2,080 research outputs found

    Computing possibly optimal solutions for multi-objective constraint optimisation with tradeoffs

    Get PDF
    Computing the set of optimal solutions for a multiobjective constraint optimisation problem can be computationally very challenging. Also, when solutions are only partially ordered, there can be a number of different natural notions of optimality, one of the most important being the notion of Possibly Optimal, i.e., optimal in at least one scenario compatible with the inter-objective tradeoffs. We develop an AND/OR Branch-and-Bound algorithm for computing the set of Possibly Optimal solutions, and compare variants of the algorithm experimentally

    Multi-objective influence diagrams with possibly optimal policies

    Get PDF
    The formalism of multi-objective influence diagrams has recently been developed for modeling and solving sequential decision problems under uncertainty and multiple objectives. Since utility values representing the decision maker’s preferences are only partially ordered (e.g., by the Pareto order) we no longer have a unique maximal value of expected utility, but a set of them. Computing the set of maximal values of expected utility and the corresponding policies can be computationally very challenging. In this paper, we consider alternative notions of optimality, one of the most important one being the notion of possibly optimal, namely optimal in at least one scenario compatible with the inter-objective tradeoffs. We develop a variable elimination algorithm for computing the set of possibly optimal expected utility values, prove formally its correctness, and compare variants of the algorithm experimentally

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Multicriteria global optimization for biocircuit design

    Get PDF
    One of the challenges in Synthetic Biology is to design circuits with increasing levels of complexity. While circuits in Biology are complex and subject to natural tradeoffs, most synthetic circuits are simple in terms of the number of regulatory regions, and have been designed to meet a single design criterion. In this contribution we introduce a multiobjective formulation for the design of biocircuits. We set up the basis for an advanced optimization tool for the modular and systematic design of biocircuits capable of handling high levels of complexity and multiple design criteria. Our methodology combines the efficiency of global Mixed Integer Nonlinear Programming solvers with multiobjective optimization techniques. Through a number of examples we show the capability of the method to generate non intuitive designs with a desired functionality setting up a priori the desired level of complexity. The presence of more than one competing objective provides a realistic design setting where every design solution represents a trade-off between different criteria. The tool can be useful to explore and identify different design principles for synthetic gene circuits

    Lost in optimisation of water distribution systems? A literature review of system design

    Get PDF
    This is the final version of the article. Available from MDPI via the DOI in this record.Optimisation of water distribution system design is a well-established research field, which has been extremely productive since the end of the 1980s. Its primary focus is to minimise the cost of a proposed pipe network infrastructure. This paper reviews in a systematic manner articles published over the past three decades, which are relevant to the design of new water distribution systems, and the strengthening, expansion and rehabilitation of existing water distribution systems, inclusive of design timing, parameter uncertainty, water quality, and operational considerations. It identifies trends and limits in the field, and provides future research directions. Exclusively, this review paper also contains comprehensive information from over one hundred and twenty publications in a tabular form, including optimisation model formulations, solution methodologies used, and other important details

    How enzyme economy shapes metabolic fluxes

    Full text link
    Metabolic fluxes are governed by physical and economic principles. Stationarity constrains them to a subspace in flux space and thermodynamics makes them lead from higher to lower chemical potentials. At the same time, fluxes in cells represent a compromise between metabolic performance and enzyme cost. To capture this, some flux prediction methods penalise larger fluxes by heuristic cost terms. Economic flux analysis, in contrast, postulates a balance between enzyme costs and metabolic benefits as a necessary condition for fluxes to be realised by kinetic models with optimal enzyme levels. The constraints are formulated using economic potentials, state variables that capture the enzyme labour embodied in metabolites. Generally, fluxes must lead from lower to higher economic potentials. This principle, which resembles thermodynamic constraints, can complement stationarity and thermodynamic constraints in flux analysis. Futile modes, which would be incompatible with economic potentials, are defined algebraically and can be systematically removed from flux distributions. Enzymes that participate in potential futile modes are likely targets of regulation. Economic flux analysis can predict high-yield and low-yield strategies, and captures preemptive expression, multi-objective optimisation, and flux distributions across several cells living in symbiosis. Inspired by labour value theories in economics, it justifies and extends the principle of minimal fluxes and provides an intuitive framework to model the complex interplay of fluxes, metabolic control, and enzyme costs in cells

    RSVP performance optimisation using multi-objective evolutionary optimisation

    Get PDF
    The proposed uses of the resource reservation protocol (RSVP) now extend beyond reserving resources in Internet Protocol (IP) networks to being a generic signaling protocol for generalised multi-protocol label switching (GMPLS). In any implementation of RSVP, there are a number of discretionary timing parameters, the values of which affect the efficacy of RSVP in establishing and maintaining reservations/connections. This work frames the interactions between key RSVP timing parameters and performance metrics as a multi-objective optimisation problem which, due to its intractable nature, is tackled using a reputable multi-objective evolutionary algorithm. It is shown that this approach is a feasible means of exploring many of the innate tradeoffs in soft-state protocols such as RSVP. This approach facilitates an extensive comparison of a number of variants of RSVP: standard RSVP, RSVP featuring the recently standardised retransmission algorithm and two subsequent variants of this algorithm, supporting the asymmetric delivery of RSVP control messages. These RSVP variants are compared in terms of multiple performance metrics under a number of different exemplar network conditions, giving insight into their relative merits. Furthermore, the relative significance of the different timing parameters is investigated and their most expedient values determined

    Lost in optimisation of water distribution systems? A literature review of system operation

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Optimisation of the operation of water distribution systems has been an active research field for almost half a century. It has focused mainly on optimal pump operation to minimise pumping costs and optimal water quality management to ensure that standards at customer nodes are met. This paper provides a systematic review by bringing together over two hundred publications from the past three decades, which are relevant to operational optimisation of water distribution systems, particularly optimal pump operation, valve control and system operation for water quality purposes of both urban drinking and regional multiquality water distribution systems. Uniquely, it also contains substantial and thorough information for over one hundred publications in a tabular form, which lists optimisation models inclusive of objectives, constraints, decision variables, solution methodologies used and other details. Research challenges in terms of simulation models, optimisation model formulation, selection of optimisation method and postprocessing needs have also been identified
    • …
    corecore