situation. With the Simulated Annealing algorithm, the developed competitive deviation model is solved, for three considered norms of deviation. At the end, also a grid search is performed to illustrate the landscape of the objective function of the competitive deviation model. The model appears to be multimodal and seems to be challenging for further research
    corecore