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Abstract—The most strings with few bad columns problem
is an NP-hard combinatorial optimization problem from the
bioinformatics field. This paper presents the first integer linear
programming model for this problem. Moreover, a simple greedy
heuristic and a more sophisticated extension, namely a greedy-
based pilot method, are proposed. Experiments show that, as
expected, the greedy-based pilot method improves over the greedy
strategy. For problem instances of small and medium size the best
results were obtained by solving the integer linear programming
model by CPLEX, while the greedy-based pilot methods scales
much better to large problem instances.

I. INTRODUCTION

Optimization problems related to strings—such as protein
or DNA sequences—are very common in bioinformatics. Ex-
amples include string selection problems [1]-[3], the longest
common subsequence problem and its variants [4], [5], align-
ment problems [6], [7], and similarity search [8]. In this work
we consider the so-called most strings with few bad columns
(MSFBC) problem, which is an NP-hard combinatorial opti-
mization problem. The problem was introduced in [9] in order
to model the following situtation. Suppose that we are given
a set of, for example, DNA sequences from a heterogeneous
population consisting of two subgroups: (1) a large subset
of DNA sequences that are identical apart from at most k
positions at which mutations may have occurred, and (2) a
subset of outliers. The MSFBC problem deals with separating
the two subsets.

The problem can technically be described as follows. Given
is a set I of n input strings of length m over a finite alphabet
3, thatis, I = {s1, ..., Sp}. The j-th position of a string s; is
henceforth denoted by s;[j]. Moreover, given is a fixed value
k < m. We are looking for a subset S C I of maximal size
such that the strings in S differ in at most k& positions. Note
that the strings of a subset I C S are said to differ in a position
1 < 7 < m if, and only if, two strings s;, s, € S exist such
that s;[j] # s.[j]. Finally, a position j in which the strings
from S differ is called a bad column.!

The authors of [9] showed that no polynomial-time
approximation scheme (PTAS) for the MSFBC problem exists.
Moreover, they state that the problem is a generalization of

INote, in this context, that the set of input strings can be seen in form of
a matrix in which the strings are the rows.

the problem of finding tandem repeats in a string [10]. As far
as we know, no practical algorithm for solving the MSFBC
problem has yet been proposed. The contribution of this paper
is, first, an integer linear programming (ILP) model for the
MSFBC problem. Second, we also propose a simple greedy
heuristic as well as a greedy-based pilot method, which is
an extension of the simple greedy heuristic. An extensive
experimental evaluation shows that solving the ILP model
with CPLEX is very competitive for instances of small and
medium size. In contrast, large instances are better dealt with
the greedy-based pilot method.

The remainder of this paper is organized as follows.
Section II introduces the ILP model for the MSFBC problem,
while Section III describes the proposed heuristics. An the
experimental comparison is performed in Section IV, and
Section V is dedicated to conclusions and an outlook to future
work.

II. AN ILP MODEL FOR THE MSFBC PROBLEM

For the description of the ILP model let ¥; := {s;[j] |
i=1,...,n}, that is, Y; C X is the set of letters appearing
at least once at the j-th position of the n input strings. The
ILP model for the MSFBC problem that we suggest makes use
of several types of binary variables. First, the set of variables
contains a binary variable x; for each input string s;. In case
x; = 1, the corresponding input string s; is part of the solution,
otherwise not. Furthermore, for each combination of a position
J @ =1,...,m) and a letter a € X; we use a binary variable
5. Variable 5 is forced to assume value one (zf =1 in
case at least one string s; with s;[j] = a is chosen for the
solution. Finally, there is a binary variable y; for each postion
Jj =1,...,m. Variable y; is forced to assume value one (y; =
1) in case the strings chosen for the solution differ at position
j. Given these variables, the ILP can be formulated as follows.
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x; € {0,1} fori=1,...,n

2§ €{0,1} forj=1,...,m
and a € X;

y; € {0,1} forj=1,...,m

The objective function (1) maximizes the number of chosen
strings. Constraints (2) ensure that, if a string s; is selected
(z; = 1), the variable z;i[] | which indicates that letter sil4]
appears at position j in at least one of the selected strings, has
value one. Furthermore, constraints (3) ensure that y; is set
to one in case the selected strings differ at position j. Finally,
constraint (4) ensures that not more than £ bad columns are
permitted.

III. HEURISTIC APPROACHES

In addition to applying the ILP solver CPLEX to the ILP
model outlined in the previous section, we also developed
two heuristic approaches: (1) a greedy algorithm, and (2) a
greedy-based pilot method, which is an extension of the greedy
algorithm with lookahead features.

A. Greedy Approach

The proposed greedy algorithm takes a partial solution SP,
which is a subset of the set I of input strings, as input. In the
standalone version of the greedy algorithm this partial solution
is empty. When used within the greedy-based pilot method
outlined in Section III-B, the partial solution may be of any
size. Henceforth, given a partial solution S?, bc(SP) denotes
the number of bad columns with respect to SP, that is, the
number of columns j such that at least two strings s;, s, € SP
exist with s;[j] # s.[j]. A valid partial solution S? to the
MSWBC problem fullfills the following two conditions:

1) be(SP) <k
2)  There exist at least one string s; € I \ SP such that
be(SP U {s;}) < k.

Obviously, a valid complete solution .S only fullfills the first
one of these conditions.

The greedy algorithm, which is pseudo-coded in Algo-
rithm 1, starts with a given partial solution SP. At each itera-
tion, exactly one of the strings from 7'\ S? is chosen, according
to a greedy function, and added to SP. The greedy function that
is used concerns the number of bad columns. More specifically,
among all strings from F := {s € I\ S? | be(SP U {s}) < k}
the one for which bc(SP U {s}) is minimal is selected. In

Algorithm 1 Greedy Algorithm

1: input: set of input strings /, maximum number of allowed
bad columns k, partial solution SP

2: if S? = () then

3. s* := SelectFirstString(1)
4 5P = {s*}

5: end if
6
7
8

: E:={seI\SP|bc(SPU{s}) <k}

: while £ # () do

o 8% = argmin{bc(S? U {s}) | s € E}
9:  SP:=5PU{s*}
100 E:={sel\SP|bc(SPU{s}) <k}
11: end while
12: output: A complete solution S = SP

other words, at each iteration the string that causes a minimal
increase in the number of bad columns is chosen. In case of
ties, the first one encountered is selected.

The last remaining question concerns the choice of the first
string in case of an empty partial solution given as input (see
function SelectFirstString() in line 3 of Algorithm 1). Note
that, in this case, a different criterion must be used, because
adding any string to the empty partial solution results in a
partial solution with no bad columns at all. We decided for
the following frequency-based approach. First, let fr; , for all
a € Yand j =1,...,m be the frequency of letter a at position
j in the input strings from I. For example, if a appears in 5
of the n input strings at position j, fr;, = 5/n. With this
definition, the following measure can be computed for each
s; € I:

w(s;) == Zfr;’sim 5)
j=1

Remember, in this context, that s;[j] denotes the letter at
position j of string s;. In words, w(s;) is calculated as the sum
of the frequencies of the letters in s;. The following string is
then returned by function SelectFirstString(1):

s 1= argmax{w(s;) | s; € I} (6)

To conclude, the advantage of this greedy algorithm is to
be found in its simplicity and low resource requirements. On
the downside, no performance guarantees are given.

B. Greedy-Based Pilot Method

Greedy-based pilot methods [11] are simple extensions
of greedy heuristics aimed at obtaining better solutions by
looking ahead at each construction step for each possible
choice in order to avoid the greedy trap. These methods were
initially proposed in the context of the Steiner tree problem
in [12], [13]. However, in the meanwhile, applications to
other problems—such as the optimization of bycicle sharing
systems [14]—exist.

Greedy-based pilot methods basically work as follows.
Given a current partial solution SP, and the set E of options
to extend this partial solution, the pilot method provides all
partial solutions (SP U s), for s € E, as input to the greedy
algorithm which is the basic ingredient of the pilot method. In
this way, |E| greedy solutions are produced, and subsequently



Algorithm 2 Greedy-Based Pilot Algorithm

1: input: set of input strings /, maximum number of allowed
bad columns &
SP =)
E:={seI\SP|bc(SPU{s}) <k}
while F # ) do
s* := argmax{Greedy(S? U {s}) | s € E}
SP = SPU{s*}
E:={seI\SP|bc(SPU{s}) <k}
end while
output: A complete solution S = SP

R I A

evaluated by the objective function. The option s* € E which
is finally chosen to extend partial solution S? is the one that
led to the best greedy solution. These steps are iterated until
E is the empty set, that is, until SP is a complete solution.

Obviously, a greedy-based pilot method potentially avoids
locally wrong decisions caused by the greedy function by
means of the lookahead mechanism that is employed. However,
on the downside, the time complexity with respect to the basic
greedy algorithm increases significantly. Therefore, greedy-
based pilot methods should only be employed in those cases
in which the basic greedy algorithm is reasonably fast.

In the following we assume that function Greedy(SP)
from line 5 of Algorithm 2 calls the greedy algorithm from
Algorithm 1 with partial solution SP as input. Moreover, we
assume that this function simply returns the objective function
value of the complete solution constructed by Algorithm 1 with
SP as input. The greedy-based pilot method which makes use
of this function is pseudo-coded in Algorithm 2.

IV. EXPERIMENTAL EVALUATION

Henceforth, the greedy algorithm from Section III-A is de-
noted by GREEDY, while the greedy-based pilot method from
Section III-B is denoted by PILOT. We implemented GREEDY
and PILOT in ANSI C++ using GCC 4.7.3 for compiling the
software. Moreover, the ILP outlined in Section II was solved
with IBM ILOG CPLEX VI12.1 (single-threaded execution).
The experimental results that are presented in the following
were obtained on a cluster of computers with “Intel® Xeon®
CPU 5670” CPUs of 12 nuclei of 2933 MHz and (in total)
32 Gigabytes of RAM. For each run of CPLEX we allowed a
maximum of 4 Gigabytes of RAM. In the following we first
describe the set of benchmark instances. Finally, the section
concludes with a detailed analysis of the experimental results.

A. Benchmark Instances

For the experimental comparison of the methods considered
in this work we generated a set of random instances. These
random instances are characterized by four different param-
eters: (1) the number of input strings (n), (2) the length of
the input strings (m), (3) the alphabet size (|X]), and (4) the
so-called change probability (p.). The generation of a random
instance works as follows. First, a base string s of length m is
generated uniformly at random, that is, each letter a € X has
a probabiliy of 1/|¥| to appear at any of the m positions of
s. Then, each of the n input strings is generated as follows.
First, s is copied into a new string s’. Then, each letter of

s’ is exchanged for a randomly chosen letter from X with a
probability of p.. Note that the new letter is not necessarily
different from the original one. Moreover, note that we forced
at least one change per input string.

The following values were used for the generation of the
benchmark set:

e € {100,500,1000}

e m € {100,500, 1000}

o [¥]€{4,12,20}

e p. € {0.001,0.003,0.005}

For each combination of these values we randomly generated
10 instances, which results in a total of 810 benchmark
instances. To test each instance with different limits for the
number of allowed bad columns, we used values for k£ from
{2,n/20,n/10}.

B. Results

The results are presented in three Tables: Table I contains
the results for all instances with |X| = 4, Table II contains the
results for all instances with |X| = 12, and Table III shows
the results for instances with |X| = 20. All three tables have
the following format. The first three table columns indicate
the number of input strings (n), the string length (m) and the
change probability (p.). The result of GREEDY, PILOT and
CPLEX are presented in three groups of columns, one group
for each of the three values for k. In each group of columns,
the results are presented in the following way. For GREEDY
and PILOT with provide the average of the results obtained
for the 10 random instances of each table row (columns
with heading “mean”), and the corresponding average of the
computation times in seconds (columns with heading “time”).
For CPLEX, which was applied for a maximum of 3600 CPU
seconds to each problem instance, we provide the average
result (column with heading “mean”) and the corresponding
average optimality gap (column with heading “gap”). Note
that in those cases in which this gap has value zero, the 10
corresponding problem instances were solved to optimality
within the allowed computation time limit. Finally, note that
the best result of each table row is marked in bold font.

Apart from the numerical results provided in the form of
tables, the graphics of Figure 1 show the improvement of
PILOT over GREED exemplary for the instances with |X| = 20,
and the graphics of Figure 2 show the improvement of PILOT
over CPLEX exemplary for the instances with |X| = 12.
The notation X-Y-Z on the x-axis of these figures has the
following meaning. X, Y, and Z take values from {S,M, L},
where S refers to small, M refers to medium and L refers to
large. While X refers to the number of input strings, Y refers
to their length, and Z to the probablity of change. In case of
positions X and Y, S refers to 100, M to 500, and L to 1000,
while in the case of Z, S refers to 0.001, M to 0.003, and L
to 0.005. The following observations can be made:

e  First, no substantial differences can be observed con-
cerning the relative performance of the algorithms for
what concerns instances of different alphabet sizes.
The only difference is that the objective function
values decrease with increasing alphabet size.
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Fig. 1.

Improvement of PILOT over GREEDY (in absolute terms) concerning the instances with || = 20. Each box shows these differences for the corresponding

10 instances. Note that negative values would indicate that obtained a better result than GSA.

Due to its design, the results of PILOT are always
at least as good as those of GREEDY. Moreover, the
advantages of PILOT over GREEDY tend to grow with
an increasing number of input strings. Surprisingly,
when k& = 2, the advantages of PILOT over GREEDY
grow with decreasing input string length. This can
still, to some extent, be observed for k n/20.
However, when n = n/10 this effect is no more
noticable.

Concerning the comparison of PILOT and CPLEX we
can observe that CPLEX generally outperforms PILOT
for small and medium size instances. Hereby, the ad-
vantages of CPLEX over PILOT are more pronounced
for what concerns medium size instances with k =
n/20 and k = n/10; see Figures 2b and 2¢, which
show the case for instances with |X| = 12. On the
other side, when large size instances are concerned,
CPLEX is not competitive anymore.

Concerning computation time requirements, both PI-
LOT and CPLEX require a substantially higher com-
putation time than GREEDY. In fact, both methods
cannot be applied to instances with more than 1000
input strings.

In general, the rather big advantage of CPLEX over PILOT for
medium size instances indicates that there is still a lot of room
for improvement for what concerns heuristic methods.

V. CONCLUSIONS AND OUTLOOK

In this paper we considered the most strings with few bad
columns problem, which is an NP-hard combinatorial opti-
mization problem from the bioinformatics field. We proposed
the first algorithmic approaches to solve this problem. An
integer linear programming model was presented, wich was
solved by CPLEX. In second place, a greedy heuristic, together
with an extension known as greedy-based pilot method, was
proposed. An extensive experimental evaluation revealed that
the best strategy among these three approaches for instances
of small and medium size is CPLEX. However, when large
problem instances are concerned, CPLEX is outperformed by
the greedy-based pilot method.

Concerning future work we plan to consider also other
metaheuristic techniques such as, for example, local search
based strategies and evolutionary algorithms. Moreover, we
plan to study ways in which heuristics and metaheuristics
can be beneficially combined with CPLEX for solving this
problem.
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Improvement of PILOT over CPLEX

Fig. 2.
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(a) Results for k = 2. (b) Results for k = n/20.
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(c) Results for k = n/10.
Improvement of PILOT over CPLEX (in absolute terms) concerning the instances with |X| = 12. Each box shows these differences for the corresponding

10 instances. Note that negative values indicate that CPLEX obtained a better result than PILOT.

Acknowledgement. This work was supported by project TIN2012-37930 (Spanish

Government) and project SGR 2014-1034 (Generalitat de Catalunya). Moreover, support
is acknowledged from IKERBASQUE. Finally, Evelia Lizarraga-Olivas acknowledges
support by a doctoral grant (number 253787) from the Mexican National Council for

Science and Technology (CONACYT). All experiments were executed in the High

Performance Computing environment managed by RDIlab (http://rdlab.cs.upc.edu) and

we thank them for their support.

[1]

[2]

[3]

[4]

REFERENCES

C. Meneses, C. Oliveira, and P. Pardalos, “Optimization techniques
for string selection and comparison problems in genomics,” IEEE
Engineering in Medicine and Biology Magazine, vol. 24, no. 3, pp.
81-87, 2005.

S. Mousavi, M. Babaie, and M. Montazerian, “An improved heuristic
for the far from most strings problem,” Journal of Heuristics, vol. 18,
pp- 239-262, 2012.

E. Pappalardo, P. M. Pardalos, and G. Stracquadanio, Optimization
approaches for solving string selection problems. Springer New York,
2013.

W. J. Hsu and M. W. Du, “Computing a longest common subsequence
for a set of strings,” BIT Numerical Mathematics, vol. 24, no. 1, pp.
45-59, 1984.

T. Smith and M. Waterman, “Identification of common molecular

subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195—
197, 1981.

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

D. Gusfield, Algorithms on Strings, Trees, and Sequences, ser. Computer
Science and Computational Biology.  Cambridge University Press,
Cambridge, 1997.

S. Rajasekaran, H. Nick, P. M. Pardalos, S. Sahni, and G. Shaw, “Effi-
cient algorithms for local alignment search,” Journal of Combinatorial
Optimization, vol. 5, no. 1, pp. 117-124, 2001.

S. Rajasekaran, Y. Hu, J. Luo, H. Nick, P. M. Pardalos, S. Sahni,
and G. Shaw, “Efficient algorithms for similarity search,” Journal of
Combinatorial Optimization, vol. 5, no. 1, pp. 125-132, 2001.

C. Boucher, G. M. Landau, A. Levy, D. Pritchard, and O. Weimann,
“On approximating string selection problems with outliers,” Theoretical
Computer Science, vol. 498, pp. 107-114, 2013.

G. M. Landau, J. P. Schmidt, and D. Sokol, “An algorithm for approx-
ixmate tandem repeat,” Journal of Computational Biology, vol. 8, no. 1,
pp. 1-18, 2001.

S. VoB, A. Fink, and C. Duin, “Looking ahead with the pilot method,”
Annals of Operations Research, vol. 136, no. 1, pp. 285-302, 2005.
C. Duin and S. VoB, “Steiner tree heuristicsA survey,” in Operations
Research Proceedings 1993. Springer Verlag, 1994, pp. 485-496.
——, “The pilot method: A strategy for heuristic repetition with
application to the steiner problem in graphs,” Networks, vol. 34, no. 3,
pp. 181-191, 1999.

M. Rainer-Harbach, P. Papazek, G. R. Raidl, B. Hu, and C. Kloimiillner,
“Pilot, grasp, and vns approaches for the static balancing of bicycle
sharing systems,” Journal of Global Optimization, 2014, in press.



