755 research outputs found

    Computing ?-Stretch Paths in Drawings of Graphs

    Get PDF
    Let f be a drawing in the Euclidean plane of a graph G, which is understood to be a 1-dimensional simplicial complex. We assume that every edge of G is drawn by f as a curve of constant algebraic complexity, and the ratio of the length of the longest simple path to the the length of the shortest edge is poly(n). In the drawing f, a path P of G, or its image in the drawing ?=f(P), is ?-stretch if ? is a simple (non-self-intersecting) curve, and for every pair of distinct points p?P and q?P, the length of the sub-curve of ? connecting f(p) with f(q) is at most ?||f(p)-f(q)?, where ?.? denotes the Euclidean distance. We introduce and study the ?-stretch Path Problem (?SP for short), in which we are given a pair of vertices s and t of G, and we are to decide whether in the given drawing of G there exists a ?-stretch path P connecting s and t. The ?SP also asks that we output P if it exists. The ?SP quantifies a notion of "near straightness" for paths in a graph G, motivated by gerrymandering regions in a map, where edges of G represent natural geographical/political boundaries that may be chosen to bound election districts. The notion of a ?-stretch path naturally extends to cycles, and the extension gives a measure of how gerrymandered a district is. Furthermore, we show that the extension is closely related to several studied measures of local fatness of geometric shapes. We prove that ?SP is strongly NP-complete. We complement this result by giving a quasi-polynomial time algorithm, that for a given ?>0, ??O(poly(log |V(G)|)), and s,t?V(G), outputs a ?-stretch path between s and t, if a (1-?)?-stretch path between s and t exists in the drawing

    Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition

    Get PDF
    A geometric graph is angle-monotone if every pair of vertices has a path between them that---after some rotation---is xx- and yy-monotone. Angle-monotone graphs are 2\sqrt 2-spanners and they are increasing-chord graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in 2014 and proved that Gabriel triangulations are angle-monotone graphs. We give a polynomial time algorithm to recognize angle-monotone geometric graphs. We prove that every point set has a plane geometric graph that is generalized angle-monotone---specifically, we prove that the half-θ6\theta_6-graph is generalized angle-monotone. We give a local routing algorithm for Gabriel triangulations that finds a path from any vertex ss to any vertex tt whose length is within 1+21 + \sqrt 2 times the Euclidean distance from ss to tt. Finally, we prove some lower bounds and limits on local routing algorithms on Gabriel triangulations.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Recognizing and Drawing IC-planar Graphs

    Full text link
    IC-planar graphs are those graphs that admit a drawing where no two crossed edges share an end-vertex and each edge is crossed at most once. They are a proper subfamily of the 1-planar graphs. Given an embedded IC-planar graph GG with nn vertices, we present an O(n)O(n)-time algorithm that computes a straight-line drawing of GG in quadratic area, and an O(n3)O(n^3)-time algorithm that computes a straight-line drawing of GG with right-angle crossings in exponential area. Both these area requirements are worst-case optimal. We also show that it is NP-complete to test IC-planarity both in the general case and in the case in which a rotation system is fixed for the input graph. Furthermore, we describe a polynomial-time algorithm to test whether a set of matching edges can be added to a triangulated planar graph such that the resulting graph is IC-planar

    Drawing Trees with Perfect Angular Resolution and Polynomial Area

    Full text link
    We study methods for drawing trees with perfect angular resolution, i.e., with angles at each node v equal to 2{\pi}/d(v). We show: 1. Any unordered tree has a crossing-free straight-line drawing with perfect angular resolution and polynomial area. 2. There are ordered trees that require exponential area for any crossing-free straight-line drawing having perfect angular resolution. 3. Any ordered tree has a crossing-free Lombardi-style drawing (where each edge is represented by a circular arc) with perfect angular resolution and polynomial area. Thus, our results explore what is achievable with straight-line drawings and what more is achievable with Lombardi-style drawings, with respect to drawings of trees with perfect angular resolution.Comment: 30 pages, 17 figure

    Aligned Drawings of Planar Graphs

    Get PDF
    Let GG be a graph that is topologically embedded in the plane and let A\mathcal{A} be an arrangement of pseudolines intersecting the drawing of GG. An aligned drawing of GG and A\mathcal{A} is a planar polyline drawing Γ\Gamma of GG with an arrangement AA of lines so that Γ\Gamma and AA are homeomorphic to GG and A\mathcal{A}. We show that if A\mathcal{A} is stretchable and every edge ee either entirely lies on a pseudoline or it has at most one intersection with A\mathcal{A}, then GG and A\mathcal{A} have a straight-line aligned drawing. In order to prove this result, we strengthen a result of Da Lozzo et al., and prove that a planar graph GG and a single pseudoline L\mathcal{L} have an aligned drawing with a prescribed convex drawing of the outer face. We also study the less restrictive version of the alignment problem with respect to one line, where only a set of vertices is given and we need to determine whether they can be collinear. We show that the problem is NP-complete but fixed-parameter tractable.Comment: Preliminary work appeared in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    The Partial Visibility Representation Extension Problem

    Full text link
    For a graph GG, a function ψ\psi is called a \emph{bar visibility representation} of GG when for each vertex vV(G)v \in V(G), ψ(v)\psi(v) is a horizontal line segment (\emph{bar}) and uvE(G)uv \in E(G) iff there is an unobstructed, vertical, ε\varepsilon-wide line of sight between ψ(u)\psi(u) and ψ(v)\psi(v). Graphs admitting such representations are well understood (via simple characterizations) and recognizable in linear time. For a directed graph GG, a bar visibility representation ψ\psi of GG, additionally, puts the bar ψ(u)\psi(u) strictly below the bar ψ(v)\psi(v) for each directed edge (u,v)(u,v) of GG. We study a generalization of the recognition problem where a function ψ\psi' defined on a subset VV' of V(G)V(G) is given and the question is whether there is a bar visibility representation ψ\psi of GG with ψ(v)=ψ(v)\psi(v) = \psi'(v) for every vVv \in V'. We show that for undirected graphs this problem together with closely related problems are \NP-complete, but for certain cases involving directed graphs it is solvable in polynomial time.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    On Embeddability of Buses in Point Sets

    Full text link
    Set membership of points in the plane can be visualized by connecting corresponding points via graphical features, like paths, trees, polygons, ellipses. In this paper we study the \emph{bus embeddability problem} (BEP): given a set of colored points we ask whether there exists a planar realization with one horizontal straight-line segment per color, called bus, such that all points with the same color are connected with vertical line segments to their bus. We present an ILP and an FPT algorithm for the general problem. For restricted versions of this problem, such as when the relative order of buses is predefined, or when a bus must be placed above all its points, we provide efficient algorithms. We show that another restricted version of the problem can be solved using 2-stack pushall sorting. On the negative side we prove the NP-completeness of a special case of BEP.Comment: 19 pages, 9 figures, conference version at GD 201
    corecore