11 research outputs found

    Comparison of Various Similarity Measures for Average Image Hash in Mobile Phone Application

    Get PDF
    One of the main issue in Content Based Image Retrieval (CIBR) is similarity measures for resulting image hashes. The main key challenge is to find the most benefits distance or similarity measures for calculating the similarity in term of speed and computing costs, specially under limited computing capabilities device like mobile phone. This study we utilize twelve most common and popular distance or similarity measures technique implemented in mobile phone application, to be compared and studied. The results show that all similarity measures implemented in this study was perform equally under mobile phone application. This gives more possibilities for method combinations to be implemented for image retrieval

    Computational Performance Evaluation of Two Integer Linear Programming Models for the Minimum Common String Partition Problem

    Full text link
    In the minimum common string partition (MCSP) problem two related input strings are given. "Related" refers to the property that both strings consist of the same set of letters appearing the same number of times in each of the two strings. The MCSP seeks a minimum cardinality partitioning of one string into non-overlapping substrings that is also a valid partitioning for the second string. This problem has applications in bioinformatics e.g. in analyzing related DNA or protein sequences. For strings with lengths less than about 1000 letters, a previously published integer linear programming (ILP) formulation yields, when solved with a state-of-the-art solver such as CPLEX, satisfactory results. In this work, we propose a new, alternative ILP model that is compared to the former one. While a polyhedral study shows the linear programming relaxations of the two models to be equally strong, a comprehensive experimental comparison using real-world as well as artificially created benchmark instances indicates substantial computational advantages of the new formulation.Comment: arXiv admin note: text overlap with arXiv:1405.5646 This paper version replaces the one submitted on January 10, 2015, due to detected error in the calculation of the variables involved in the ILP model

    Sequence Alignment in Molecular Biology

    Get PDF

    Construct, Merge, Solve & Adapt A new general algorithm for combinatorial optimization

    Get PDF
    [EN]This paper describes a general hybrid metaheuristic for combinatorial optimization labelled Construct,Merge, Solve & Adapt. The proposed algorithm is a specific instantiation of a framework known from theliterature as Generate-And-Solve, which is based on the following general idea. First, generate a reducedsub-instance of the original problem instance, in a way such that a solution to the sub-instance is also asolution to the original problem instance. Second, apply an exact solver to the reduced sub-instance inorder to obtain a (possibly) high quality solution to the original problem instance. And third, make use ofthe results of the exact solver as feedback for the next algorithm iteration. The minimum common stringpartition problem and the minimum covering arborescence problem are chosen as test cases in order todemonstrate the application of the proposed algorithm. The obtained results show that the algorithm iscompetitive with the exact solver for small to medium size problem instances, while it significantlyoutperforms the exact solver for larger problem instancesC. Blum was supported by project TIN2012-37930-02 of the Spanish Government. In addition, support is acknowledged from IKERBASQUE (Basque Foundation for Science). J.A. Lozano was partially supported by the IT609-13 program (Basque Government) and project TIN2013-41272P (Spanish Ministry of Science and Innovation)Peer reviewe

    On solving the most strings with few bad columns problem: An ILP model and heuristics

    Get PDF
    The most strings with few bad columns problem is an NP-hard combinatorial optimization problem from the bioinformatics field. This paper presents the first integer linear programming model for this problem. Moreover, a simple greedy heuristic and a more sophisticated extension, namely a greedy-based pilot method, are proposed. Experiments show that, as expected, the greedy-based pilot method improves over the greedy strategy. For problem instances of small and medium size the best results were obtained by solving the integer linear programming model by CPLEX, while the greedy-based pilot methods scales much better to large problem instances.Peer ReviewedPostprint (author's final draft

    Beam search for the longest common subsequence problem

    Get PDF
    The longest common subsequence problem is a classical string problem that concerns finding the common part of a set of strings. It has several important applications, for example, pattern recognition or computational biology. Most research efforts up to now have focused on solving this problem optimally. In comparison, only few works exist dealing with heuristic approaches. In this work we present a deterministic beam search algorithm. The results show that our algorithm outperforms classical approaches as well as recent metaheuristic approaches.Postprint (published version

    Development of hybrid metaheuristics based on instance reduction for combinatorial optimization problems

    Get PDF
    113 p.La tesis presentada describe el desarrollo de algoritmos metaheurísticos híbridos, basados en reducción de instancias de problema. Éstos son enfocados en la resolución de problemas de optimización combinatorial. La motivación original de la investigación radicó en lograr, a través de la reducción de instancias de problemas, el uso efectivo de modelos de programación lineal entera (ILP) sobre problemas que dado su tamaño no admiten el uso directo con esta técnica exacta. En este contexto se presenta entre otros desarrollos el framework Construct, Merge, Solve & Adapt (CMSA) para resolución de problemas de optimización combinatorial en general, el cual posteriormente fue adaptado para mejorar el desempeño de otras metaheurísticas sin el uso de modelos ILP. Los algoritmos presentados mostraron resultados que compiten o superan el estado del arte sobre los problemas Minimum Common String Partition (MCSP), Minimum Covering Arborescence (MCA) y Weighted Independent Domination (WID)
    corecore