LIPIcs - Leibniz International Proceedings in Informatics. 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)
Doi
Abstract
Let f be a drawing in the Euclidean plane of a graph G, which is understood to be a 1-dimensional simplicial complex. We assume that every edge of G is drawn by f as a curve of constant algebraic complexity, and the ratio of the length of the longest simple path to the the length of the shortest edge is poly(n). In the drawing f, a path P of G, or its image in the drawing ?=f(P), is ?-stretch if ? is a simple (non-self-intersecting) curve, and for every pair of distinct points p?P and q?P, the length of the sub-curve of ? connecting f(p) with f(q) is at most ?||f(p)-f(q)?, where ?.? denotes the Euclidean distance. We introduce and study the ?-stretch Path Problem (?SP for short), in which we are given a pair of vertices s and t of G, and we are to decide whether in the given drawing of G there exists a ?-stretch path P connecting s and t. The ?SP also asks that we output P if it exists.
The ?SP quantifies a notion of "near straightness" for paths in a graph G, motivated by gerrymandering regions in a map, where edges of G represent natural geographical/political boundaries that may be chosen to bound election districts. The notion of a ?-stretch path naturally extends to cycles, and the extension gives a measure of how gerrymandered a district is. Furthermore, we show that the extension is closely related to several studied measures of local fatness of geometric shapes.
We prove that ?SP is strongly NP-complete. We complement this result by giving a quasi-polynomial time algorithm, that for a given ?>0, ??O(poly(log |V(G)|)), and s,t?V(G), outputs a ?-stretch path between s and t, if a (1-?)?-stretch path between s and t exists in the drawing