
Beam Search for the Longest Common Subsequence Problem

Christian Blum1, Maria J. Blesa1 and Manuel López-Ibáñez2

1ALBCOM, Dept. Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya, Barcelona, Spain

{cblum,mjblesa}@lsi.upc.edu

2School of Engineering and the Built Environment

Napier University, Edinburgh, UK

m.lopez-ibanez@napier.ac.uk

Abstract

The longest common subsequence problem is a classical string problem that concerns
finding the common part of a set of strings. It has several important applications, for
example, in pattern recognition or computational biology. Most research efforts up to
now have focused on solving this problem optimally. In comparison, only few works exist
dealing with heuristic approaches. In this work we present a deterministic beam search
algorithm. The results show that our algorithm outperforms classical approaches as well
as recent metaheuristic approaches.

1 Introduction

The longest common subsequence (LCS) problem is a classical string problem. Given a string
s over an alphabet Σ, each string that can be obtained from s by deleting characters is called
a subsequence of s. Given a problem instance (S, Σ), where S = {s1, s2, . . . , sn} is a set of n
strings over a finite alphabet Σ, the problem consists in finding the longest string t∗ that is a
subsequence of all the strings in S. Such a string t∗ is called the longest common subsequence

of the strings in S.
Traditional computer science applications of this problem are in data compression [25],

syntactic pattern recognition [17], file comparison [1], text edition [20] and query optimization
in databases [21]. More recent applications include, for example, computational biology [24,
15] and the production of circuits in field programmable gate arrays [6].

Existing work. The LCS problem was shown to be NP-hard [18] for an arbitrary number
n of input strings. If n is fixed, the problem is polynomially solvable by dynamic program-
ming [12]. Standard dynamic programming requires O(ln) of time and space, where l is the
length of the longest input string and n is the number of strings. While several improve-
ments may reduce the complexity of standard dynamic programming to O(ln−1) (Bergoth
et al. [3] provide numerous references), dynamic programming becomes quickly impractical
when either n or l grow.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An alternative to dynamic programming was proposed by Hsu and Du [13]. Their algo-
rithm finds the longest path from the root to the leaves in a search tree where each node
has |Σ| children and each child corresponds to adding one letter to the common subsequence.
This algorithm was further improved by Singireddy [23] by incorporating branch and bound
techniques. The resulting algorithm, called Specialized Branching (SB), has a complexity
of O(n|Σ||t

∗|), where t∗ is the LCS. According to the empirical results of Easton and Sin-
gireddy [8], SB outperforms dynamic programming for large n and small l. Singireddy [23]
also proposed an integer programming approach based on Branch and Cut, however, this
technique is also of complexity O(ln).

Approximate methods for the LCS problem were first proposed by Chin and Poon [7] and
Jiang and Li [16]. The Long Run algorithm (LR) [16] returns the longest common subsequence
consisting of a single letter, which is always within a factor of |Σ| of the optimal solution.
The Expansion Algorithm (Expansion) proposed by Bonizzoni et al. [5] and the Best-Next

heuristic [9, 14] also guarantee a factor of |Σ| of the optimal common subsequence in the worst
case, however, their results are typically much better than those of LR in terms of solution
quality. Guenoche and Vitte [11] described a greedy algorithm that iteratively selects the
next letter that minimises a given greedy function. Their algorithm uses both forward and
backward strategies, and the resulting solutions are merged subsequently. Earlier approximate
algorithms for the LCS problem can be found in Bergroth et al. [2] and Brisk et al. [6].

More recently, Easton and Singireddy [8] proposed an approximate large neighbourhood
search technique called Time Horizon Specialized Branching (THSB) that makes internal use
of the Specialized Branching algorithm. In addition, they implemented a variant of Guenoche
and Vitte’s algorithm [11], called G&V, that selects the best solution obtained from running
the original algorithm with four different greedy functions proposed by Guenoche [10]. Easton
and Singireddy [8] compared their algorithm with G&V, LR and Expansion, showing that
THSB was able to obtain better results than all of them in terms of solution quality. Their
results also showed that G&V outperforms Expansion and LR with respect to solution
quality, while requiring a shorter time than Expansion and a similar computation time as
LR. Finally, Shyu and Tsai [22] studied the application of ant colony optimization (ACO) to
the LCS problem and concluded that their ACO algorithm dominates both Expansion and
Best-Next in terms of solution quality, while being much faster than Expansion.

Our contribution. In this work we propose the application of beam search (Bs) to the
LCS problem. Beam search is a classical tree search method that was introduced in the
context of scheduling [19]. The central idea behind beam search is the parallel and non-
independent construction of a limited number of solutions with the help of a greedy function
and an upper bound to evaluate partial solutions. The algorithm presented in this paper is an
extended version of the preliminary approach presented by Blum and Blesa [4]. Extensions
with respect to the preliminary approach include the use of an additional method for pruning
the search space and an exhaustive experimental evaluation. We provide a study of different
parameter settings that gives inside into the working of the algorithm. Furthermore, we apply
the algorithm to recently published benchmark sets. This enables a comparison to existing
methods from the literature.

The paper is organized as follows. In Section 2 we present the beam search approach
to the LCS problem. The experimental evaluation of the algorithms is shown in Section 3.
Finally, in Section 4 we offer conclusions and an outlook to future work.

2

Algorithm 1 Best-Next heuristic for the LCS problem

1: input: a problem instance (S, Σ)
2: initialization: t := ε (where ε is the empty string)
3: while |Σnd

t | > 0 do
4: a := Choose From(Σnd

t)
5: t := ta
6: end while
7: output: common subsequence t

2 Beam Search

Beam search (Bs) is a classical AI technique that was introduced in the context of schedul-
ing [19]. Bs performs a heuristic version of branch and bound with a breadth-first search
strategy. Only the most promising kbw nodes (that is, partial solutions) at each level of the
search tree are selected for further examination. Parameter kbw is refered to as the beam
width. In general, the larger is the beam width the better are the results and the slower is
the algorithm. Crucial components of Bs are the underlying constructive heuristic for ex-
tending partial solutions and the upper bound function for evaluating partial solutions. In
the following we present our implementation for the LCS problem in detail.

2.1 Constructive Heuristic

The so-called Best-Next heuristic [9, 14] is a fast heuristic for the LCS problem. We will
use the construction mechanism of this heuristic for beam search. Given a problem instance
(S, Σ), the Best-Next heuristic produces a common subsequence t sequentially from left to
right, adding at each construction step exactly one letter to the current subsequence. The
algorithm stops when no more letters can be added, that is, each further letter would produce
an invalid solution. The pseudo-code of this heuristic is shown in Algorithm 1. Before we
explain all the aspects of Best-Next we first need to introduce the following definitions and
notations. They all assume a given common subsequence t of the strings in S (see Figure 1
for an example).

1. Let si = xi ·yi be the partition of si into substrings xi and yi such that t is a subsequence
of xi, and yi has maximal length. Given this partition, which is well-defined, we keep
track of position pointers pi := |xi| for i = 1, . . . , n.

2. The position of the first appearance of a letter a ∈ Σ in a string si ∈ S after the position
pointer pi is well-defined and denoted by pa

i . In case letter a ∈ Σ does not appear in yi,
pa

i is set to ∞.

3. Letter a ∈ Σ is called dominated, if exists at least one letter b ∈ Σ, a 6= b, such that
pb

i < pa
i for i = 1, . . . , n;

4. Σnd
t ⊆ Σ denotes the set of non-dominated letters of the alphabet Σ with respect to t.

Obviously it is required that a letter a ∈ Σnd
t appears in each string si at least once

after the position pointer pi.

Function Choose From(Σnd
t)—see line 4 of Algorithm 1—is used to choose at each iteration

exactly one letter from Σnd
t . The chosen letter is subsequently appended to t. A letter is

3

x1
︷ ︸︸ ︷

a c b c a d

y1
︷ ︸︸ ︷

b b d

p1 pb
1 pd

1

(a) String s1

x2
︷ ︸︸ ︷

c a b d a c d

y2
︷︸︸︷

c d

p2 pc
2pd

2

(b) String s2

x3
︷ ︸︸ ︷

b a b c d

y3
︷ ︸︸ ︷

d a a b

p3 pd
3
pa
3 pb

3

(c) String s3

Figure 1: This example assumes that a problem instance (S = {s1, s2, s3}, Σ = {a, b, c, d})
is given where s1 = acbcadbbd, s2 = cabdacdcd, and s3 = babcddaab. Moreover, t = abcd.
Figures (a), (b), and (c) show the corresponding division of si into xi and yi, as well as the
setting of the pointers pi and the next positions of the 4 letters in yi. In case a letter does
not appear in yi, the corresponding pointer is set to ∞. For example, as letter a does not
appear in y1, pa

1 is set to ∞.

chosen by means of a so-called greedy function. In the following we present two different
greedy functions that may be used. The first one—henceforth denoted by η1()—is known
from the literature (see, for example, Fraser [9]). The second one—henceforth denoted by
η2()—is new. They are defined as follows:

η1(a) := min{|si| − pa
i | i = 1, . . . , n} ,∀ a ∈ Σnd

t (1)

η2(a) :=




∑

i=1,...,n

pa
i − pi

|yi|





−1

,∀ a ∈ Σnd

t (2)

In function Choose From(Σnd
t) we choose a ∈ Σnd

t such that η1(a) ≥ η1(b) (respectively, η2(a) ≥
η2(b)) for all b ∈ Σnd

t . This completes the description of the Best-Next heuristic.

2.2 Upper Bound

A second crucial element of Bs is the upper bound function used by the algorithm to evaluate
partial solutions. Remember that a given common subsequence t splits each string si ∈ S into
a first part xi and into a second part yi, that is, si = xi ·yi (see previous section). Henceforth,
|yi|a denotes the number of occurrences of letter a ∈ Σ in yi. The upper bound value of t is
defined as follows:

UB(t) := |t| +
∑

a∈Σ

min{|yi|a | i = 1, . . . , n} . (3)

In words, for each letter a ∈ Σ the minimum number (over i = 1, . . . , n) of its occurences in
yi is taken. Summing up these minima and adding the resulting sum to the length of t results
in the upper bound value. Note that this upper bound function can be efficiently computed
by keeping appropriate data structures. Even though the resulting upper bound values are
not very tight, we will show in the section on experimental results that the bound is able to
guide the search process of Bs well.

2.3 The Beam Search Algorithm

As mentioned before, our Bs algorithm is based on the construction mechanism of the Best-
Next heuristic and on the upper bound function outlined in previous sections. The version of
Bs that we implemented—see Algorithm 2—works roughly as follows: Apart from a problem
instance (S, Σ), the algorithm requires three input parameters: kbw ∈ Z

+ is the so-called beam

4

Algorithm 2 Beam search (Bs) for the LCS problem

1: input: a problem instance (S, Σ), kbw, µ, η()
2: Bcompl := ∅, B := {ε}, tbsf := ε
3: while B 6= ∅ do
4: C := Produce Children(B)
5: C := Filter Children(C) {this function is optional}
6: B := ∅
7: for k = 1, . . . ,min{bµkbwc, |C|} do
8: 〈t, a〉 := Choose Best Child(C, η())
9: t := ta

10: if UB(t) = |t| then
11: Bcompl := Bcompl ∪ {t}
12: if |t| > |tbsf| then tbsf := t end if
13: else
14: if UB(t) ≥ |tbsf| then B := B ∪ {t} end if
15: end if
16: C := C \ {t}
17: end for
18: B := Reduce(B, kbw)
19: end while
20: output: argmax {|t| | t ∈ Bcompl}

width, µ ∈ R
+ ≥ 1 is a parameter that is used to determine the number of children that can

be chosen at each step, and η() is the particular greedy function used, either η1() or η2(). At
each step of the algorithm is given a set B of subsequences called the beam. At the start of
the algorithm B only contains the empty string ε (that is, B := {ε}). Let C denote the set
of all possible extensions (children) of the subsequences in B.1 At each step, the best bµkbwc
partial solutions from C are selected with respect to the greedy function. A chosen partial
solution is either stored in set Bcompl in case it is a complete solution, or—in case its upper
bound value UB() is greater than the length of the best-so-far solution tbsf—it is stored in
the new beam B. At the end of each step, the new beam B is reduced in case it contains
more than kbw partial solutions. This is done by evaluating the subsequences in B by means
of the upper bound function UB(), and by subsequently selecting the kbw subsequences with
the greatest upper bound values.

In the following we explain the functions of Algorithm 2 in detail. The algorithm uses
four different functions. Given the current beam B as input, function Produce Children(B)
produces the set C of non-dominated children (extensions) of all the subsequences in B.
More in detail, C is a set of tuples 〈t, a〉, where t ∈ B and a ∈ Σnd

t . The second function—
Filter Children(C)—extends the non-domination relation, as defined in Section 2.1 for the
children of a subsequence, for children of different subsequences of the same length. More
specifically, given two children 〈t, a〉 ∈ C and 〈z, b〉 ∈ C (where t 6= z), 〈t, a〉 dominates 〈z, b〉 if
and only if the position pointers for a appear before the position pointers for b in all n strings.

1Remember that the construction mechanism of the Best-Next heuristic is based on extending a subse-
quence t by appending one letter from Σnd

t .

5

The third function—Choose Best Child(C, η())—is used for choosing extensions from C.
This function requires one of the two greedy functions outlined before as a parameter. How-
ever, note that for the comparison of two children 〈t, a〉 ∈ C and 〈z, b〉 ∈ C the greedy
function is only useful in case t = z, while it might be misleading in case t 6= z. We solved
this problem as follows. First, instead of the weights assigned by a greedy function, we use
the corresponding ranks. More specifically, given all children {〈t, a〉 | a ∈ Σnd

t } descending
from a subsequence t, the child 〈t, b〉 with η(〈t, b〉) ≥ η(〈t, a〉) for all a ∈ Σnd

t receives rank 1,
denoted by r(〈t, b〉) = 1. The child with the second highest greedy weight receives rank 2,
etc. Note that the notation η(a) (as introduced previously) is extended here to the notation
η(〈t, a〉). Next, for evaluating a child 〈t, a〉 we use the sum of the ranks of the greedy weights
that correspond to the construction steps performed to construct subsequence ta, that is

ν(〈t, a〉) := r(〈ε, t1〉) +





|t|−1
∑

i=1

r(〈t1 · · · ti, ti+1〉)



 + r(〈t, a〉) , (4)

where ε is the empty string, and ti denotes the letter at position i in subsequence t. Morever,
t1 · · · ti denotes the substring of t from position 1 to postion i. In contrast to the greedy
function weights, these newly defined ν()-values can be used to compare children descending
from different subsequences. In fact, a call of function Choose Best Child(C, η()) returns the
partial solution in C with maximal ν()−1 value.

Finally, the last function used by the Bs algorithm is Reduce(B, kbw). In case |B| > kbw,
this function removes from B step-by-step those subsequences t that have an upper bound
value UB(t) smaller or equal to the upper bound value of all the other subsequences in B.
The removal process stops once |B| = kbw.

3 Experiments

Our experimental setup investigates the effect of the parameters kbw, µ and η() in terms of
both solution quality and computation time. The beam width parameter kbw is the number
of subsequences that the Bs algorithm keeps in memory at each iteration. Intuitively, larger
values of kbw should produce better results at the cost of higher computation times. Recall
that the parameter µ determines the number of children that are chosen from all possible
children at each iteration of the search. Low values of µ make the search rely completely on
the greedy function η(), while high values of µ allow solutions with lower heuristic values to be
chosen for the next iteration. Finally, η() may correspond to greedy function η1() as defined
in Eq. 1, or η2() as defined in Eq. 2 on page 4. The effect of both greedy functions on solution
quality and computation time is not clear, and thus, it is a subject of our investigation.

Experiments were run on a Intel Core2 1.66 GHz with 2 MB of cache size. Algorithms
were implemented in ANSI C++ and compiled with GCC 4.1.2 in GNU/Linux 2.6.20.

3.1 Benchmark Instances

We consider three different sets of instances in our experiments. The first set, henceforth
denoted by BLU, was generated by the following procedure. First, for each instance of alphabet

6

Σ, number of strings n and length l, a base string of length l is created by randomly generating
letters from Σ. Then, each of the n strings is produced by traversing the base string and
deleting each letter with a probability of 0.1. We generated 10 instances for each of the 80
combinations of |Σ| ∈ {2, 4, 8, 24}, n ∈ {10, 100} and l ∈ {100, 200, 300, . . . , 1000}.

In addition, we applied the Bs algorithm to two sets of benchmark instances from the
literature. One set comes from Easton and Singireddy [8]. It is composed of 50 instances per
combination of |Σ|, n, and l. These instances were created by sequentially generating each
letter with a probability of 1/|Σ|. A second set of instances comes from Shyu and Tsai [22].
Their instances are biologically inspired, and thus, they considered alphabet sizes |Σ| = 4,
corresponding to DNA sequences, and |Σ| = 20, corresponding to protein sequences. They
studied three different types of instances. One was randomly generated, presumably in the
same way as Easton and Singireddy’s instances. The other two sets consist of real DNA and
protein sequences of rats and viruses.

3.2 Experimental results for set BLU

We applied Bs with different parameters to each instance in set BLU. Results are shown
graphically in Fig. 4. We only show the results for l = 1000. The results are similar for
other string lengths but the effect of the different parameters is less clear. Each plot in Fig. 4
shows the effect of the combination of different values of kbw, µ and η(), where each point
summarises the results of one configuration of parameters of Bs. The top part of each plot
gives the computation time in milliseconds for each configuration of parameters of Bs, while
the bottom part gives the length of the LCS found by the same configuration of Bs. Each
point corresponds to the mean result for the 10 instances with the same size, and error bars
give an interval of plus/minus standard deviation around the mean. (Standard deviation is
often too small for error bars to be visible).

Two main observations can be made from the results. First, as expected the solution
quality steadily improves with higher beam widths (kbw) at the expense of longer computation
times, specially for small alphabets and few strings. Nonetheless, Bs with a beam width of
kbw = 10 is able to obtain good approximations within ten seconds even for the largest
instances. The second main conclusion is that η2() performs clearly worse than η1() in terms
of solution quality for a high number of strings n, while there is still little difference with
respect to computation time. This is particularly true for moderate values of kbw. Moreover,
η2() performs specially worse for low values of µ, while the results obtained with η1() are still
good even for µ = 1. Even though for high values of kbw and µ, the differences between the
two greedy functions η1() and η2() are small, they are still always in favour of η1(). As for µ,
a value of 1.5 is clearly better for an alphabet size of |Σ| = 2, while for higher values of |Σ| a
value of µ > 2 gives better results.

Following these findings, we select two configurations of Bs, one resulting in good solutions
generated fast and another configuration that requires more time but generates the best
solutions. The “low time” configuration corresponds to parameters η1(), kbw = 10, and µ = 1.5
if |Σ| = 2, and µ = 3 otherwise. The “high quality” configuration is the same but using a
larger beam width of kbw = 100. These two configurations of Bs are compared in Table 1 with
the results obtained by the classical Expansion and Bext-Next algorithms. The results
are overwhelmingly in favour of Bs. First, the best results are always obtained by the “high
quality” configuration of Bs, which is always noticeably faster than Expansion. Therefore,
this configuration of Bs completely outperforms Expansion. Second, although Bext-Next

7

is evidently the fastest approach, the quality of its solutions is very poor compared to those
obtained by “low time” Bs. According to the plots in Fig. 4, we could employ a much smaller
beam width, e.g. kbw = 2, such that the run time of Bs is always under a second, and still
Bs would generate better solutions than Bext-Next.

So far, all runs of Bs made use of the function Filter Children() in Algorithm 2 on page 5.
The use of filtering typically produces better quality solutions for instances with a small
number of strings (n = 10), as shown graphically in plots (a), (c) and (e) of Fig. 2. The
benefit is even larger for higher values of kbw —compare plot (a) versus plot (c). Interestingly,
the longer the length of the strings, the larger is the difference in the solution quality between
using filtering or not. In the same way, the computation time overhead of using filtering
increases with the length of the strings, as shown in plots (a) and (c), and with the size of
the alphabet, as shown in plot (e). On the other hand, for large number of strings (n = 100),
filtering may actually reduce computation time, as shown in plots (b), (d) and (f) of Fig. 2. In
this group of instances, however, filtering is not always beneficial in terms of solution quality.
Nonetheless, the median difference (as denoted by the line within each boxplot) is positive
most of the times, thus on average filtering does improve solution quality. We conclude from
these results that the use of filtering generally pays off in terms of solution quality, while
incurring in a typically small computation time overhead. Therefore, filtering will be used in
Bs for all further experiments.

3.3 Comparison with THSB and G&V

As for the instances provided by Easton and Singireddy [8], we again investigated the best
parameters of Bs. The complete results of fine-tuning Bs are shown in Figures 5 and 6
by means of plots similar to those used to describe the fine-tuning of Bs in the previous
section. The only difference is that here each point and error bar correspond to the mean
and standard deviation over 50 instances (instead of 10). In these figures, each row of plots
corresponds to instances with the same number of strings, namely n = {10, 50, 100}, and each
column corresponds to instances with the same alphabet size: |Σ| = {2, 10} in Fig. 5 and
|Σ| = {25, 100} in Fig. 6.

Interestingly, the best parameters are somewhat different from the ones for the previous
set of benchmark instances. As before, increasing the beam width results in better solutions
at the expense of longer computation times. However, in contrast to the instances of set
BLU, here the greedy function η2() performs clearly better than η1(), specially for large n
(number of strings), and even for the highest beam width and µ there are notable differences
in solution quality between η1() and η2(). Moreover, for both greedy functions the use of
µ > 1 seems fundamental for achieving good results. These differences clearly indicate that
the method used to generate the instances can have an influence on the performance of the
greedy functions.

Taking into account these results, we select two configurations of Bs as the ones giving
the best results for this set of instances. The configuration using kbw = 10, η2() and µ = 1.5
gives good solutions for all instances in a relatively short time. On the other hand, both η2(),
kbw = 100 and µ = 1.5 for |Σ| = 2, and η2(), kbw = 50, µ = 3 for |Σ| > 2, give the best solution
quality but require much longer computation times. Using these parameter settings, Table 2
compares the performance of Bs with the results of THSB (for both high quality and low
time configurations) and G&V provided by Easton and Singireddy [8]. Easton and Sigireddy
performed their experiments on a 1.5GHz Pentium IV, which should be slightly slower than

8

Table 1: Comparison of Expansion, Best-Next and Bs for instances of set BLU. |t∗| is the solution quality and ”Time” is the
computation time in seconds. Each values corresponds to the mean and, in parenthesis, the standard deviation of the results of 10
instances.

Instance Expansion Bext-Next Bs Bs
(low time) (high quality)

|Σ| n l |t∗| Time |t∗| Time |t∗| Time |t∗| Time

2 10 1000 515.4 (16.2) 43.9 (3.3) 556.9 (14.4) 0.0 (0.0) 613.2 (14.6) 0.6 (0.0) 648.0 (15.0) 13.6 (0.6)
100 1000 476.7 (5.5) 932.9 (64.7) 503.3 (6.8) 0.1 (0.0) 531.6 (6.1) 6.3 (0.2) 541.0 (8.0) 72.5 (3.9)

4 10 1000 484.3 (18.3) 2007.5 (276.5) 382.7 (16.1) 0.0 (0.0) 477.3 (15.7) 0.9 (0.0) 534.7 (12.6) 18.1 (0.5)
100 1000 266.0 (5.4) 3082.6 (135.8) 319.3 (4.9) 0.1 (0.0) 350.7 (10.1) 9.3 (0.2) 369.3 (4.6) 121.6 (2.2)

8 10 1000 436.2 (18.0) 1525.9 (195.0) 293.6 (15.6) 0.0 (0.0) 420.0 (27.0) 0.7 (0.0) 462.3 (12.9) 21.2 (0.6)
100 1000 159.4 (9.3) 2633.1 (48.6) 208.1 (6.4) 0.1 (0.0) 241.5 (4.5) 10.6 (0.3) 258.7 (4.7) 154.7 (2.0)

24 10 1000 374.9 (8.2) 794.6 (75.4) 229.2 (25.3) 0.0 (0.0) 382.6 (10.0) 1.3 (0.0) 385.6 (7.0) 37.4 (1.4)
100 1000 64.2 (8.4) 2717.3 (80.4) 117.4 (4.4) 0.2 (0.0) 140.3 (5.7) 13.5 (0.2) 147.7 (4.6) 268.3 (8.0)

Bs (low time): η1(), kbw = 10, and µ = 1.5 for |Σ| = 2 or µ = 3 for |Σ| > 2.
Bs (high quality): η1(), kbw = 100, and µ = 1.5 for |Σ| = 2 or µ = 3 for |Σ| > 2.

9

0.00

0.05

0.10

0.15

0.20

0.25

∆
tim

e
(s

)

0.00

0.05

0.10

0.15

0.20

0.25

∆
tim

e
(s

)

0
5

10
15
20
25
30

∆
so

lu
tio

n
qu

al
ity

0
5

10
15
20
25
30

∆
so

lu
tio

n
qu

al
ity

string length (l)

100 200 300 400 500 600 700 800 900 1000

(a) |Σ| = 2, n = 10, Bs: kbw = 10, µ = 1.5, η1()

0
1
2
3
4
5
6
7

∆
tim

e
(s

)

0
1
2
3
4
5
6
7

∆
tim

e
(s

)
∆

so
lu

tio
n

qu
al

ity
∆

so
lu

tio
n

qu
al

ity

string length (l)

0
10
20
30
40
50
60
70

100 200 300 400 500 600 700 800 900 1000

(c) |Σ| = 2, n = 10, Bs: kbw = 100, µ = 1.5, η1()

0

5

10

15

20

∆
tim

e
(s

)

0

5

10

15

20

∆
tim

e
(s

)

0
20
40
60
80

100
120

∆
so

lu
tio

n
qu

al
ity

0
20
40
60
80

100
120

∆
so

lu
tio

n
qu

al
ity

|Σ|

2 4 8 24

(e) n = 10, l = {100, 200, . . . , 1000}, Bs: kbw = 100,
µ = {1.5(in case |Σ| = 2), 3(in case |Σ| > 2)}, η1()

0.0

0.2

0.4

0.6

0.8

∆
tim

e
(s

)

0.0

0.2

0.4

0.6

0.8

∆
tim

e
(s

)

−5

0

5

10

∆
so

lu
tio

n
qu

al
ity

−5

0

5

10

∆
so

lu
tio

n
qu

al
ity

string length (l)

100 200 300 400 500 600 700 800 900 1000

(b) |Σ| = 2, n = 100, Bs: kbw = 10, µ = 1.5, η1()

−20

−10

0

10

20

∆
tim

e
(s

)

−20

−10

0

10

20

∆
tim

e
(s

)

−5

0

5

10

∆
so

lu
tio

n
qu

al
ity

−5

0

5

10

∆
so

lu
tio

n
qu

al
ity

string length (l)

100 200 300 400 500 600 700 800 900 1000

(d) |Σ| = 2, n = 100, Bs: kbw = 100, µ = 1.5, η1()

−200

−100

0

100

∆
tim

e
(s

)

−200

−100

0

100

∆
tim

e
(s

)

−5

0

5

10

∆
so

lu
tio

n
qu

al
ity

−5

0

5

10

∆
so

lu
tio

n
qu

al
ity

|Σ|

2 4 8 24

(f) n = 100, l = {100, 200, . . . , 1000}, Bs: kbw = 100,
µ = {1.5(in case |Σ| = 2), 3(in case |Σ| > 2)}, η1()

Figure 2: Comparison between using filtering or not on instances of set BLU.

10

our machine.
The results in Table 2 show that the “low time” configuration of Bs completely dominates

the “high quality” and much slower configuration of THSB. That is, Bs is able to obtain
better solutions in a much shorter time. The “high quality” configuration of Bs further
improves the solution quality while still being in most cases faster than the “high quality”
configuration of THSB. As for the “low time” configuration of THSB, it is typically faster
than Bs, however, the resulting sequences are much worse than those obtained by Bs. In
fact, G&V is able to obtain larger sequences in a much shorter time, hence the results of the
“low time” configuration of THSB bear little significance.

Comparing G&V and Bs, the former is definitely the fastest of the three algorithms,
specially for the largest instances, but at a significant loss of solution quality with respect to
Bs. In fact, considering Figs. 5 and 6, the worst results of Bs when using η2(), kbw = 2 and
µ = 1 are still better than those obtained by G&V.

3.4 Comparison with ACO

With regard to the set of instances provided by Shyu and Tsai [22], we repeat the same
analysis. That is, we fine-tune the parameters of Bs and graphically show the results in
Fig. 7. Plots in the same row correspond to the same instance type (either Random, Rat or
Virus). Plots in the same column have the same alphabet size |Σ|, number of strings n and
string length l. We only show the results for n = 200 because the conclusions are similar
for other values of n. Since there is only one instance available for each instance type and
combination of |Σ|, n and l, each point in the plots corresponds to the result of just one run
of Bs. This fact may explain the high variability of the results. Despite this variability, some
trends can be identified. As in all previous instances, higher values of kbw typically produce
improved results. For the Random instances, plots (a) and (b) in Fig. 7 are somehow similar
to the ones concerning the instances of Easton and Singireddy from the previous section
(compare plot (c) in Fig. 5 and plot (i) in Fig. 6). In particular, the combination of η2() and
values of µ > 1.5 is clearly better than the alternatives. On the other hand, for Rat and Virus

there are striking differences between the different alphabet sizes. This may be explained
by structural differences, since instances with |Σ| = 4 correspond to DNA sequences, while
instances with |Σ| = 20 correspond to protein sequences. The behaviour of Bs for the DNA
sequences resembles the behaviour shown in plot (d) of Fig. 4, corresponding to the BLU set,
although no clear pattern can be identified for the instances derived from protein sequences.
Nonetheless, the combination of η2() and values of µ > 1.5 results in longer sequences more
frequently than other combinations of parameters. Therefore, we choose η2(), kbw = 100, with
µ = 3 for |Σ| = 4 and µ = 5 for |Σ| = 20 as a “high quality” configuration. The chosen “low
time” configuration is η2(), kbw = 10, with µ = 3 for |Σ| = 4 and µ = 5 for |Σ| = 20.

We then compare these two configurations of Bs with the results obtained by Shyu and
Tsai with their ACO algorithm [22]. Their algorithm was implemented in C++ and their
experiments were run on a AMD Athlon 2100+ CPU, which should be slightly faster than
our machine. Tables 3, 4 and 5 show this comparison for Random, Rat and Virus instances,
respectively. These tables are graphically summarised in Fig. 7, where each point corresponds
to the result of one run of Bs or to the mean of 10 runs of ACO in one instance. Error bars
delimit plus/minus one standard deviation around the mean of ACO. For the instances with
alphabet size |Σ| = 4, the “low time” configuration of Bs finds slightly better solutions than
ACO in a much shorter time, specially for large values of n. On the other hand, the “high

11

Table 2: Comparison between G&V, THSB and Bs. |t∗| is the solution quality and ”Time” is the computation time in seconds, both
averaged over 50 instances. Results for G&V and THSB are taken from Easton and Singireddy [8]. We provide the standard deviation
in parenthesis for our results.

Instance G&V THSB THSB Bs Bs
(low time) (high quality) (low time) (high quality)

|Σ| n l |t∗| Time |t∗| Time |t∗| Time |t∗| Time |t∗| Time

2 10 1000 562.8 0.0 562.0 0.4 577.2 24.5 579.9 (4.8) 0.7 (0.0) 592.6 (4.2) 14.8 (0.3)
50 1000 503.7 0.1 506.1 1.0 511.3 85.1 516.3 (1.9) 3.7 (0.1) 521.9 (1.8) 43.5 (0.4)

100 1000 489.6 0.1 493.2 2.2 497.9 196.2 502.1 (1.8) 7.4 (0.1) 506.0 (1.8) 78.6 (5.0)

10 10 1000 153.4 0.0 156.7 2.0 162.5 90.6 185.5 (2.6) 0.5 (0.0) 192.2 (2.0) 9.4 (0.2)
50 1000 105.4 0.1 107.6 0.8 109.8 69.6 127.9 (1.2) 1.5 (0.0) 129.6 (1.1) 18.8 (0.3)

100 1000 96.6 0.2 98.7 1.1 100.7 58.6 116.5 (0.8) 2.7 (0.1) 117.9 (0.9) 30.6 (0.4)

25 10 2500 183.6 0.1 173.8 8.8 188.9 102.2 214.3 (2.2) 2.7 (0.1) 224.3 (1.9) 51.5 (0.8)
50 2500 112.7 0.2 106.8 2.2 115.3 52.4 131.3 (0.9) 5.5 (0.1) 133.0 (0.8) 76.6 (1.2)

100 2500 101.5 0.4 97.7 2.5 104.1 81.1 116.3 (0.9) 9.1 (0.1) 118.1 (0.8) 118.6 (3.7)

100 10 5000 113.6 0.2 92.2 36.0 117.8 6,099.3 132.5 (1.7) 19.1 (0.3) 139.6 (1.4) 394.6 (7.0)
50 5000 58.4 0.7 52.2 185.7 60.9 4,273.0 67.9 (0.5) 27.8 (0.5) 69.5 (0.6) 490.2 (10.7)

100 5000 50.4 1.3 46.5 353.7 52.7 11,128.3 57.6 (0.6) 42.2 (0.8) 59.0 (0.3) 602.0 (8.8)

Bs (low time): η2(), kbw = 10, µ = 1.5.
Bs (high quality): η2(), kbw = 100, µ = 1.5 for |Σ| = 2; η2(), kbw = 50, µ = 3 for |Σ| > 2.

12

quality” configuration of Bs clearly outperforms ACO with respect to solution quality while it
requires approximately the same amount of computation time. As for alphabet size |Σ| = 20,
“low time” Bs also matches, and often improves over, the solutions generated by ACO, while
requiring a small fraction of the computation time used by ACO. However, in this case, “high
quality” Bs is clearly slower than ACO. Nonetheless, “high quality” Bs outperforms both
ACO and “low time” Bs, being the difference particularly large for instances with few strings
(small value of n). The overall conclusion is that Bs obtains as good solutions as ACO, and
often even better ones, in a shorter time, while higher beam widths lead to clearly better
solutions at the expense of possibly longer running times than ACO.

Table 3: Comparison of ACO and Bs for Random instances. |t∗| is the solution quality
and ”Time” is the computation time in seconds. Results for ACO are taken from Shyu and
Tsai [22] and show the mean and, in parenthesis, the standard deviation of 10 independent
runs for a single instance. Since Bs is deterministic, the result shown is the one obtained for
each single instance.

Instance ACO Bs Bs
(Random) (low time) (high quality)

|Σ| n |t∗| Time |t∗| Time |t∗| Time

4 10 197.2 (2.0) 10.7 (2.0) 200 0.3 211 9.8
15 185.2 (1.3) 15.7 (5.4) 190 0.5 194 13.2
20 176.2 (1.3) 11.4 (0.8) 178 0.7 184 14.9
25 172.2 (0.7) 15.4 (1.7) 174 0.9 179 15.8
40 161.4 (1.3) 23.8 (10.3) 162 1.4 167 21.0
60 155.4 (1.3) 24.7 (3.2) 157 2.1 161 27.6
80 151.6 (0.8) 32.5 (5.9) 151 2.7 156 33.5

100 148.8 (1.3) 43.6 (10.4) 150 3.5 154 40.3
150 143.4 (0.8) 57.2 (17.1) 146 5.0 148 56.4
200 141.0 (0.6) 59.1 (9.6) 144 6.9 146 74.3

20 10 54.0 (1.1) 7.4 (2.1) 58 0.7 61 33.3
15 46.2 (1.6) 9.3 (2.5) 49 0.9 51 37.6
20 42.4 (1.3) 11.4 (4.9) 43 1.1 47 39.5
25 40.0 (1.1) 10.5 (2.3) 41 1.3 43 39.5
40 34.2 (0.7) 14.1 (4.8) 37 1.7 37 43.2
60 30.6 (0.8) 17.3 (1.3) 34 2.6 34 46.5
80 29.0 (1.1) 22.9 (3.0) 32 3.2 32 53.2

100 28.4 (0.8) 25.6 (0.1) 30 3.9 31 59.2
150 26.0 (0.4) 40.8 (7.4) 28 5.7 29 75.6
200 25.0 (0.2) 55.4 (4.7) 27 7.9 27 98.0

Bs (low time): η2(), kbw = 10, µ = 3 for |Σ| = 4; η2(), kbw = 10, µ = 5 for |Σ| = 20;
Bs (high quality): η2(), kbw = 100, µ = 3 for |Σ| = 4; η2(), kbw = 100, µ = 5 for |Σ| = 20.

13

Table 4: Comparison of ACO and Bs for Rat instances. |t∗| is the solution quality and ”Time”
is the computation time in seconds. Results for ACO are taken from Shyu and Tsai [22] and
show the mean and, in parenthesis, the standard deviation of 10 independent runs for a single
instance. Since Bs is deterministic, the result shown is the one obtained for each single
instance.

Instance ACO Bs Bs
(Rat) (low time) (high quality)

|Σ| n |t∗| Time |t∗| Time |t∗| Time

4 10 182.0 (2.4) 7.4 (1.9) 189 0.3 191 9.7
15 166.6 (1.3) 10.5 (2.4) 163 0.4 173 12.3
20 160.0 (1.3) 12.5 (3.8) 160 0.6 163 12.6
25 155.8 (1.3) 15.9 (4.0) 160 0.8 162 15.8
40 143.4 (0.8) 21.0 (4.6) 142 1.2 146 19.4
60 142.4 (1.7) 26.2 (8.9) 143 1.9 144 26.7
80 128.8 (0.7) 29.9 (4.9) 131 2.3 135 31.8

100 124.6 (2.0) 48.8 (17.9) 129 3.0 132 38.5
150 115.6 (1.3) 35.0 (6.8) 120 4.2 121 51.1
200 114.6 (2.3) 65.5 (14.0) 117 5.6 121 69.1

20 10 63.4 (1.3) 9.2 (2.5) 65 0.7 69 27.4
15 56.6 (0.8) 8.9 (2.4) 57 1.1 60 36.7
20 47.8 (0.7) 14.6 (5.8) 50 1.2 51 34.4
25 46.2 (1.3) 11.5 (1.2) 49 1.4 51 39.0
40 44.2 (1.3) 14.6 (3.2) 46 2.0 49 47.4
60 43.0 (0.4) 31.5 (6.9) 44 3.2 46 60.3
80 39.6 (0.8) 32.4 (10.1) 42 4.0 43 64.4

100 37.0 (1.1) 42.4 (8.8) 37 4.5 38 64.8
150 34.0 (1.1) 49.1 (8.1) 35 6.7 36 77.8
200 32.4 (1.3) 75.7 (17.0) 31 8.3 33 101.0

Bs (low time): η2(), kbw = 10, µ = 3 for |Σ| = 4; η2(), kbw = 10, µ = 5 for |Σ| = 20;
Bs (high quality): η2(), kbw = 100, µ = 3 for |Σ| = 4; η2(), kbw = 100, µ = 5 for |Σ| = 20.

14

Table 5: Comparison of ACO and Bs for Virus instances. |t∗| is the solution quality and
”Time” is the computation time in seconds. Results for ACO are taken from Shyu and
Tsai [22] and show the mean and, in parenthesis, the standard deviation of 10 independent
runs for a single instance. Since Bs is deterministic, the result shown is the one obtained for
each single instance.

Instance ACO Bs Bs
(Virus) (low time) (high quality)

|Σ| n |t∗| Time |t∗| Time |t∗| Time

4 10 197.6 (1.3) 3.7 (0.7) 203 0.4 212 11.6
15 183.6 (1.3) 7.9 (2.0) 192 0.5 193 15.4
20 173.8 (2.5) 20.4 (6.5) 179 0.7 181 17.2
25 179.0 (1.8) 18.3 (5.3) 178 0.9 185 17.9
40 155.0 (2.1) 20.5 (3.4) 158 1.3 162 21.9
60 150.6 (1.3) 30.8 (9.3) 153 2.0 158 29.1
80 145.8 (1.3) 45.5 (6.9) 148 2.6 153 36.0

100 143.4 (2.7) 23.8 (10.3) 149 3.4 150 43.9
150 141.6 (0.8) 50.0 (21.3) 143 5.0 148 64.5
200 140.6 (1.3) 65.6 (15.6) 143 6.8 145 84.5

20 10 65.6 (0.8) 3.5 (1.2) 67 0.7 75 27.2
15 55.8 (1.3) 10.4 (1.6) 58 1.0 63 38.6
20 53.6 (1.3) 10.8 (0.5) 55 1.2 57 40.3
25 49.6 (0.8) 13.2 (4.5) 50 1.4 53 38.9
40 46.4 (0.8) 17.1 (2.6) 47 2.1 49 48.4
60 43.4 (0.8) 27.7 (4.2) 44 3.1 45 56.1
80 43.0 (0.4) 38.1 (11.4) 43 4.0 44 67.4

100 42.0 (1.1) 23.4 (5.1) 41 5.0 43 74.2
150 42.6 (0.8) 71.4 (19.8) 43 7.8 44 108.0
200 41.0 (0.2) 78.9 (21.7) 43 11.0 43 140.0

Bs (low time): η2(), kbw = 10, µ = 3 for |Σ| = 4; η2(), kbw = 10, µ = 5 for |Σ| = 20;
Bs (high quality): η2(), kbw = 100, µ = 3 for |Σ| = 4; η2(), kbw = 100, µ = 5 for |Σ| = 20.

15

tim
e

(s
)

0

10

20

30

40

50

60

70

140

150

160

170

180

190

200

210

so
lu

tio
n

qu
al

ity

ACO
Bs (low time)
Bs (high quality)

number of strings (n)

10 15 20 25 40 60 80 100 150 200

(a) Random data: |Σ| = 4, l = 600

tim
e

(s
)

0
10
20
30
40
50
60
70
80
90

100

25

30

35

40

45

50

55

60

so
lu

tio
n

qu
al

ity

ACO
Bs (low time)
Bs (high quality)

number of strings (n)

10 15 20 25 40 60 80 100 150 200

(d) Random data: |Σ| = 20, l = 600

tim
e

(s
)

0

10

20

30

40

50

60

70

120

130

140

150

160

170

180

190

so
lu

tio
n

qu
al

ity

ACO
Bs (low time)
Bs (high quality)

number of strings (n)

10 15 20 25 40 60 80 100 150 200

(b) Rat data: |Σ| = 4, l = 600

tim
e

(s
)

0
10
20
30
40
50
60
70
80
90

100

30

35

40

45

50

55

60

65

70

so
lu

tio
n

qu
al

ity

ACO
Bs (low time)
Bs (high quality)

number of strings (n)

10 15 20 25 40 60 80 100 150 200

(e) Rat data: |Σ| = 20, l = 600

tim
e

(s
)

0
10
20
30
40
50
60
70
80

140

150

160

170

180

190

200

210

so
lu

tio
n

qu
al

ity

ACO
Bs (low time)
Bs (high quality)

number of strings (n)

10 15 20 25 40 60 80 100 150 200

(c) Virus data: |Σ| = 4, l = 600

tim
e

(s
)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

40

45

50

55

60

65

70

75

so
lu

tio
n

qu
al

ity

ACO
Bs (low time)
Bs (high quality)

number of strings (n)

10 15 20 25 40 60 80 100 150 200

(f) Virus data: |Σ| = 20, l = 600

Figure 3: Graphical comparison of ACO and Bs on the instances of Shyu and Tsai [22].

16

4 Conclusions

In this paper we proposed a beam search (Bs) algorithm for the LCS problem. The proposed
Bs was empirically tested on three different sets of LCS benchmark instances, two of them
already used in the literature. These sets were generated using different procedures and the
results of fine-tuning Bs for each set of instances show important differences between them.
In particular, the well-known greedy function η1() [9], defined in Eq. 1, performs better for
instances generated by deleting letters from a base string (set BLU), while the proposed
greedy function η2(), defined in Eq. 2, obtains the best results for instances generated by
concatenating random letters (set of Easton and Singireddy [8]).

As for the other parameters of Bs, namely the beam width and µ, the use of a larger
beam width improves the quality of solutions obtained by Bs, although it also increases the
computation time required to reach a solution. Values of µ = 1.5 generally produce better
results for instances with alphabet size |Σ| = 2. For higher alphabet sizes, values of µ slightly
higher than 2 generate high quality solutions if the appropriate greedy function is used. Values
higher than µ > 5 result in an increase of computation time that does not pay off in terms of
solution quality.

Following these findings, we selected for each set of instances two configurations of pa-
rameters of Bs, one characterised by a low run time and another generating very high quality
solution. These “low time” and “high quality” configurations were compared with four other
approaches: the “low time” and “high quality” configurations of THSB, as defined by its
authors, and the G&V and ACO algorithms. The results show that “low time” Bs com-
pletely outperforms “high quality” THSB in both quality and time. On the other hand, the
“low time” configuration of THSB is outperformed by G&V with respect to both quality and
computation time. Although G&V is faster than Bs, the latter finds much better solutions in
a relatively short time. As for the ACO algorithm, Bs produces equally good solutions in a
much shorter time, specially for high number of strings. If longer runs are allowed, Bs using
a larger beam width is able to consistently find better solutions than ACO.

In summary, our experimental analysis shows that the proposed beam search is the best
approximation algorithm for solving the LCS problem among the ones considered in this
paper. In fact, by using the appropriate greedy function for each instance type, beam search
obtains the best results for several different types of instances. With respect to computation
time, G&V is faster than beam search but it generates much worse solutions. In all other
cases, beam search requires less computation times for matching, and typically improving,
the quality of the other algorithms.

Acknowledgements

This work was supported by grants TIN2007-66523 (FORMALISM), TIN2005-09198 (ASCE),
and TIN2005-25859 (AEOLUS) of the Spanish government. In addition, Christian Blum
acknowledges support from the Ramón y Cajal program of the Spanish Ministry of Science
and Technology of which he is a research fellow.

Moreover, we would like to thank T. Easton, A. Singireddy, S. J. Shyu, and C.-Y. Tsai
for providing their benchmark instances.

17

References

[1] A. Aho, J. Hopcroft, and J. Ullman. Data structures and algorithms. Addison-Wesley,
Reading, MA, 1983.

[2] L. Bergroth, H. Hakonen, and T. Raita. New approximation algorithms for longest com-
mon subsequences. In String Processing and Information Retrieval: A South American

Symposium, 1998. Proceedings, pages 32–40, 1998.

[3] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence
algorithms. In Proceedings of SPIRE 2000 – 7th International Symposium on String

Processing and Information Retrieval, pages 39–48. IEEE press, 2000.

[4] C. Blum and M. Blesa. Probabilistic beam search for the longest common subsequence
problem. In T. Stützle, M. Birattari, and H. H. Hoos, editors, Proceedings of SLS

2007 – Engineering Stochastic Local Search Algorithms, volume 4638 of Lecture Notes in

Computer Science, pages 150–161. Springer-Verlag, Berlin, Germany, 2007.

[5] P. Bonizzoni, G. Della Vedova, and G. Mauri. Experimenting an approximation algorithm
for the LCS. Discrete Applied Mathematics, 110(1):13–24, 2001.

[6] P. Brisk, A. Kaplan, and M. Sarrafzadeh. Area-efficient instruction set synthesis for
reconfigurable system-on-chip design. In Proceedings of the 41st Design Automation

Conference, pages 395–400. IEEE press, 2004.

[7] F. Chin and C. K. Poon. Performance analysis of some simple heuristics for computing
longest common subsequences. Algorithmica, 12(4–5):293–311, 1994.

[8] T. Easton and A. Singireddy. A large neighborhood search heuristic for the longest
common subsequence problem. Journal of Heuristics, 2007. In press.

[9] C. B. Fraser. Subsequences and supersequences of strings. PhD thesis, University of
Glasgow, 1995.

[10] A. Guenoche. Supersequence of masks for oligo-chips. Journal of Bioinformatics and

Computational Biology, 2(3):459–469, 2004.

[11] A. Guenoche and P. Vitte. Longest common subsequence with many strings: exact
and approximate methods. Technique et science informatiques, 14(7):897–915, 1995. In
French.

[12] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Science and Com-
putational Biology. Cambridge University Press, Cambridge, 1997.

[13] W. J. Hsu and M. W. Du. Computing a longest common subsequence for a set of strings.
BIT Numerical Mathematics, 24(1):45–59, 1984.

[14] K. Huang, C. Yang, and K. Tseng. Fast algorithms for finding the common subsequences
of multiple sequences. In Proceedings of the International Computer Symposium, pages
1006–1011. IEEE press, 2004.

18

[15] T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between RNA structures.
Journal of Computational Biology, 9(2):371–388, 2002.

[16] Tao Jiang and Ming Li. On the approximation of shortest common supersequences and
longest common subsequences. SIAM Journal on Computing, 24(5):1122–1139, 1995.

[17] S. Y. Lu and K. S. Fu. A sentence-to-sentence clustering procedure for pattern analysis.
IEEE Transactions on Systems, Man and Cybernetics, 8(5):381–389, 1978.

[18] D. Maier. The complexity of some problems on subsequences and supersequences. Journal

of the ACM, 25:322–336, 1978.

[19] P. S. Ow and T. E. Morton. Filtered beam search in scheduling. International Journal

of Production Research, 26:297–307, 1988.

[20] D. Sankoff and J. B. Kruskal. Time Warps, String Edits, and Macromolecules: The

Theory and Practice of Sequence Comparison. Addison-Wesley, Reading, UK, 1983.

[21] T. Sellis. Multiple query optimization. ACM Transactions on Database Systems,
13(1):23–52, 1988.

[22] S. J. Shyu and C.-Y. Tsai. Finding the longest common subsequence for multiple bio-
logical sequences by ant colony optimization. Computers & Operations Research, 2007.
In Press.

[23] A. Singireddy. Solving the longest common subsequence problem in bioinformatics. Mas-
ter’s thesis, Industrial and Manufacturing Systems Engineering, Kansas State University,
Manhattan, KS, 2007.

[24] T. Smith and M. Waterman. Identification of common molecular subsequences. Journal

of Molecular Biology, 147(1):195–197, 1981.

[25] J. Storer. Data Compression: Methods and Theory. Computer Science Press, MD, 1988.

19

tim
e

(m
s)

 µ
1
1.25
1.5

η1()

100

1000

104 µ
1
1.25
1.5

η2()

550

600

650

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(a) |Σ| = 2, n = 10, l = 1000

tim
e

(m
s)

 µ
1
2
3

η1()

100

1000

104 µ
1
2
3

η2()

350

400

450

500

550

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(c) |Σ| = 4, n = 10, l = 1000

tim
e

(m
s)

 µ
1
2
3
4

η1()

100

1000

104
 µ

1
2
3
4

η2()

200
250
300
350
400
450
500

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(e) |Σ| = 8, n = 10, l = 1000

tim
e

(m
s)

 µ
1
2
3
4

η1()

100

1000

104

 µ
1
2
3
4

η2()

100
150
200
250
300
350
400

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(g) |Σ| = 24, n = 10, l = 1000

tim
e

(m
s)

 µ
1
1.25
1.5

η1()

1000

104

 µ
1
1.25
1.5

η2()

440
460
480
500
520
540
560

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(b) |Σ| = 2, n = 100, l = 1000

tim
e

(m
s)

 µ
1
2
3

η1()

1000

104

105 µ
1
2
3

η2()

250

300

350

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(d) |Σ| = 4, n = 100, l = 1000

tim
e

(m
s)

 µ
1
2
3
4

η1()

1000

104

105 µ
1
2
3
4

η2()

150

200

250

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(f) |Σ| = 8, n = 100, l = 1000

tim
e

(m
s)

 µ
1
2
3
4

η1()

1000

104

105
 µ

1
2
3
4

η2()

60

80

100

120

140

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(h) |Σ| = 24, n = 100, l = 1000

Figure 4: Results of fine-tuning Bs for the instances of set BLU.

20

tim
e

(m
s)

 µ
1
1.25
1.5

η1()

100

1000

104 µ
1
1.25
1.5

η2()

540

560

580

600

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(a) |Σ| = 2, n = 10, l = 1000

tim
e

(m
s)

 µ
1
1.25
1.5

η1()

1000

104

 µ
1
1.25
1.5

η2()

490

500

510

520

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(b) |Σ| = 2, n = 50, l = 1000

tim
e

(m
s)

 µ
1
1.25
1.5

η1()

1000

104

105
 µ

1
1.25
1.5

η2()

470

480

490

500

510

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(c) |Σ| = 2, n = 100, l = 1000

tim
e

(m
s)

 µ
1
1.5
3
5

η1()

100

1000

104

 µ
1
1.5
3
5

η2()

150

160

170

180

190

200

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(d) |Σ| = 10, n = 10, l = 1000

tim
e

(m
s)

 µ
1
1.5
3
5

η1()

1000

104

 µ
1
1.5
3
5

η2()

115

120

125

130

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(e) |Σ| = 10, n = 50, l = 1000

tim
e

(m
s)

 µ
1
1.5
3
5

η1()

1000

104

105 µ
1
1.5
3
5

η2()

105

110

115

120

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(f) |Σ| = 10, n = 100, l = 1000

Figure 5: Results of fine-tuning Bs for the instances of Easton and Singireddy [8] (continues
in the next page).

21

tim
e

(m
s)

 µ
1
1.5
3
5

η1()

1000

104

 µ
1
1.5
3
5

η2()

170
180
190
200
210
220
230

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50

kbw

2 5 10 20 50

(g) |Σ| = 25, n = 10, l = 2500

tim
e

(m
s)

 µ
1
1.5
3
5

η1()

1000

104

105 µ
1
1.5
3
5

η2()

110

115

120

125

130

135

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50

kbw

2 5 10 20 50

(h) |Σ| = 25, n = 50, l = 2500

tim
e

(m
s)

 µ
1
1.5
3
5

η1()

1000

104

105 µ
1
1.5
3
5

η2()

105

110

115

120

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50

kbw

2 5 10 20 50

(i) |Σ| = 25, n = 100, l = 2500

tim
e

(m
s)

 µ
1
1.5
3
5

η1()

1000

104

105

 µ
1
1.5
3
5

η2()

100

110

120

130

140

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50

kbw

2 5 10 20 50

(j) |Σ| = 100, n = 10, l = 5000

tim
e

(m
s)

 µ
1
1.5
3
5

η1()

104

105

 µ
1
1.5
3
5

η2()

55

60

65

70

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50

kbw

2 5 10 20 50

(k) |Σ| = 100, n = 50, l = 5000

tim
e

(m
s)

 µ
1
1.5
3
5

η1()

104

105

106
 µ

1
1.5
3
5

η2()

50

52

54

56

58

60

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50

kbw

2 5 10 20 50

(l) |Σ| = 100, n = 100, l = 5000

Figure 6: Results of fine-tuning Bs for the instances of Easton and Singireddy [8] (continued
from the previous page).

22

tim
e

(m
s)

 µ
1
1.5
2
3

η1()

1000

104

 µ
1
1.5
2
3

η2()

138

140

142

144

146

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(a) Random data: |Σ| = 4, n = 200, l = 600

tim
e

(m
s)

 µ
1
1.5
2
3

η1()

1000

104

 µ
1
1.5
2
3

η2()

95

100

105

110

115

120

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(c) Rat data: |Σ| = 4, n = 200, l = 600

tim
e

(m
s)

 µ
1
1.5
2
3

η1()

1000

104

105
 µ

1
1.5
2
3

η2()

125

130

135

140

145

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(d) Virus data: |Σ| = 4, n = 200, l = 600

tim
e

(m
s)

 µ
1
1.5
3
5

η1()

1000

104

105 µ
1
1.5
3
5

η2()

23

24

25

26

27

28

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(b) Random data: |Σ| = 20, n = 200, l = 600

tim
e

(m
s)

 µ
1
1.5
3
5

η1()

1000

104

105 µ
1
1.5
3
5

η2()

26

28

30

32

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(d) Rat data: |Σ| = 20, n = 200, l = 600

tim
e

(m
s)

 µ
1
1.5
3
5

η1()

1000

104

105 µ
1
1.5
3
5

η2()

37
38
39
40
41
42
43

so
lu

tio
n

qu
al

ity

kbw

2 5 10 20 50 100

kbw

2 5 10 20 50 100

(f) Virus data: |Σ| = 20, n = 200, l = 600

Figure 7: Results of fine-tuning Bs for the instances of Shyu and Tsai [22].

23

