14,902 research outputs found

    NIRA-3: An improved MATLAB package for finding Nash equilibria in infinite games

    Get PDF
    A powerful method for computing Nash equilibria in constrained, multi-player games is created when the relaxation algorithm and the Nikaido-Isoda function are used together in a suite of MATLAB routines. This paper updates the MATLAB suite described in \cite{Berridge97} by adapting them to MATLAB 7. The suite is now capable of solving both static and open-loop dynamic games. An example solving a coupled constraints game using the suite is provided.Nikaido-Isoda function; Coupled constraints

    Dynamic Network Congestion Games

    Get PDF
    Congestion games are a classical type of games studied in game theory, in which n players choose a resource, and their individual cost increases with the number of other players choosing the same resource. In network congestion games (NCGs), the resources correspond to simple paths in a graph, e.g. representing routing options from a source to a target. In this paper, we introduce a variant of NCGs, referred to as dynamic NCGs: in this setting, players take transitions synchronously, they select their next transitions dynamically, and they are charged a cost that depends on the number of players simultaneously using the same transition. We study, from a complexity perspective, standard concepts of game theory in dynamic NCGs: social optima, Nash equilibria, and subgame perfect equilibria. Our contributions are the following: the existence of a strategy profile with social cost bounded by a constant is in PSPACE and NP-hard. (Pure) Nash equilibria always exist in dynamic NCGs; the existence of a Nash equilibrium with bounded cost can be decided in EXPSPACE, and computing a witnessing strategy profile can be done in doubly-exponential time. The existence of a subgame perfect equilibrium with bounded cost can be decided in 2EXPSPACE, and a witnessing strategy profile can be computed in triply-exponential time

    Efficient Markov perfect Nash equilibria: theory and application to dynamic fishery games

    Get PDF
    In this paper, we present a method for the characterization of Markov perfect Nash equilibria being Pareto efficient in non-linear differential games. For that purpose, we use a new method for computing Nash equilibria with Markov strategies by means of a system of quasilinear partial differential equations. We apply the necessary and sufficient conditions derived to characterize efficient Markov perfect Nash equilibria to dynamic fishery games.We are grateful to the editor Kenneth L. Judd and an anonymous referee for helpful comments. The research of the first author was supported by MCYT under project BEC2002-02361 and JCYL under project VA51/03, cofinanced by FEDER funds. The research of the second author was supported by MCYT under project BFM2002–00425 and JCYL under project VA099/04 cofinanced by FEDER funds.Publicad

    On the Complexity of Nash Equilibria of Action-Graph Games

    Full text link
    We consider the problem of computing Nash Equilibria of action-graph games (AGGs). AGGs, introduced by Bhat and Leyton-Brown, is a succinct representation of games that encapsulates both "local" dependencies as in graphical games, and partial indifference to other agents' identities as in anonymous games, which occur in many natural settings. This is achieved by specifying a graph on the set of actions, so that the payoff of an agent for selecting a strategy depends only on the number of agents playing each of the neighboring strategies in the action graph. We present a Polynomial Time Approximation Scheme for computing mixed Nash equilibria of AGGs with constant treewidth and a constant number of agent types (and an arbitrary number of strategies), together with hardness results for the cases when either the treewidth or the number of agent types is unconstrained. In particular, we show that even if the action graph is a tree, but the number of agent-types is unconstrained, it is NP-complete to decide the existence of a pure-strategy Nash equilibrium and PPAD-complete to compute a mixed Nash equilibrium (even an approximate one); similarly for symmetric AGGs (all agents belong to a single type), if we allow arbitrary treewidth. These hardness results suggest that, in some sense, our PTAS is as strong of a positive result as one can expect

    Finding Any Nontrivial Coarse Correlated Equilibrium Is Hard

    Get PDF
    One of the most appealing aspects of the (coarse) correlated equilibrium concept is that natural dynamics quickly arrive at approximations of such equilibria, even in games with many players. In addition, there exist polynomial-time algorithms that compute exact (coarse) correlated equilibria. In light of these results, a natural question is how good are the (coarse) correlated equilibria that can arise from any efficient algorithm or dynamics. In this paper we address this question, and establish strong negative results. In particular, we show that in multiplayer games that have a succinct representation, it is NP-hard to compute any coarse correlated equilibrium (or approximate coarse correlated equilibrium) with welfare strictly better than the worst possible. The focus on succinct games ensures that the underlying complexity question is interesting; many multiplayer games of interest are in fact succinct. Our results imply that, while one can efficiently compute a coarse correlated equilibrium, one cannot provide any nontrivial welfare guarantee for the resulting equilibrium, unless P=NP. We show that analogous hardness results hold for correlated equilibria, and persist under the egalitarian objective or Pareto optimality. To complement the hardness results, we develop an algorithmic framework that identifies settings in which we can efficiently compute an approximate correlated equilibrium with near-optimal welfare. We use this framework to develop an efficient algorithm for computing an approximate correlated equilibrium with near-optimal welfare in aggregative games.Comment: 21 page

    On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games

    Full text link
    In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor α\alpha through unilateral strategy changes. There is a threshold αδ\alpha_\delta (where δ\delta is a parameter that limits the demand of each player on a specific resource) such that α\alpha-approximate pure Nash equilibria always exist for ααδ\alpha \geq \alpha_\delta, but not for α<αδ\alpha < \alpha_\delta. We give both upper and lower bounds on this threshold αδ\alpha_\delta and show that the corresponding decision problem is NP{\sf NP}-hard. We also show that the α\alpha-approximate price of anarchy for BAGs is α+1\alpha+1. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum

    Query Complexity of Approximate Nash Equilibria

    Full text link
    We study the query complexity of approximate notions of Nash equilibrium in games with a large number of players nn. Our main result states that for nn-player binary-action games and for constant ε\varepsilon, the query complexity of an ε\varepsilon-well-supported Nash equilibrium is exponential in nn. One of the consequences of this result is an exponential lower bound on the rate of convergence of adaptive dynamics to approxiamte Nash equilibrium
    corecore